Signals from the Universe
 the DAMM/ABRA resols

LAUNCH09

Heidelberg - November 9-12, 2009
P. Belli

INFN-Roma Tor Vergata

Some direct detection processes:

- Scatterings on nuclei
\rightarrow detection of nuclear recoil energy

- Inelastic Dark Matter: $\mathbf{W}+\mathbf{N} \rightarrow \mathbf{W} \boldsymbol{+} \mathbf{N}$
$\rightarrow \mathrm{W}$ has Two mass states $\chi+, \chi-$ with δ mass splitting
\rightarrow Kinematical constraint for the inelastic scattering of χ - on a nucleus

$$
\frac{1}{2} \mu v^{2} \geq \delta \Leftrightarrow v \geq v_{t h r}=\sqrt{\frac{2 \delta}{\mu}}
$$

- Excitation of bound electrons in scatterings on nuclei \rightarrow detection of recoil nuclei + e.m. radiation
- Conversion of particle into e.m. radiation
\rightarrow detection of γ, X-rays, e-

- Interaction only on atomic electrons
\rightarrow detection of e.m. radiation

- Interaction of light DMp (LDM) on e^{-}or nucleus with production of a lighter particle \rightarrow detection of electron/nucleus recoil energy

e.g. signals from these candidates are completely lost in experiments based on "rejection procedures" of the e.m. component of their rate
... also other ideas ...

The annual modulation: a model independent signature for the investigation of Dark Matter particles component in the galactic halo
With the present technology, the annual modulation is the main model independent signature for the DM signal. Although the modulation effect is expected to be relatively small a suitable large-mass, low-radioactive set-up with an efficient control of the running conditions would point out its presence.

Drukier, Freese, Spergel PRD86
Freese et al. PRD88

- $v_{\text {sun }} \sim 232 \mathrm{~km} / \mathrm{s}$ (Sun velocity in the halo)
- $v_{\text {orb }}=30 \mathrm{~km} / \mathrm{s}$ (Earth velocity around the Sun)
- $\gamma=\pi / 3$
- $\omega=2 \pi / T \quad T=1$ year
- $t_{0}=2^{\text {nd }}$ June (when v_{\oplus} is maximum)

$$
\mathrm{v}_{\oplus}(\mathrm{t})=\mathrm{v}_{\text {sun }}+\mathrm{v}_{\text {orb }} \cos \gamma \cos \left[\omega\left(\mathrm{t}-\mathrm{t}_{0}\right)\right]
$$

$S_{k}[\eta(t)]=\int_{\Delta E_{k}} \frac{d R}{d E_{R}} d E_{R} \cong S_{0, k}+S_{m, k} \cos \left[\omega\left(t-t_{0}\right)\right]$
Expected rate in given energy bin changes because the annual motion of the Earth around the Sun moving in the Galaxy

To mimic this signature, spurious effects and side reactions must not only obviously - be able to account for the whole observed modulation amplitude, but also to satisfy contemporaneously all the requirements

1) Modulated rate according cosine
2) In a definite low energy range
3) With a proper period (1 year)
4) With proper phase (about 2 J une)
5) For single hit events in a multi-detectorset-up
6) With modulation amplitude in the region of maximal sensitivity must be <7\% for usually adopted halo distributions,
but it can be larger in case of some possible scenarios

Roma2,Roma1,LNGS,IHEP/Beijing

DAMA/NaI : $\mathbf{~ 1 0 0} \mathbf{~ k g ~ N a I (T l) ~}$

Performances: N.Cim.A112(1999)545-575, EPJC18(2000)283, Riv.N.Cim. 26 n. 1(2003)1-73, IJMPD13(2004)2127

Results on rare processes:

- Possible Pauli exclusion principle violation
- CNC processes
- Electron stability and non-paulian transitions in I odine atoms (by L-shell)
- Search for solar axions
- Exotic Matter search
- Search for superdense nuclear matter
- Search for heavy clusters decays

PLB408(1997)439
PRC60(1999)065501

PLB460(1999)235
PLB515(2001)6
EPJ direct C14(2002)1 EPJ A23(2005)7
EPJ A24(2005)51

Results on DM particles:

- PSD
- Investigation on diurnal effect
- Exotic Dark Matter search
- Annual Modulation Signature

PLB389(1996)757
N.Cim.A112(1999)1541

PRL83(1999)4918

PLB424(1998)195, PLB450(1999)448, PRD61(1999)023512, PLB480(2000)23, EPJC18(2000)283, PLB509(2001)197, EPJC23(2002)61, PRD66(2002)043503, Riv.N.Cim. 26 n. 1 (2003)1, IJMPD13(2004)2127, IJMPA21(2006)1445, EPJC47(2006)263, IJMPA22(2007)3155, EPJC53(2008)205, PRD77(2008)023506, MPLA23(2008)2125.
model independent evidence of a particle DM component in the galactic halo at 6.3б C.L.

