A short review of Neutrino Physics

P. Belli http://people.roma2.infn.it/belli/ e-mail: pierluigi.belli@roma2.infn.it

Roma Tor Vergata, March 23, 2016

What is a neutrino?

- Stable Elementary Particle 3 over 6 constituents of (stable) matter
- No electric charge *cannot see it*
- Very little interaction with matter goes through the Earth unscathed
- Has very little mass less than 1 millionth of electron's mass
- Lots of them throughout 100 million in your body any time!

Sources of v

First Detection (1954 – 1956)

First evidences of anomalies in the neutrino field arrived from **solar neutrinos** (end of '60 and '70)

The solar v are produced in the nuclear reactions in the solar core: $4p \rightarrow \alpha + 2e^+ + 2v_e + 26.7 \text{ MeV}$ pp chain **CNO** cycle $p + p \rightarrow {}^{2}H + e^{+} + \mathbf{v}_{\rho}$ $p + e^{-} + p \rightarrow {}^{2}H + \mathbf{v}_{\rho}$ (pep) (pp) $^{13}N \rightarrow ^{13}C + e^+ + \mathbf{v}_{o}$ $^{12}C + p \rightarrow ^{13}N + \gamma$ (^{13}N) 99.6% 0.4% $^{15}N + p \rightarrow ^{12}C + ^{2}He$ $^{13}C + p \rightarrow ^{14}N + \gamma$ $^{2}\text{H} + p \rightarrow ^{3}\text{He} + \gamma$ 99.9% $^{15}\text{O} \rightarrow ^{15}\text{N} + e^+ + \mathbf{v}$ $^{14}N + p \rightarrow ^{15}O + \gamma$ (150) $2 \times 10^{-5}\%$ 85% 0.1% $^{3}\text{He} + ^{3}\text{He} \rightarrow ^{4}\text{He} + 2p$ $^{3}\text{He} + p \rightarrow ^{4}\text{He} + e^{+} + \mathbf{v}_{e}$ $^{15}N + p \rightarrow ^{16}O + \gamma$ $^{17}\text{O} + p \rightarrow ^{14}\text{N} + ^{4}\text{He}$ 15% (hep) $^{3}\text{He} + ^{4}\text{He} \rightarrow ^{7}\text{Be} + \gamma$ $^{16}\text{O} + p \rightarrow ^{17}\text{F} + \gamma$ ${}^{17}F \rightarrow {}^{17}O + e^+ + \mathbf{v}_{o}$ (^{17}F) 99.87% 0.13% (⁷Be) $^{7}\text{Be} + e^{-} \rightarrow ^{7}\text{Li} + \mathbf{v}_{e}$ $^{7}\text{Be} + p \rightarrow ^{8}\text{B} + \gamma$ 2 L_{sun} $\overline{2} = 7 \cdot 10^{10} \text{ sec}^{-1} \text{ cm}^{-2}$ $\Phi_v =$ 25MeV $4\pi(1AU)$ $^{8}B \rightarrow ^{8}Be^{*} + e^{+} + \mathbf{v}_{o}$ $^{7}\text{Li} + p \rightarrow 2^{4}\text{He}$ (⁸B) Pioneers: Ray Davis and John Bahcall, starting in '60's ⁸Be* \rightarrow 2⁴He

Neutrinos from the Sun

Solar radiation: 98 % light 2 % neutrinos At Earth 66 billion neutrinos/cm² sec

Hans Bethe (1906–2005, Nobel prize 1967) Thermonuclear reaction chains (1938)

Solar Neutrino Spectrum

- Many fusion processes in the sun lead to $\nu\mbox{'s}$
- Solar model predicts flux

Proposing the First Solar Neutrino Experiment

SOLAR NEUTRINOS. I. THEORETICAL*

John N. Bahcall California Institute of Technology, Pasadena, California (Received 6 January 1964)

