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General issue: turbulence & irreversibility
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irreversibility in the Eulerian Frame : asymmetry of two-point statistics
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“4/5 law” (K41)

“An inviscid-equation symmetry — time reversal invariance — remains broken 
even as the symmetry-breaking viscosity becomes vanishing small.
A trained eye viewing a movie of steady turbulence run backwards can 
tell that something is indeed wrong! ” G. Falkovich & K.R. Sreenivasan Phys. 
Today 2006 
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irreversibility in the Lagrangian Frame : 
asymmetry of backward/forward two-particles separations
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Can we understand the time arrow looking at turbulence 
following single fluid elements or at single point observables?



ẋ = v(t) = u(x(t), t)

The recent advances in our ability to reliably measure the
trajectories of small tracer particles in well-controlled laboratory
flows (15–18), as well as to simulate accurately the motion of
particle tracers using the Navier–Stokes equation (16) allow us to
investigate these fundamental issues. In this work, we restrict
ourselves to statistically stationary and homogeneous flows. The
results shown here were obtained from a variety of flow config-
urations in 2D and 3D, including both laboratory experiments
and direct numerical simulations of the Navier–Stokes equa-
tions. The datasets contain a large number of trajectories, with at
least 108 data points in total, both in 2D and 3D (see Materials
and Methods and SI Text for details).

Results
“Flight–Crash” Events. The phenomenon discussed here is illus-
trated in Fig. 1A andB, which show the evolution ofEðtÞ along the
trajectory of a fluid particle in a 3D laboratory water flow (17, 18).
It illustrates that to build up large kinetic energy requires a longer
time than to dissipate the same amount. This points to the oc-
currence of flight–crash like events, whereby a particle flies with
a large velocity, before suddenly losing energy. This feature, which
we also observed in numerical simulation of turbulent flows, is
reminiscent of what occurs in very different systems, such as cars
in traffic (19) or even fluctuations of stock values (20).

Statistics of Energy Difference. The statistics of the energy incre-
ments, W ðτÞ=Eðt+ τÞ−EðtÞ, are sensitive to the flight-crash
events. We stress that the moments of W ðτÞ cannot be expressed
in terms of Lagrangian velocity structure functions, and notice
that the kinetic energy EðtÞ is not Galilean invariant, which we
further discuss in SI Text. The asymmetry revealed by Fig. 1 implies
that the distribution ofW ðτÞ is skewed: Odd moments are expected
to be negative for τ> 0. For stationary, homogeneous flows, the first
moment vanishes, hW ðτÞi= 0. The first nonvanishing odd moment,
−hW 3ðτÞi, measured from both experiments and numerical simu-
lations (18) of 3D turbulence is shown in Fig. 2A. In all these flows,
−hW 3ðτÞi grows as τ3 at short times, then slower at intermediate
times, and remains positive over the entire range of turbulence dy-
namical time scales. [Negative skewness of u2x ðtÞ− u2x ð0Þ, where ux is
one velocity component of a tracer particle in a 3D turbulence flow,

was also reported by Mordant (21).] Fig. 2B shows that the third
moment of W ðτÞ in 2D is similar to those in 3D (Fig. 2A), i.e., it is
independent of the difference in the direction of the energy flux in
2D and 3D. This demonstrates again that the energy flux « by itself is
not an appropriate measure of irreversibility and suggests the use of
the dimensionless rate of change of the kinetic energy instead. A
systematic statistical characterization of W ðτÞ can be formulated
from its probability distribution function (PDF). Fig. 2C shows the
PDF of W ðτÞ for several values of τ in the range τK ≤ τ≤T, where
τK and T are the characteristic times at the dissipation scale lD and
the forcing scale lF , respectively. The PDF of W ðτÞ, normalized by
its variance, exhibits wide tails, the more so as the value of τ is
smaller. This feature is possibly related to intermittency, a charac-
teristic phenomenon in turbulent fluids.
Could we understand the skewness of W ðτÞ in the framework

of fluctuation theorems that have been established theoretically
(22, 23), and verified experimentally (4)? For small systems in
contact with thermostats, fluctuation theorems state that the
probabilities of energy gaining and energy loss are related (2) by

ln
!
Pð−W Þ
PðW Þ

"
∝W ; [1]

which, at a first glance, is also suggested by the shape of the tails
of PDFs in Fig. 2C. Our measurements of ln½Pð−W Þ=PðW Þ$ at
different values of time-lag τ, shown in Fig. 2D, however, shows
a more complicated dependence onW than the simple linear law 1.
This suggests that fluctuation theorems do not apply directly to
tracer particles in turbulence. This we attribute to the properties
of the forces acting on fluid particles, which are very different from
the forces in usual thermodynamic systems (8).