The new DAMA/LIBRA set-up ~250 kg Nal(TI)

 (Large sodium lodide Bulk for RAre processes)As a result of a second generation R\&D for more radiopure NaI(TI) by exploiting new chemical/physical radiopurification techniques (all operations involving crystals and PMTs - including photos - in HP Nitrogen atmosphere)

assembling a DAMA/ LIBRA detector

detectors during installation; in the central and right up detectors the new
shaped Cu shield surrounding light guides (acting also as optical windows) and PMTs was not yet applied

- Radiopurity, performances, procedures, etc. : NIMA592(2008)297
- Results on DM particles: Annual Modulation Signature: EPJC56(2008)333
- Results on rare processes: Possible processes violating the Pauli exclusion principle in Na and I: EPJC62(2009)327

closing the Cu box housing the detectors
view at end of detectors' installation in the Cu box

The DAMA/LIBRA set-up

For details, radiopurity, performances, procedures, etc. NIMA592(2008)297

Dismounting/Installing protocol (with "Scuba" system)
All the materials selected for low radioactivity
Multicomponent passive shield ($>10 \mathrm{~cm}$ of $\mathrm{Cu}, 15 \mathrm{~cm}$ of $\mathrm{Pb}+$ Cd foils, $10 / 40 \mathrm{~cm}$ Polyethylene/paraffin, about 1 m concrete, mostly outside the installation)

- Three-level system to exclude Radon from the detectors
- Calibrations in the same running conditions as production runs
- Installation in air conditioning + huge heat capacity of shield
- Monitoring/alarm system; many parameters acquired with the
 production data
- Pulse shape recorded by Waweform Analyzer TVS641A (2chs per detector), 1 Gsample/s, 8 bit, bandwidth 250 MHz
- Data collected from low energy up to MeV region, despite the hardware optimization was done for the low energy

Some on residual contaminants in new $\mathrm{NaI}(\mathrm{TI})$ detectors

α / e pulse shape discrimination has practically 100% effectiveness in the MeV range

The measured α yield in the new DAMA/LIBRA detectors ranges from 7 to some tens $\alpha / \mathrm{kg} /$ day

Second generation R\&D for new
DAMA/LIBRA crystals: new selected powders, physical/chemical radiopurification, new selection of overall materials, new protocol for growing and handling

232Th residual contamination From time-amplitude method. If ${ }^{232}$ Th chain at equilibrium: it ranges from 0.5 ppt to 7.5 ppt

238 U residual contamination First estimate: considering the measured α and ${ }^{232}$ Th activity, if ${ }^{238} \mathrm{U}$ chain at equilibrium $\Rightarrow{ }^{238} \mathrm{U}$ contents in new detectors typically range from 0.7 to 10 ppt
${ }^{238} \mathrm{U}$ chain splitted into 5 subchains: ${ }^{238} \mathrm{U} \rightarrow{ }^{234} \mathrm{U} \rightarrow{ }^{230} \mathrm{Th} \rightarrow{ }^{226} \mathrm{Ra} \rightarrow{ }^{210 \mathrm{~Pb}} \rightarrow{ }^{206} \mathrm{~Pb}$
Thus, in this case: (2.1 ± 0.1) ppt of ${ }^{232} \mathrm{Th} ;(0.35 \pm 0.06) \mathrm{ppt}$ for ${ }^{238} \mathrm{U}$ and: $(15.8 \pm 1.6) \mu \mathrm{Bq} / \mathrm{kg}$ for ${ }^{234} \mathrm{U}+{ }^{230} \mathrm{Th} ;(21.7 \pm 1.1) \mu \mathrm{Bq} / \mathrm{kg}$ for ${ }^{226} \mathrm{Ra} ;(24.2 \pm 1.6) \mu \mathrm{Bq} / \mathrm{kg}$ for ${ }^{210 \mathrm{~Pb}}$.

natK residual contamination

The analysis has given for the natK content in the crystals values not exceeding about 20 ppb

Infos about DAMA/LIBRA data taking

DAMA/LIBRA test runs:
DAMA/LIBRA normal operation:
High energy runs for TDs:
from March 2003 to September 2003
from September 2003 to August 2004
September 2004
to allow internal α 's identification
(approximative exposure $\approx 5000 \mathrm{~kg} \times \mathrm{d}$)
DAMA/LIBRA normal operation: from October 2004

Data released here:

- four annual cycles: 0.53 ton \times yr
- calibrations: acquired $\approx 44 \mathrm{M}$ events from sources
- acceptance window eff: acquired $\approx 2 \mathrm{M}$ events/keV

Period		Exposure (kg \times day $)$	$\alpha-\beta^{2}$
DAMA/LIBRA-1	Sept. 9, 2003 - July 21, 2004	51405	0.562
DAMA/LIBRA-2	July 21, 2004 - Oct. 28, 2005	52597	0.467
DAMA/LIBRA-3	Oct. 28, 2005 - July 18, 2006	39445	0.591
DAMA/LIBRA-4	July 19, 2006 - July 17, 2007	49377	0.541
Total		$\simeq 0.53$ ton $\times \mathrm{yr}$	0.537

DAMA/Nal (7 years) + DAMA/LIBRA (4 years)
total exposure: $300555 \mathrm{~kg} \times$ day $=0.82 \mathrm{ton} \times \mathrm{yr}$

Two remarks:

- One PMT problems after 6 months. Detector out of trigger since Sep. 2003 (since Sept. 2008 again in operation)
- Residual cosmogenic ${ }^{125}$ presence in the first year in some detectors (this motivates the Sept. 2003 as starting time)

DAMA/LIBRA is
continuously running

Cumulative low-energy distribution of the single-hit scintillation events

Single-hit events $=$ each detector has all the others as anticoincidence
(Obviously differences among detectors are present depending e.g. on each specific level and location of residual contaminants, on the detector's location in the 5×5 matrix, etc.)