The principal energy source for main-sequence stars like the sun is believed to be the fusion, in the deep interior of the star, of four protons to form an alpha particle.¹ The fusion reactions are thought to be initiated by the sequence ${}^{1}H(p, \gamma){}^{2}H(p, \gamma){}^{3}He$ and terminated by the following sequences: (i) ${}^{3}He({}^{3}He, 2p){}^{4}He$; (ii) ${}^{3}He(\alpha, \gamma){}^{7}Be{}(e^{-}\nu){}^{7}Li(p, \alpha){}^{4}He$; and (iii) ${}^{3}He(\alpha, \gamma){}^{7}Be{}(e^{+}\nu){}^{8}Be{}^{*}(\alpha){}^{4}He$. No direct evidence for the existence of nuclear reactions in the interiors of stars has yet been obtained because the mean free path for photons emitted in the center of a star is typically less than 10^{-10} of the radius of the star. Only neutrinos, with their extremely small interaction cross sections, can enable us to see into the interior of a star and thus verify directly the hypothesis of nuclear energy generation in stars.

The most promising method² for detecting solar neutrinos is based upon the endothermic reaction (Q=-0.81 MeV) ³⁷Cl $(\nu_{\text{solar}}, e^{-})$ ³⁷Ar, which was first discussed as a possible means of detecting neutrinos by Pontecorvo³ and Alvarez.⁴ In this note, we predict the number of absorptions of

300

VOLUME 12, NUMBER 11

PHYSICAL REVIEW LETTERS

16 MARCH 1964

SOLAR NEUTRINOS. II. EXPERIMENTAL*

Raymond Davis, Jr. Chemistry Department, Brookhaven National Laboratory, Upton, New York (Received 6 January 1964)

The prospect of observing solar neutrinos by means of the inverse beta process ${}^{37}Cl(\nu, e^{-}){}^{37}Ar$ induced us to place the apparatus previously described¹ in a mine and make a preliminary search. This experiment served to place an upper limit on the flux of extraterrestrial neutrinos. These 3 counts in 18 days is probably entirely due to the background activity. However, if one assumes that this rate corresponds to real events and uses the efficiencies mentioned, the upper limit of the neutrino capture rate in 1000 gallons of C_2Cl_4 is ≤ 0.5 per day or $\varphi \overline{\sigma} \leq 3 \times 10^{-34} \text{ sec}^{-1} ({}^{37}\text{Cl atom})^{-1}$.

First Measurement of Solar Neutrinos

Homestake solar neutrino observatory (1967–2002)

2002 Physics Nobel Prize for Neutrino Astronomy

Ray Davis Jr. (1914–2006) Masatoshi Koshiba (*1926)

"for pioneering contributions to astrophysics, in particular for the detection of cosmic neutrinos"

The ³⁷Cl experiment

- Reaction : $v_e + {}^{37}Cl \rightarrow e^- + {}^{37}Ar$
- Exp. site : gold mine of Homestake (4100 m.w.e.)

• Target : 615 tons of C_2Cl_4 , 2.2×10^{30} atoms of ³⁷Cl

• σ_{c} : $5 \times 10^{-46} \text{ cm}^2$ (*a*) 1 MeV 10⁻⁴¹ cm² (*a*) 15 MeV

- Procedure :
 - 35-150 days of exposition with 0.1 cm³ of STP of either ³⁶Ar or ³⁸Ar;
 - Ar removed by flushing He;
 - Ar purified by gaschromatography and getters;
 - ³⁷Ar inserted into proportional counters for measuring (EC decay of ³⁷Ar, T_{1/2}=35.04 days);
 - analysis with mass spectrometers to measure the amount of the extracted ³⁶Ar or ³⁸Ar

Results of Chlorine Experiment (Homestake)

Theoretical Prediction 6-9 SNU

1 SNU = 10⁻³⁶ capture/atom/s

"Solar Neutrino Problem" since 1968

Kamiokande

confirms the deficit of high energy solar $\boldsymbol{\nu}$

- Reaction : $\mathbf{v} + \mathbf{e}^{-} \rightarrow \mathbf{v} + \mathbf{e}^{-}$
- Exp. site : Kamioka mine (2700 m.w.e.)
- Target : 680 tons of H_2O (fiducial volume), $2.27 \times 10^{32} e^{-1}$
- → charged particles detected by Cerenkov light

Identification of events due to v_e:

- low energy events
- fiducial volume cut (γ,n)
- cosmic rays cut
- correlation Earth-Sun

SUPERKAMOKANDE Include in over tempore commencement

 $\mathbf{R}_{\mathbf{expected}} = 0.3 \text{ events/days/680 tons}$ (>10 MeV)

Kam. II and III:

Data/SSM = $0.50 \pm 0.06 \pm 0.06$

Cherenkov Effect

Georg Raffelt, MPI Physics, Munich

ISAPP 2011, 3/8/11, Varenna, Italy

GALLEX/GNO

- Purpose: measurement of the low energy solar neutrino interaction rate which is related to the sun luminosity (i.e. *model-independent*), with an accuracy of 5 SNU (GNO) and investigation of its time dependence on a solar cycle with a sensitivity ~15% (GNO).
- Basic interaction: $v_e + {}^{71}Ga \rightarrow e^- + {}^{71}Ge^- E_{thr} = 0.233 \text{ MeV} \sim 1.2 \text{ capture/day expected by SSM}$ $\swarrow {}^{71}Ga^- EC, \tau = 16.49 \text{ days} T_{1/2} = 11.43 \text{ days}$
- Exp. site: Gran Sasso underground laboratory (3300 m.w.e.)
- Target: 103 tons of $GaCl_3$ acidic solution \Rightarrow 30 tons of natGa (12 tons of ^{71}Ga) in $GaCl_3$ + HCl
- Technique: radiochemical, chemical extraction of ⁷¹Ge every 3-4 weeks; detection of 71Ge decay with gas proportional counters
- Expected signal (SSM): ~ 9 71 Ge counts detected per extraction

The columns

Proportional counter

The synthesis line

Shielding

Extraction and counting procedures - 1

- 3-4 weeks of exposure to the solar neutrinos (SR) or 1 day for blank run (BR).
- + $^{71}\text{Ge}\left(\text{GeCl}_4\right)$ extracted in water fluxing $\sim 3000~\text{m}^3$ of nitrogen in the solution
- ⁷¹Ge (~ 95%-98%) converted in GeH₄ (gas) and used together with Xe gas to fill a miniaturized proportional counter
- Counting of the ⁷¹Ge nuclei through its decays $T_{1/2}$ =11.43 days
- Expected signal (SSM): 1.2 n inter./day, but due to decay during exposure + ineff. ~9⁷¹Ge counts detected per extraction

Miniaturized Proportional Counter

Extraction and counting procedures - 2

Decay processes for Generection						
⁷¹ Ge (EC) \rightarrow ⁷¹ Ga [*] \rightarrow ⁷¹ Ga (t _{1/2} = 11.4 d)						
	%	Auger (keV)	X-ray (keV)			
ſ	41.5	10.37	÷			
кζ	41.2	1.12	9.25			
L	5.3	0.11	10.26			
L	10.3	1.30	3 4 0			
м	1.7	0.16				

Decay processes for 71 Co detection

→ fast pulses with the respect to those due to natural radioactivity

Expected energy distribution

RED: background pulse **BLU:** fast event pulse of ⁷¹Ge decay

Few hundred of events in several years of running

Energy distribution of fast events

Few hundred of events in several years of running

$$\tau$$
 (⁷¹Ge) = 16.6 ± 2.1 d
 τ_{true} (⁷¹Ge) = 16.49 d

Reduction of the bckg GNO vs Gallex 30%

from 0.1 c/day/run to 0.07 c/day/run

GALLEX results (Low energy v measurements)

Capture Rate expected in SSM for ⁷¹Ga *

Source	Rate (SNU)	
рр	70.8	
рер	3.0	
hep	0.06	
⁷ Be	34.3	
⁸ B	14.0	
¹³ N	3.8	
¹⁵ O	6.1	
¹⁷ F	0.06	
TOTAL	132 SNU	

Data/SSM =
$$0.59 \pm 0.06$$

*Bahcall 1990

Gallex + GNO results: Davis plot

> observation of pp fusion in the solar core

 \rightarrow definitive deficit of ⁷Be and pp v not explainable by solar physics

+ reliability of the radiochemical (solar-v) experiments (v-sources, As-test)

GALLEX and GNO legacy

1986-1990

May 14, 1991 – Jan 23, 1997

May, 20 1998 – Apr, 9 2003

Jun 1994 – Oct 1994

Oct 1995 – Feb 1996

Feb 1997 – Apr 1997

Apr 1997 – Apr 1998

- Construction of the detector:
- GALLEX runs:
- First ⁵¹Cr v source expt:
- Second ⁵¹Cr v source expt:
- Tests with ⁷¹As:
- Improvements towards GNO:
- GNO runs:

GALLEX legacy:

- observation of pp fusion in the solar core
- definitive deficit of ⁷Be (or pp) v not explainable by solar physics
- reliability of the radiochemical (solar-v) experiments (v-sources, As-test)

Why a v source experiment?