Efficiencies already accounted for

About the energy threshold:

- The DAMA/LIBRA detectors have been calibrated down to the keV region. This assures a clear knowledge of the "physical" energy threshold of the experiment.
- It obviously profits of the relatively high number of available photoelectrons/keV (from 5.5 to 7.5).
- The two PMTs of each detector in DAMA/LIBRA work in coincidence with hardware threshold at single photoelectron level.
- Effective near-threshold-noise full rejection.
- The software energy threshold used by the experiment is 2 keV .

Model Independent Annual Modulation Result

DAMA/Nal (7 years) + DAMA/LIBRA (4 years) Total exposure: $300555 \mathrm{~kg} \times$ day $=0.82 \mathrm{ton} \times \mathrm{yr}$ experimental single-hit residuals rate vs time and energy

EPJC56(2008)333

2-5 keV

2-6 keV

Time (day)

$$
\begin{aligned}
& \mathbf{2 - 4} \mathbf{~ k e V} \\
& \mathrm{A}=(0.0215 \pm 0.0026) \mathrm{cpd} / \mathrm{kg} / \mathrm{keV} \\
& \chi^{2} / \mathrm{dof}=51.9 / 66 \quad 8.3 \sigma \text { C.L. }
\end{aligned}
$$

Absence of modulation? No

$$
\chi^{2} / \mathrm{dof}=117.7 / 67 \Rightarrow \mathrm{P}(\mathrm{~A}=0)=1.3 \times 10^{-4}
$$

2-5 keV

$\mathrm{A}=(0.0176 \pm 0.0020) \mathrm{cpd} / \mathrm{kg} / \mathrm{keV}$

$$
\chi^{2} / \mathrm{dof}=39.6 / 66 \quad 8.8 \sigma \text { C.L. }
$$

Absence of modulation? No
$\chi^{2} / \mathrm{dof}=116.1 / 67 \Rightarrow P(A=0)=1.9 \times 10^{-4}$

2-6 keV

$\mathrm{A}=(0.0129 \pm 0.0016) \mathrm{cpd} / \mathrm{kg} / \mathrm{keV}$

$$
\chi^{2 / d o f}=54.3 / 668.2 \sigma \text { C.L. }
$$

Absence of modulation? No
$\chi^{2} / \mathrm{dof}=116.4 / 67 \Rightarrow P(A=0)=1.8 \times 10^{-4}$

Model-independent residual rate for single-hit events

DAMA/Nal (7 years) + DAMA/LIBRA (4 years) total exposure: $300555 \mathrm{~kg} \times$ day $=0.82$ ton $\times \mathrm{yr}$ Results of the fits keeping the parameters free:

Modulation amplitudes, A, of single year measured in the 11 one-year experiments of DAMA ($\mathrm{NaI}+$ LIBRA)

	$\mathrm{A}(\mathrm{cpd} / \mathrm{kg} / \mathrm{keV})$	$\mathrm{T}=2 \pi / \omega(\mathrm{yr})$	t_{0} (day)	C.L.
DAMA/Nal (7 years)				
$(2 \div 4) \mathrm{keV}$	0.0252 ± 0.0050	1.01 ± 0.02	125 ± 30	5.0σ
$(2 \div 5) \mathrm{keV}$	0.0215 ± 0.0039	1.01 ± 0.02	140 ± 30	5.5σ
$(2 \div 6) \mathrm{keV}$	0.0200 ± 0.0032	1.00 ± 0.01	140 ± 22	6.3σ
DAMA/LIBRA (4 years)				
$(2 \div 4) \mathrm{keV}$	0.0213 ± 0.0032	0.997 ± 0.002	139 ± 10	6.7σ
$(2 \div 5) \mathrm{keV}$	0.0165 ± 0.0024	0.998 ± 0.002	143 ± 9	6.9σ
$(2 \div 6) \mathrm{keV}$	0.0107 ± 0.0019	0.998 ± 0.003	144 ± 11	5.6σ
DAMA/Nal + DAMA/LIBRA				
$(2 \div 4) \mathrm{keV}$	0.0223 ± 0.0027	0.996 ± 0.002	138 ± 7	8.3σ
$(2 \div 5) \mathrm{keV}$	0.0178 ± 0.0020	0.998 ± 0.002	145 ± 7	8.9σ
$(2 \div 6) \mathrm{keV}$	0.0131 ± 0.0016	0.998 ± 0.003	144 ± 8	8.2σ

- The modulation amplitudes for the $(2-6) \mathrm{keV}$ energy interval, obtained when fixing exactly the period at 1 yr and the phase at 152.5 days, are: $(0.019 \pm 0.003) \mathrm{cpd} / \mathrm{kg} / \mathrm{keV}$ for DAMA/Nal and (0.011 ± 0.002) cpd/kg/keV for DAMA/LIBRA.
Thus, their difference: $(0.008 \pm 0.004) \mathrm{cpd} / \mathrm{kg} / \mathrm{keV}$ is $\approx 2 \sigma$ which corresponds to a modest, but non negligible probability.
χ^{2} test $\left(\chi^{2} / d o f=4.9 / 10,3.3 / 10\right.$ and $\left.8.0 / 10\right)$ and run test (lower tail probabilities of $74 \%, 61 \%$ and 11%) accept at 90% C.L. the hypothesis that the modulation amplitudes are normally fluctuating around their best fit values.