To place trustworthiness of the experimental techniques (excluding unforseen effects)

 $+ v_e$

How? Exposing the target to v's of suitable energy from source of known activity in the same condition than in the solar exposures

Needs

- >50 PBq build a v source with activity allowing a precision on ≈9% in the measurements
 ⁵¹Cr v energy close to solar v detected in the experiments
- $\begin{array}{ll} (27.706 \pm 0.007) & \mbox{T}_{1/2} \mbox{ sufficient to transport the source and} \\ \mbox{ perform the experiment} \end{array}$

$$5^{1}_{24}Cr$$

$$5^{1}Cr (EC) \rightarrow 5^{1}V$$

$$431 \text{ keV} (\approx 10\%)$$

$$751 \text{ keV} (\approx 90\%)$$

$$E_{\gamma} = 320 \text{ keV}$$

$$5^{1}_{23}V$$

Response of GALLEX to ⁵¹Cr source expts

Direct measurements of the activity of the two sources with different methods.

Method (Laboratory)	Value (PBq)	
	First source	Second source
Ionization chamber (Saclay)	61.3 ± 1.2	67.4 ± 1.3
Ge spectroscopy (Heidelberg)	63.2 ± 1.3	68.3 ± 1.3
Ge spectroscopy (Karlsruhe)	63.1 ± 1.3	70.2 ± 1.3
Ge spectroscopy (BNL)	63.1 ± 1.5	70.1 ± 1.3
Calorimetry (Grenoble/Saclay)	61.9 ± 3.0	65.2 ± 6.0
Neutronics (Grenoble)	64.4 ± 5.2	75.1 ± 6.0
Gamma scanning (Grenoble)	64.0 ± 5.2	
Vanadium content (BNL)	65.2 ± 1.2	67.1 ± 2.5
Vanadium content (Karlsruhe)	$66.0~\pm~2.1$	72.3 ± 3.2
Weighted mean	63.4 ± 0.5	69.1 ± 0.6
Best estimate	$63.4^{+1.1}_{-1.6}$	$69.1^{+3.3}_{-2.1}$

- First observation of low energy v from artificial terrestrial source
- Confirmation of solar v deficit
- General check of the experiment

Time since EOB (days)

• Radiochemical techniques are reliable: it is possible to extract few atoms from 30 tons and to count their decays

Characteristics and results of the two source experiments. The combined value for the ratio of the activity deduced from the ⁷¹Ge measurement and of the activity directly measured, R, is given in the last column.

	First source	Second source	Two sources
Start of exposure	June 23, 1994	October 10, 1995	
End of exposure	October 5, 1994	February 14, 1996	
Number of extractions	11	7	
End of counting	May 2, 1995	September 17, 1996	(1PBg = 10 ¹⁵ Bg = 27.0 kCi
Activity directly measured (PBq)	63.4 ^{+1.1} -1.6	$69.1^{+3.3}_{-2.1}$	
Activity deduced from ⁷¹ Ge (PBq)	$64.0^{+7.3}_{-6.9}$	57.9 ^{+7.6}	
Ratio R	$1.01^{+0.12}_{-0.11}$	$0.84^{+0.12}_{-0.11}$	0.93 ± 0.08

⁷¹As tests in GALLEX

energy of emitted

particles [MeV]

0.175

⁷¹ Ge-production process

Solar neutrino capture: $v_{e} + {}^{71}\text{Ga} \rightarrow {}^{71}\text{Ge} + e^{-1}$

Arsenic in-situ decay: electron capture (68%): 71 As + e⁻ \rightarrow 71 Ge^{*} + ν

 γ -emission (82%):⁷¹ Ge^{*} \rightarrow ⁷¹Ge + γ

pp-neutrinos (~ 56% of expected rate) ⁷ Be-neutrinos (~ 27% of expected rate)

⁸ B = neutrinos ($\sim 10\%$ of expected rate)

positron decay (32%): ⁷¹As \rightarrow ⁷¹Ge * + e⁺ + ν

- Introduction of about 10⁵ atoms of ⁷¹As inside the tank in the solution
- Repeated tests under variable conditions with respect to:
 - Method and magnitude of carrier addition
 - Mixing and extraction conditions
 - Standing time

To exclude withholdings (classical or "hot-atom" effects)

$$\begin{array}{ccc} & & \leq 1.5 \ eV \\ 0.63 \ (90\%) & & & \\ 0.15 \ (10\%) & & & \\ \langle \sigma \cdot \phi \rangle_{max} \ at \approx 10 & & \rightarrow 830 \ eV \end{array} & 7^{1} As \frac{EC(68\%), \ \beta^{+}(32\%)}{T_{1/2} = 2.72 \ giorni} > 7^{1} Ge \\ \hline & & \\ \hline & & \\ 1.838 & & \\ 0.813 & & \leq 11.3 \ eV \end{array}$$

recoil energy Ep

of 71Ge-atom

(or nucleus)

0.23 eV

Recoil kinematics for solar neutrinos and for ⁷¹As-decay in the GALLEX target

Soviet-American **SAGE**Gallium Experiment $^{71}Ga + v \rightarrow ^{71}\Gamma\epsilon + \epsilon^{-}$ Sensitive to pp fusion in sun.

50 metric tons of Gallium They extract a *few tens of atoms* of Germanium

Measured: $77 \pm 6 \pm 3$ SNU Predicted: 123 + 9 - 7 SNU

Vacuum neutrino oscillations

Interaction eigenstates are linear combination of mass eigenstates

$$|\mathbf{v}_{e}\rangle = \cos\theta |\mathbf{v}_{1}\rangle + \sin\theta |\mathbf{v}_{2}\rangle$$
$$|\mathbf{v}_{\mu}\rangle = -\sin\theta |\mathbf{v}_{1}\rangle + \cos\theta |\mathbf{v}_{2}\rangle$$

An electron neutrino evolves in time into the state

$$|\mathbf{v}_{e}(t)\rangle = \cos\theta e^{iE_{1}t} |\mathbf{v}_{1}\rangle + e^{iE_{2}t}\sin\theta |\mathbf{v}_{2}\rangle$$

Probability amplitude for e-nu to mu-nu conversion

$$A(\mathbf{v}_{e} \rightarrow \mathbf{v}_{\mu}) = \langle \mathbf{v}_{\mu} | \mathbf{v}_{e}(t) \rangle$$

Probability of nu-e to convert into nu-mu

$$P(\mathbf{v}_{e} \rightarrow \mathbf{v}_{\mu}) = |A(\mathbf{v}_{e} \rightarrow \mathbf{v}_{\mu})|^{2}$$

When neutrinos are relativistic

$$(E_2 - E_1) = \sqrt{(p^2 + m_2^2)} - \sqrt{(p^2 + m_1^2)} = \frac{\Delta m^2}{2p}$$

Neutrinos can change flavour during propagation with a probability

$$P(\mathbf{v}_{e} \rightarrow \mathbf{v}_{\mu}) = \sin^{2}(2\theta) \sin^{2}(\frac{\Delta m^{2} L}{4E}) = \sin^{2}(2\theta) \sin^{2}(1.27\frac{\Delta m^{2} L}{E})$$

 $= \sin 2\theta$

The Hamiltonian

Let's start with the vacuum Hamiltonian for 2-neutrinos

$$irac{d}{dt}\left(egin{array}{c} |
u_1
angle\ |
u_2
angle\end{array}
ight)=\left(egin{array}{cc} E_1 & 0\ 0 & E_2\end{array}
ight)\left(egin{array}{c} |
u_1
angle\ |
u_2
angle\end{array}
ight)$$