Compatibility among the annual cycles

Power spectrum of single-hit residuals

(according to Ap.J.263(1982)835; Ap.J.338(1989)277)
Treatment of the experimental errors and time binning included here

2-6 keV vs 6-14 keV

DAMA/Nal (7 years) total exposure: 0.29 ton $\times y r$

DAMA/LIBRA (4 years) total exposure: 0.53 ton $\times y r$

DAMA/Nal (7 years) + DAMA/LIBRA (4 years) total exposure: 0.82 ton $\times y r$

Principal mode in the $2-6 \mathrm{keV}$ region:
DAMA/NaI
DAMA/LIBRA
DAMA/NaI+LIBRA
$2.737 \cdot 10^{-3} \mathrm{~d}^{-1} \approx 1 \mathrm{y}^{-1}$
$2.705 \times 10^{-3} \mathrm{~d}^{-1} \approx 1 \mathrm{yr}^{-1}$
$2.737 \times 10^{-3} \mathrm{~d}^{-1} \approx 1 \mathrm{yr}^{-1}$

$+$

Not present in the 6-14 keV region (only aliasing peaks)
Clear annual modulation is evident in (2-6) keV while it is absence just above 6 keV

Can a hypothetical background modulation account for the observed effect?

- No Modulation above 6 keV

Mod. Ampl. (6-10 keV): cpd/kg/keV (0.0016 ± 0.0031) DAMA/LIBRA-1 -(0.0010 $\pm 0.0034)$ DAMA/LIBRA-2 -(0.0001 ± 0.0031) DAMA/LIBRA-3 -(0.0006 ± 0.0029) DAMA/LIBRA-4 \rightarrow statistically consistent with zero

In the same energy region where the effect is observed: no modulation of the multiple-hits events (see next slide)

+ if a modulation present in the whole energy spectrum at the level found

Period	Mod. Ampl.
DAMA/LIBRA-1	$-(0.05 \pm 0.19) \mathrm{cpd} / \mathrm{kg}$
DAMA/LIBRA-2	$-(0.12 \pm 0.19) \mathrm{cpd} / \mathrm{kg}$
DAMA/LIBRA-3	$-(0.13 \pm 0.18) \mathrm{cpd} / \mathrm{kg}$
DAMA/LIBRA-4	$(0.15 \pm 0.17) \mathrm{cpd} / \mathrm{kg}$

- R_{90} percentage variations with respect to \rightarrow cumulative gaussian behaviour
their mean values for single crystal in the
with $\sigma \approx 1 \%$, fully accounted by
- R_{90} percentage variations with respect to \rightarrow cumulative gaussian behaviour
their mean values for single crystal in the DAMA/LIBRA-1,2,3,4 running periods
- Fitting the behaviour with time, adding a term modulated according period and phase expected for Dark Matter particles:
- No modulation in the whole spectrum:
studying integral rate at higher energy, R90
- No modulation in the whole spectrum:
studying integral rate at higher energy, R90 consistent with zero in the lowest energy region $\rightarrow \mathbf{R}_{\mathbf{9 0}} \sim$ tens $\mathbf{c p d} / \mathrm{kg} \rightarrow \sim \mathbf{1 0 0} \sigma$ far away

Multiple-hits events in the region of the signal -dama/litbra 1-4

- Each detector has its own TDs read-out \rightarrow pulse profiles of multiple-hits events (multiplicity >1) acquired (exposure: 0.53 ton $\times y r$).
- The same hardware and software procedures as the ones followed for single-hit events
signals by Dark Matter particles do not belong to multiple-hits events, that is:

multiple-hits

 events Evidence of annual modulation with proper features as required by the DM annual modulation signature is present in the single-hit residuals, while it is absent in the multiple-hits residual rate.

This result offers an additional strong support for the presence of Dark Matter particles in the galactic halo further excluding any side effect either from hardware or from software procedures or from background

Modulation amplitudes, $S_{m, k \prime}$ as function of the energy

The likelihood function of the single-hit experimental data in the k-th energy bin is defined as:

$$
L_{k}=\prod_{i j} e^{-\mu_{i j k}} \frac{\mu_{i j k}^{N_{i j k}}}{N_{i j k}!}
$$

$N_{i j k}$ is the number of events collected in the i-th time interval (hereafter 1 day), by the j-th detector and in the k-th energy bin.
$N_{i j k}$ follows a Poissonian distribution with expectation value:

$$
\mu_{i j k}=\left\lfloor b_{j k}+R_{k}(t)\right\rfloor M_{j} \Delta t_{i} \Delta E \varepsilon_{j k}=\left\lfloor b_{j k}+S_{0, k}+S_{m, k} \cos \omega\left(t_{i}-t_{0}\right)\right\rfloor M_{j} \Delta t_{i} \Delta E \varepsilon_{j k}
$$

The $b_{j k}$ are the background contributions, M_{j} is the mass of the j-th detector, Δt_{i} is the detector running time during the i-th time interval, ΔE is the chosen energy bin, $\varepsilon_{j k}$ is the overall efficiency. The usual procedure is to minimize the function $y_{k}=-2 \ln \left(L_{k}\right)$ - const for each energy bin; the free parameters of the fit are the ($b_{j k}+S_{0, k}$) contributions and the $S_{m, k}$ parameter.

The $S_{m, k}$ is the modulation amplitude of the modulated part of the signal obtained by maximum likelihood method over the data considering

$$
T=2 \pi / \omega=1 \mathrm{yr} \text { and } t_{0}=152.5 \text { day. }
$$

Energy distribution of the modulation amplitudes, S_{m}, for the total exposure

$$
R(t)=S_{0}+S_{m} \cos \left[\omega\left(t-t_{0}\right)\right] \quad \text { DAMA/Nal (7 years) + DAMA/LIBRA (4 years) }
$$

here $T=2 \pi / \omega=1 \mathrm{yr}$ and $t_{0}=152.5$ day

A clear modulation is present in the (2-6) keV energy interval, while S_{m} values compatible with zero are present just above

In fact, the S_{m} values in the (6-20) keV energy interval have random fluctuations around zero with χ^{2} equal to 24.4 for 28 degrees of freedom

Statistical distributions of the modulation amplitudes $\left(\mathrm{S}_{\mathrm{m}}\right)$

a) S_{m} values for each detector, each annual cycle and each considered energy bin (here 0.25 keV)
b) $<\mathrm{S}_{\mathrm{m}}>=$ mean values over the detectors and the annual cycles for each energy bin; $\sigma=$ errors associated to each S_{m}

DAMA/LIBRA (4 years) total exposure: 0.53 ton $\times y r$

$2-6 \mathrm{keV}$

Individual S_{m} values follow a normal distribution since $\left.\left(S_{m}-<S_{m}\right\rangle\right) / \sigma$ is distributed as a Gaussian with a unitary standard deviation (r.m.s.)
S_{m} statistically well distributed in all the detectors and annual cycles

Statistical analyses about modulation amplitudes $\left(S_{m}\right)$

$$
\begin{aligned}
& x=\left(S_{m}-<S_{m}>\right) / \sigma \\
& \chi^{2}=\Sigma x^{2}
\end{aligned}
$$

$\chi^{2} /$ d.o.f. values of S_{m} distributions for each
DAMA/LIBRA detector in the (2-6) keV energy interval for the four annual cycles.

DAMA/LIBRA (4 years)
total exposure: 0.53 ton $\times y r$

The $\chi^{2} /$ d.o.f. values range from 0.7 to 1.28 (64 d.o. $f .=16$ energy bins $\times 4$ annual cycles)
\Rightarrow at 95% C.L. the observed annual modulation effect is well distributed in all the detectors.

- The mean value of the twenty-four points is 1.072 , slightly larger than 1 . Although this can be still ascribed to statistical fluctuations, let us ascribe it to a possible systematics.
- In this case, one would have an additional error of $\leq 5 \times 10^{-4} \mathrm{cpd} / \mathrm{kg} / \mathrm{keV}$, if quadratically combined, or $\leq 7 \times 10^{-5} \mathrm{cpd} / \mathrm{kg} / \mathrm{keV}$, if linearly combined, to the modulation amplitude measured in the $(2-6) \mathrm{keV}$ energy interval.
- This possible additional error ($\leq \mathbf{4 . 7 \%}$ or $\leq \mathbf{0 . 7 \%}$, respectively, of the DAMA/LIBRA modulation amplitude) can be considered as an upper limit of possible systematic effects

Is there a sinusoidal contribution in the signal? Phase $\neq 152.5$ day?

$$
R(t)=S_{0}+S_{m} \cos \left[\omega\left(t-t_{0}\right)\right]+Z_{m} \sin \left[\omega\left(t-t_{0}\right)\right]=S_{0}+Y_{m} \cos \left[\omega\left(t-t^{*}\right)\right]
$$

For Dark Matter signals:

- $\left|Z_{m}\right|<\left|\left|S_{m}\right| \approx\right| Y_{m} \mid$
- $\omega=2 \pi / T$
$\cdot t^{*} \approx t_{0}=152.5 d \quad \cdot T=1$ year

Slight differences from $2^{\text {nd }}$ June are expected in case of contributions from non thermalized DM components (as e.g. the SagDEG stream)

The analysis at energies above 6 keV , the analysis of the multiple-hits events and the statistical considerations about S_{m} already exclude any sizeable presence of systematical effects.