Recalling that $|
u_lpha
angle = \sum_i U_{lpha i} |
u_i
angle$, one can go into the flavour basis

$$\begin{array}{lll} i \frac{d}{dt} \left(\begin{array}{c} |\nu_{\alpha}\rangle \\ |\nu_{\beta}\rangle \end{array} \right) &=& U \left(\begin{array}{cc} E_{1} & 0 \\ 0 & E_{2} \end{array} \right) U^{\dagger} \left(\begin{array}{c} |\nu_{1}\rangle \\ |\nu_{2}\rangle \end{array} \right) \\ &=& \left(\begin{array}{cc} -\frac{\Delta m^{2}}{4E} \cos 2\theta & \frac{\Delta m^{2}}{4E} \sin 2\theta \\ \frac{\Delta m^{2}}{4E} \sin 2\theta & \frac{\Delta m^{2}}{4E} \cos 2\theta \end{array} \right) \left(\begin{array}{c} |\nu_{\alpha}\rangle \\ |\nu_{\beta}\rangle \end{array} \right) \end{array}$$

The full Hamiltonian in matter can then be obtained by adding the potential terms, diagonal in the flavour basis. For electron and muon neutrinos We have neglected common terms on the diagonal as they amount to an overall phase in the evolution.

$$i\frac{d}{dt}\left(\begin{array}{c}|\nu_{e}\rangle\\|\nu_{\mu}\rangle\end{array}\right) = \left(\begin{array}{c}-\frac{\Delta m^{2}}{4E}\cos 2\theta + \sqrt{2}G_{F}N_{e} & \frac{\Delta m^{2}}{4E}\sin 2\theta\\\frac{\Delta m^{2}}{4E}\sin 2\theta & \frac{\Delta m^{2}}{4E}\cos 2\theta\end{array}\right)\left(\begin{array}{c}|\nu_{e}\rangle\\|\nu_{\mu}\rangle\end{array}\right)$$

For antineutrinos the potential has the opposite sign.

In general, it is very difficult to find analytical solution to this problem.

Solar neutrinos: MSW effect

The oscillations in matter were first discussed in L. Wolfenstein, S. P. Mikheyev, A. Yu Smirnov.

• Production in the center of the Sun: matter effects dominate at high energy, negligible at low energy.

Super-K Experiment H₂O Cerenkov Detectors

• SuperK

- 22.5 kton fiducial volume
- 36 m high, 34 m diam.
- 11,146 phototubes (50 cm)
- Energy threshold: 6.5 ${\rm MeV}$
- Linac (5 16 MeV) for in-situ calibration

Both NC & CC scatters

Elettrone

MUONE

Super-Kamiokande: Sun in the Light of Neutrinos (⁸B v, highest energy tail)

Sudbury Neutrino Observatory (SNO)

2039 m to surface 10¹¹ m to Sun

 Location: 6800 ft. level of INCO's Creighton mine near Sudbury, ON, Canada (~70 muons / day)

• SNO Detector: 9438_{inward} + 91_{outward} Hamamatsu 8" PMTs + concentrators = 64% coverage

1000 tons D₂O (12m Inner Vessel)

- Advantages of Heavy vs Light Water
 - $\nu_{e} + d \rightarrow p + p + e^{-} (D_{2}O)$
 - $\nu_e + e^- \rightarrow \nu_e + e^- \qquad (H_2O \text{ or } D_2O)$
 - Cross section $\propto (E_{cm})^2 = s$
 - $s = 2 m_{target} E_v$ $\Rightarrow s_N/s_{e^-} = M_p/M_e \approx 2000$
 - But x5 more electrons in H_2O than n' s

SNO (1kton) 8.1 CC events/day SuperK (22ktons) 25 events/day

SNO Results

SNO Physics

• First measurement of the total flux of ⁸B neutrinos:

 $\phi_{\text{total}}(^{8}\text{B}) = 5.44 \pm 0.99 \text{ x}10^{6} \text{ cm}^{-2} \text{ s}^{-1}$

Agrees well with solar models:

 $\phi_{\text{SSMI}}(^{8}\text{B}) = 5.05 \pm 0.80 \text{ x}10^{6} \text{ cm}^{-2} \text{ s}^{-1} (\text{BPB01})$

Ahmad et al. (SNO Collaboration), PRL 89:011301,2002 (nucl-ex/0204008)