Additional investigations on the stability parameters

Modulation amplitudes obtained by fitting the time behaviours of main running parameters, acquired with the production data, when including a DM-like modulation
Running conditions stable at a level better than 1\%

	DAMA/LIBRA-1	DAMA/LIBRA-2	DAMA/LIBRA-3	DAMA/LIBRA-4
Temperature	$-(0.0001 \pm 0.0061){ }^{\circ} \mathrm{C}$	$(0.0026 \pm 0.0086)^{\circ} \mathrm{C}$	$(0.001 \pm 0.015)^{\circ} \mathrm{C}$	$(0.0004 \pm 0.0047){ }^{\circ} \mathrm{C}$
Flux N_{2}	$(0.13 \pm 0.22) \mathrm{l} / \mathrm{h}$	$(0.10 \pm 0.25) \mathrm{l} / \mathrm{h}$	$-(0.07 \pm 0.18) \mathrm{l} / \mathrm{h}$	$-(0.05 \pm 0.24) \mathrm{l} / \mathrm{h}$
Pressure	$(0.015 \pm 0.030) \mathrm{mbar}$	$-(0.013 \pm 0.025) \mathrm{mbar}$	$(0.022 \pm 0.027) \mathrm{mbar}$	$(0.0018 \pm 0.0074) \mathrm{mbar}$
Radon	$-(0.029 \pm 0.029) \mathrm{Bq} / \mathrm{m}^{3}$	$-(0.030 \pm 0.027) \mathrm{Bq} / \mathrm{m}^{3}$	$(0.015 \pm 0.029) \mathrm{Bq} / \mathrm{m}^{3}$	$-(0.052 \pm 0.039) \mathrm{Bq} / \mathrm{m}^{3}$
Hardware rate above single photoelectron	$-(0.20 \pm 0.18) \times 10^{-2} \mathrm{~Hz}$	$(0.09 \pm 0.17) \times 10^{-2} \mathrm{~Hz}$	$-(0.03 \pm 0.20) \times 10^{-2} \mathrm{~Hz}$	$(0.15 \pm 0.15) \times 10^{-2} \mathrm{~Hz}$

All the measured amplitudes well compatible with zero

+ none can account for the observed effect
(to mimic such signature, spurious effects and side reactions must not only be able to account for the whole observed modulation amplitude, but also simultaneously satisfy all the 6 requirements)

Temperature

- Detectors in Cu housings directly in contact with multi-ton shield \rightarrow huge heat capacity ($\approx 10^{6} \mathrm{cal} /{ }^{0} \mathrm{C}$)

Distribution of the relative variations of the operating T of the detectors

Considering the slope of the light output $\approx-0.2 \% /{ }^{\circ} \mathrm{C}$: relative light output variation $<10^{-4}$:

$$
<10^{-4} \mathrm{cpd} / \mathrm{kg} / \mathrm{keV}\left(<0.5 \% \mathrm{~S}_{\mathrm{m}}{ }^{\text {observed }}\right)
$$

An effect from temperature can be excluded

+ Any possible modulation due to temperature would always fail some of the peculiarities of the signature

Can a possible thermal neutron modulation account for the observed effect?

-Thermal neutrons flux measured at LNGS :

$$
\Phi_{\mathrm{n}}=1.0810^{-6} \mathrm{ncm}^{-2} \mathrm{~s}^{-1}(\mathrm{~N} . \operatorname{Cim} . A 101(1989) 959)
$$

- Experimental upper limit on the thermal neutrons flux "surviving" the neutron shield in DAMA/LIBRA:
$>$ studying triple coincidences able to give evidence for the possible presence of ${ }^{24} \mathrm{Na}$ from neutron activation:

$$
\Phi_{\mathrm{n}}<1.2 \times 10^{-7} \mathrm{n} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}(90 \% \text { C.L. })
$$

- Two consistent upper limits on thermal neutron flux have been obtained with DAMA/NaI considering the same capture reactions and using different approaches.

Evaluation of the expected effect:

- Capture rate $=\Phi_{\mathrm{n}} \sigma_{\mathrm{n}} \mathrm{N}_{\mathrm{T}}<0.022$ captures/day $/ \mathrm{kg}$

HYPOTHESIS: assuming very cautiously a 10% thermal neutron modulation:
$\mathrm{S}_{\mathrm{m}}{ }^{\text {(thermal } \mathrm{n})}<0.8 \times 10^{-6} \mathrm{cpd} / \mathrm{kg} / \mathrm{keV}\left(<0.01 \% \mathrm{~S}_{\mathrm{m}}{ }^{\text {observed }}\right)$
In all the cases of neutron captures $\left({ }^{24} \mathrm{Na},{ }^{128} \mathrm{I}, \ldots\right)$ a possible thermal n modulation induces a variation in all the energy spectrum Already excluded also by R_{90} analysis

MC simulation of the process When $\Phi_{\mathrm{n}}=10^{-6} \mathrm{n} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$:

Can a possible fast neutron modulation account for the observed effect?