2015 Physics Nobel Prize for Neutrino Astronomy

BOREXINO

- Reaction :
- Exp. site :
- Target
- Goals

 $v_e + e^- \rightarrow v_e + e^-$ Laboratori del Gran Sasso (3300 m.w.e.) 300 tons (fid.:100 tons) liquid scintillator Pseudocumen + PPO, sphere radius 18 m ⁷Be neutrinos and neutrino spectroscopy. time behaviour; geo-neutrinos $\overline{\gamma}$

$$\overline{v} + p \rightarrow n + e^+$$

+
$$n + p \rightarrow d + \gamma (2.2 MeV)$$

- Borexino Go after ⁷Be v's
 - 300 ton liquid scintillator
 - 2200 8-inch phototubes
 - E_e > 250 keV
- Detect $v_e + e^- \rightarrow v_e + e^-$
 - 55 events/day for SSM

Solar Neutrinos in Borexino

Borexino Collaboration, arXiv:1104.1816

Solar Neutrinos survival probability after Borexino

Terrestrial "Solar Neutrinos"

Can we convincingly verify oscillation with man-made neutrinos?

To probe LMA, need L~100km, 1kt

• Need low E_{ν} high Φ_{ν}

 Use neutrinos from nuclear reactors

KAMLAND: reactor anti-neutrino do oscillate!

Best-fit "solar" oscillation parameters

Atmospheric Neutrinos

- Another evidence for v oscillations
- First atm. v observations:
 - Kamiokande
 - Soudan
 - IMB
 - and then:
 - MACRO LNGS
 - SUPERKAMIOKANDE

Suppose neutrinos have non-zero masses. Mass eigenstates are disctinct from weak interaction eigenstates.

U_{µ3} e2 1

The first observations of Atmospheric Neutrinos made in Kolar Gold Fields near Bangalore, and in South Africa in 1965.

 The Indian team was led by M. G. K. Menon et al
 The South African team was led by F. Reines et al.

Half of v_{μ} lost!

SUPERKAMIOKANDE

SK showed that at L/E of atmospheric neutrinos

1) v_{μ} DO oscillate 2) v_{e} DO NOT oscillate

 $\frac{10^{-2}}{2} - \frac{10^{-2}}{99\%} \text{ C.L.} - \frac{99\%}{68\%} \text{ C.L.} - \frac{99\%}{68\%} \text{ C.L.} - \frac{99\%}{68\%} \text{ C.L.} - \frac{99\%}{68\%} \text{ C.L.} + \frac{10^{-3}}{90\%} \frac{10^{-2}}{0.7} - \frac{10^{-2}}{0.75} - \frac{10^{-2}}{0.85} - \frac{10^{-2}}{0.95} - \frac{10^{-2}}{0.75} - \frac{10^{-2}}{0.85} - \frac{10^{-2}}{0.95} - \frac{10^{-2}}{0.75} - \frac{10^{-2}}{0.85} - \frac{10^{-2}}{0.95} - \frac{10^{-2}}{0.75} - \frac{10^{-2}}{0$

This is confirmed by CHOOZ

Region of oscillation parameters (confidence level 90%): $1.9 \times 10^{-3} < \Delta m^2 < 3.0 \times 10^{-3} \text{ eV}^2$ $\sin^2 2\theta > 0.90$

fraction of $\tau \rightarrow \mu$ decays $\approx 18\%$

- Atmospheric v_{μ} do oscillate, but not to $v_{\rm e}$
- In a scenario with three neutrinos, v_{μ} do oscillate to v_{τ}
- Sterile neutrinos?
- Direct evidence of oscillation to v_{τ} is from OPERA at LNGS (5 v_{τ} observed)

OPERA: Oscillation Project with Emulsion tRacking Apparatus

- High-energy long baseline v_µ beam
- Direct search for $\nu_{\mu} \to \nu_{\tau}$ oscillations by looking at the appearance of ν_{τ} in a pure ν_{μ} beam
- Search for the sub-dominant ν_μ → ν_e oscillations for Θ₁₃ measurement

OPERA How to detect tau vertex

precision tracking

Five v_{τ} candidates observed until now

Examples:

PRL 115 (2015) 121802.