In the estimate of the possible effect of the neutron background cautiously not included the 1 m concrete moderator, which almost completely surrounds (mostly outside the barrack) the passive shield

Measured fast neutron flux @ LNGS:

 $\Phi_{\mathrm{n}}=0.910^{-7} \mathrm{ncm}^{-2} \mathrm{~s}^{-1}$ (Astropart.Phys. 4 (1995)23)By MC: differential counting rate above $2 \mathrm{keV} \approx 10^{-3} \mathrm{cpd} / \mathrm{kg} / \mathrm{keV}$

HYPOTHESIS: assuming - very cautiously - a 10% neutron modulation:

$$
\mathrm{S}_{\mathrm{m}}^{(\text {fast } \mathrm{n})}<10^{-4} \mathrm{cpd} / \mathrm{kg} / \mathrm{keV} \quad\left(<0.5 \% \mathrm{~S}_{\mathrm{m}} \text { observed }\right)
$$

- Experimental upper limit on the fast neutrons flux "surviving" the neutron shield in DAMA/LIBRA:
$>$ through the study of the inelastic reaction ${ }^{23} \mathrm{Na}\left(\mathrm{n}, \mathrm{n}^{\prime}\right)^{23} \mathrm{Na}{ }^{*}(2076 \mathrm{keV})$ which produces two γ^{\prime} s in coincidence (1636 keV and 440 keV):

$$
\Phi_{\mathrm{n}}<2.2 \times 10^{-7} \mathrm{ncm}^{-2} \mathrm{~s}^{-1}(90 \% \text { C.L. })
$$

$>$ well compatible with the measured values at LNGS. This further excludes any presence of a fast neutron flux in DAMA/LIBRA significantly larger than the measured ones.

Moreover, a possible fast n modulation would induce:

- a variation in all the energy spectrum (steady environmental fast neutrons always accompained by thermalized component)

$$
\text { already excluded also by } R_{90}
$$

- a modulation amplitude for multiple-hit events different from zero already excluded by the multiple-hit events
Thus, a possible 5\% neutron modulation (ICARUS TMO3-01) cannot quantitatively contribute to the DAMA/NaI observed signal, even if the neutron flux would be assumed 100 times larger than measured by various authors over more than 15 years @ LNGS

Summary of the results obtained in the additional investigations of possible systematics or side reactions (DAMA/LIBRA - NIMA592(2008)297, EPJC56(2008)333)
Source
RADON
TEMPERATURE

Main comment

Cautious upper limit (90\%C.L.)
Sealed Cu box in HP Nitrogen atmosphere, $\quad<\mathbf{2 . 5} \times \mathbf{1 0}^{-6} \mathbf{c p d} / \mathbf{k g} / \mathbf{k e V}$ 3 -level of sealing, etc.
Installation is air conditioned + detectors in Cu housings directly in contact $<\mathbf{1 0}^{-4} \mathbf{~ c p d} / \mathbf{k g} / \mathbf{k e V}$ with multi-ton shield \rightarrow huge heat capacity
+T continuously recorded

NOISE

ENERGY SCALE EFFICIENCIES BACKGROUND

Effective full noise rejection near threshold $<\mathbf{1 0}^{-4} \mathbf{c p d} / \mathbf{k g} / \mathbf{k e V}$
Routine + instrinsic calibrations $\quad<\mathbf{1 - 2} \times \mathbf{1 0}^{-4} \mathbf{c p d} / \mathbf{k g} / \mathbf{k e V}$

No modulation above 6 keV ;
no modulation in the (2-6) $\mathrm{keV} \quad<\mathbf{1 0}^{-4} \mathbf{~ c p d} / \mathbf{k g} / \mathbf{k e V}$ multiple-hits events;
this limit includes all possible sources of background

SIDE REACTIONS Muon flux variation measured by MACRO $<\mathbf{3 \times 1 0 ^ { - 5 }} \mathbf{~ c p d / k g / k e V ~}$

+ even if larger they cannot satisfy all the requirements of annual modulation signature

Thus, they can not mimic the observed annual modulation effect

Model-independent evidence by DAMA/NaI and DAMA/LIBRA

- Presence of modulation for 11 annual cycles at -8.2σ C.L. with the proper distinctive features of the DM signature; all the features satisfied by the data over 11 independent experiments of 1 year each one
- Absence of known sources of possible systematics and side processes able to quantitatively account for the observed modulation amplitude and to satisfy contemporaneously all the peculiarities of the signature
well compatible with several candidates (in several of the many astrophysical, nuclear and particle physics scenarios); other ones are open
Neutralino as LSP in SUSY theories
a heavy v of the 4-th family

Dark Matter (including seme sceharios for WIMP) electron-interacting

Elementary Black holes such as the Daemons

WIMP with preferped inelastic scattering

Pseudoscalar, scalar or mixed light bosons with axion-like interactions
heavy exotic canditates, as "4th family atoms", ...

Possible model dependent positive hints from indirect searches not in conflict with DAMA results (but interpretation, evidence itself, derived mass and cross sections depend e.g. on bckg modeling, on DM spatial velocity distribution in the galactic halo, etc.)