Third candidate (muon decay)

Decay in the plastic base

- •Observation of the $\nu_{\mu} \rightarrow \nu_{\tau}$ appearance, achieved with **five** candidate events.
- •Together with a further reduction of the expected background, the candidate events detected so far allow to assess the **discovery of** $v_{\mu} \rightarrow v_{\tau}$ oscillations in appearance mode with a significance larger than 5 σ

- •OPERA was designed to search for $v_{\mu} \rightarrow v_{\tau}$ oscillations in **appearance** mode, i.e. by detecting the τ leptons produced in charged current v_{τ} interactions.
- •The experiment took data from 2008 to 2012 in the CERN Neutrinos to Gran Sasso beam.

Fourth candidate (hadronic decay, single prong)

Event reconstruction (1)

SK results for atmospheric neutrinos have been confirmed by "Long Baseline" expts - neutrino beams in the world (at the end of their projects)

SK results for atmospheric neutrinos have been confirmed by "Long Baseline" expts - neutrino beams in the world (at the end of their projects)

CERN-Gran Sasso ~730 km v_T appearance

Five ν_τ candidates observed
Discovery of ν_τ appearence

 Expected v interactions with osc. is 104 (107 observed), 151 w/out.

3 flavor neutrino mixing

Search for θ_{13} at reactors Antineutrino Signal

Detection in Gd-loaded liquid scintillator

March 8, 2012 : Daya Bay results

hall. Comparing with the prediction based on the near-hall measurements, a deficit of 6.0% was found. A rate-only analysis yielded $\sin^2 2\theta_{13} = 0.092 \pm 0.016(\text{stat}) \pm 0.005(\text{syst})$. The neutrino mixing angle θ_{13} is non-zero with a significance of 5.2 standard deviations.

Experimental Results

T2K ($\theta_{13} > 0$ @ 2.5 σ) Expected events: 1.5, Detected 6

Double Chooz (1.3\sigma) Expected events: 4344, Detected 4101 $R_{DC} = 0.944 \pm 0.016(\text{stat}) \pm 0.040(\text{syst})$

Daya Bay (5.2 σ) Expected events: 85506, Detected 80376 $R_{DB} = 0.940 \pm 0.011(\text{stat}) \pm 0.004(\text{syst})$

RENO (4.9 σ) Expected events:149905, Detected 137912 $R_R = 0.920 \pm 0.009 (\text{stat.}) \pm 0.014 (\text{syst.})$

+ $\nu_{\mu} \rightarrow \nu_{e}$ appearance expt.: T2K; OPERA and then NOvA; LBNE; ...

Summary of θ_{13} results Computed for $\Delta m_{23}^2 = 2.4 \cdot 10^{-3} \text{ eV}^2$

Critical Questions for Future Neutrino Physics Program

- 1) Are neutrinos their own anti-particles? Dirac or Majorana neutrinos $(\mathbf{0}\mathbf{v}\boldsymbol{\beta}\boldsymbol{\beta})$
- 2) What are the scale of neutrino masses and the hierarchy of the neutrino mass ordering? (Oscillations indicate $\Delta m^2 \neq 0$, but unable to determine m_v).
 - Pure oscillation effects in v_e disappearance: Juno
 - Matter effects in v_{μ} disappearance: INO, Pingu, Orca, HyperKamiokande
 - Matter effects in v_e appearance: NOvA, Dune, T2HK
- 3) Do neutrinos violate the CP symmetry and contribute to the matter-antimatter asymmetry?

Mainly two players: Dune and HyperKamiokande

Is all discovered?

- ✓ A few experiments show (weak/not-strong) deviations (*anomalies*) from the 3 flavor v-osc paradigma:
 - LSND at Los Alamos observed excess of $\overline{\nu}_e$ events in the $\overline{\nu}_{\mu}$ beam
 - **Mini-Boone** confirmed anomaly at low energy in anti-neutrino mode but not in neutrino mode
 - **Gallium anomalies**: events from calibration sources in GALLEX and SAGE are less than expected (2.8 σ)
 - **Reactor anomalies**: reanalysis of reactor expts show a (small) deficit of v_e
- ✓ It is too early to claim new physics. The only picture consistent with all data is the existence of *sterile neutrinos*
- ✓ A short-term program includes MCi neutrino sources (SOX in Borexino at LNGS); SBL (short-baseline) expt probing GeV v_e appearance at short distances (100m − 1 km)