Available results from direct searches using different target materials and approaches do not give any robust conflict

Examples for few of the many possible scenarios superimposed to the measured modulation amplitues $S_{m, k}$

WIMP DM candidate (as in [4]) considering elastic scattering on nuclei
SI dominant coupling $\mathrm{v}_{0}=170 \mathrm{~km} / \mathrm{s}$

- Not best fit
- About the same C.L.
scaling from NaI

Local density $\left(\mathrm{GeV} / \mathrm{cm}^{3}\right)$	Set as in $[4]$	DM particle mass	$\xi \sigma_{S I}$ (pb)
0.2	A	15 GeV	3.1×10^{-4}
0.2	A	15 GeV	1.3×10^{-5}
0.2	B	60 GeV	5.5×10^{-6}
0.17	B	100 GeV	6.5×10^{-6}
0.17	A	120 GeV	1.3×10^{-5}

[4] RNC 26 (2003) 1; [34] PRD66 (2002) 043503

Examples for few of the many possible scenarios superimposed to the measured modulation amplitues $S_{m, k}$

WIMP DM candidate (as in [4])
Elastic scattering on nuclei SI \& SD mixed coupling $v_{0}=170 \mathrm{~km} / \mathrm{s}$

- Not best fit
- About the same C.L.
.scaling from NaI

Curve label	Halo model $($ see ref. [4, 34])	Local density $\left(\mathrm{GeV} / \mathrm{cm}^{3}\right)$	Set as in [4]	DM particle mass	$\xi \sigma_{S I}$ (pb)	$\xi \sigma_{S D}$ (pb)
f	A5 (NFW)	0.2	A	15 GeV	10^{-7}	2.6
g	A5 (NFW)	0.2	A	15 GeV	1.4×10^{-4}	1.4
h	A5 (NFW)	0.2	B	60 GeV	10^{-7}	1.4
i	A5 (NFW)	0.2	B	60 GeV	8.7×10^{-6}	8.7×10^{-2}
j	B3 (Evans	0.17	A	100 GeV	10^{-7}	1.7
	power law)	0.17	A	100 GeV	1.1×10^{-5}	0.11
k	B3 (Evans					
	power law)					

[4] RNC 26 (2003) 1; [34] PRD66 (2002) 043503

Examples for few of the many possible scenarios superimposed to the measured modulation amplitues $S_{m, k}$

Light bosonic candidate

(as in IJMPA21(2006)1445): axion-like particles totally absorbed by target material

$\boldsymbol{m}_{L}=\mathbf{0}$

- Not best fit
- About the same C.L.

| (NFW) halo model as in [4, 34], local density $=0.17 \mathrm{GeV} / \mathrm{cm}^{3}$, local velocity $=170 \mathrm{~km} / \mathrm{s}$ | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \mathbf{c}Curve
 label | DM particle | Interaction | Set as
 in [4] | m_{H} | Δ | Cross
 section (pb) |
| l | LDM | coherent
 on nuclei | A | 30 MeV | 18 MeV | $\xi \sigma_{m}^{\text {coh }}=1.8 \times 10^{-6}$ |
| m | LDM | coherent
 on nuclei | A | 100 MeV | 55 MeV | $\xi \sigma_{m}^{\text {coh }}=2.8 \times 10^{-6}$ |
| o | LDM | incoherent
 on nuclei | A | 30 MeV | 3 MeV | $\xi \sigma_{m}^{\text {inc }}=2.2 \times 10^{-2}$ |
| p | LDM | incoherent
 on nuclei | A | 100 MeV | 55 MeV | $\xi \sigma_{m}^{\text {inc }}=4.6 \times 10^{-2}$ |
| q | LDM | coherent
 on nuclei
 incoherent
 on nuclei | A | 88 MeV | 28 MeV | $\xi \sigma_{m}^{\text {coh }}=1.6 \times 10^{-6}$ |
| r | LDM | on electrons | - | 60 keV | 60 keV | $\xi \sigma_{m}^{e}=0.3 \times 10^{-6}$ |

$$
\text { [4] RNC } 26 \text { (2003) 1; [34] PRD66 (2002) } 043503
$$

Conclusions: where DAMA is and is going to

- DAMA/LIBRA over 4 annual cycles (0.53 ton $\times y r$) confirms the results of DAMA/NaI (0.29 ton $\times y r$)
- The cumulative confidence level for the model independent evidence for presence of DM particle in the galactic halo is 8.2σ (total exposure 0.82 ton $\times y r$)

- First upgrading of the experimental set-up in Sept. 2008
- Opening of the shield of DAMA/LIBRA set-up in HP N_{2} atmosphere
- Replacement of some PMTs in HP N N_{2} atmosphere
- Dismounting of the Tektronix TDs and mounting of the new Acqiris TDs and of the new DAQ system with optical read-out
- Since Oct. 2008 again in data taking
- Continuing the data taking

- Update corollary analyses in some possible scenarios for DM candidates, interactions, halo models, nuclear/atomic properties, etc..
- Analyses/data taking to investigate also other rare processes in progress/foreseen

- Next upgrading: replacement of all the PMTs with higher Q.E. ones
- Production of new high Q.E. PMTs in progress
- Goal: lowering the energy thresholds of the detectors

- Long term data taking to improve the investigation, to disentangle at least some of the many possibilities, to investigate other features of DM particle component(s) and second order effects, etc..

A possible highly radiopure $\mathrm{NaI}(\mathrm{TI})$ multi-purpose set-up DAMA/1 ton (proposed by DAMA in 1996) at R\&D phase
to deep investigate Dark Matter phenomenology at galactic scale

Felix qui potuit rerum cognoscere causas (Virgilio, Georgiche, II, 489)