Statistics of Power Fluctuations: Quantifying Detailed Balance Violations.
As we demonstrate that the results obtained in the general context
of stochastic thermodynamics do not apply to a small fluid element
carried by the fluid, the asymmetry observed for the distribution of
the energy differences along a trajectory (Fig. 2C) points to a more
fundamental aspect, namely the breakdown of time reversibility in
the system. In fact, as we show in the following, the third moment of
W ðτÞ allows us to quantify the irreversibility, and to relate it to the
range of scales in the system.
Let us consider the rate of change of the kinetic energy fol-

lowing a tracer particle, i.e., the power p= limτ→0½W ðτÞ=τ$=
dE=dt=V · a, with a= dV=dt being the fluid acceleration. At
thermal equilibrium, time reversibility is equivalent to detailed
balance in the sense that the probability of energy gain ðp> 0Þ is
the same as the probability of energy loss ðp< 0Þ for any particle
with any velocity. Asymmetric (skewed) PDFs of p, as shown in
Fig. 3 A and B, are therefore a signature that detailed balance is
violated. [We note that the statistics of the power p may be af-
fected by specific, nonuniversal aspects of the forcing, especially
in 2D, in which the external forcing acts at small scales and is
fast-changing (SI Text).] This violation can then be quantified by
odd moments of the fluctuations of p, which change sign when
reversing t→ − t, thus enabling to detect whether the movie of
turbulence is playing backwards or forwards (9). Similar to W ðτÞ,
the first moment of p vanishes for stationary and homogeneous
flows. The third moment, which can be measured reliably, is
sufficient to quantify the violation of detailed balance.
As already explained, a proper measure must be dimension-

less. A natural choice is the dimensionless power p=«, whose
third moment, Ir, defined as

Ir=−
#
p3
$%

«3; [2]

allows us to measure irreversibility. Fig. 3 C and D show that Ir
increases with the Reynolds number in both 2D and 3D, hence

BA

Fig. 1. Asymmetry of the statistics of energy differences. (A) The trajectory of
a fluid particle in a 3D laboratory flow at Rλ = 690. The color coding refers to the
instantaneous power pðtÞ=dE=dt = aðtÞ ·VðtÞ acting on the fluid particle,
showing that energy builds up slowly and dissipates quickly. The particle enters
the observation volume from above and leaves from below. The scale bar is
expressed in terms of the Kolmogorov scale η, which is the dissipation scale of
this flow, lD = η= 30  μm. (B) The evolution of the kinetic energy EðtÞ of the same
particle as a function of time, in units of the Kolmogorov time τK , the fastest
time scale of the flow, characterizing the dynamics at scale lD. B,Upper is for the
entire trajectory, while Lowermagnifies the period with strong energy change,
i.e., high power fluctuations (same color coding as inA). The particle experiences
higher values of negative p, compared with positive p, indicating that the par-
ticle loses kinetic energy more rapidly than gaining energy.
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The recent advances in our ability to reliably measure the
trajectories of small tracer particles in well-controlled laboratory
flows (15–18), as well as to simulate accurately the motion of
particle tracers using the Navier–Stokes equation (16) allow us to
investigate these fundamental issues. In this work, we restrict
ourselves to statistically stationary and homogeneous flows. The
results shown here were obtained from a variety of flow config-
urations in 2D and 3D, including both laboratory experiments
and direct numerical simulations of the Navier–Stokes equa-
tions. The datasets contain a large number of trajectories, with at
least 108 data points in total, both in 2D and 3D (see Materials
and Methods and SI Text for details).

Results
“Flight–Crash” Events. The phenomenon discussed here is illus-
trated in Fig. 1A andB, which show the evolution ofEðtÞ along the
trajectory of a fluid particle in a 3D laboratory water flow (17, 18).
It illustrates that to build up large kinetic energy requires a longer
time than to dissipate the same amount. This points to the oc-
currence of flight–crash like events, whereby a particle flies with
a large velocity, before suddenly losing energy. This feature, which
we also observed in numerical simulation of turbulent flows, is
reminiscent of what occurs in very different systems, such as cars
in traffic (19) or even fluctuations of stock values (20).

Statistics of Energy Difference. The statistics of the energy incre-
ments, W ðτÞ=Eðt+ τÞ−EðtÞ, are sensitive to the flight-crash
events. We stress that the moments of W ðτÞ cannot be expressed
in terms of Lagrangian velocity structure functions, and notice
that the kinetic energy EðtÞ is not Galilean invariant, which we
further discuss in SI Text. The asymmetry revealed by Fig. 1 implies
that the distribution ofW ðτÞ is skewed: Odd moments are expected
to be negative for τ> 0. For stationary, homogeneous flows, the first
moment vanishes, hW ðτÞi= 0. The first nonvanishing odd moment,
−hW 3ðτÞi, measured from both experiments and numerical simu-
lations (18) of 3D turbulence is shown in Fig. 2A. In all these flows,
−hW 3ðτÞi grows as τ3 at short times, then slower at intermediate
times, and remains positive over the entire range of turbulence dy-
namical time scales. [Negative skewness of u2x ðtÞ− u2x ð0Þ, where ux is
one velocity component of a tracer particle in a 3D turbulence flow,

was also reported by Mordant (21).] Fig. 2B shows that the third
moment of W ðτÞ in 2D is similar to those in 3D (Fig. 2A), i.e., it is
independent of the difference in the direction of the energy flux in
2D and 3D. This demonstrates again that the energy flux « by itself is
not an appropriate measure of irreversibility and suggests the use of
the dimensionless rate of change of the kinetic energy instead. A
systematic statistical characterization of W ðτÞ can be formulated
from its probability distribution function (PDF). Fig. 2C shows the
PDF of W ðτÞ for several values of τ in the range τK ≤ τ≤T, where
τK and T are the characteristic times at the dissipation scale lD and
the forcing scale lF , respectively. The PDF of W ðτÞ, normalized by
its variance, exhibits wide tails, the more so as the value of τ is
smaller. This feature is possibly related to intermittency, a charac-
teristic phenomenon in turbulent fluids.
Could we understand the skewness of W ðτÞ in the framework

of fluctuation theorems that have been established theoretically
(22, 23), and verified experimentally (4)? For small systems in
contact with thermostats, fluctuation theorems state that the
probabilities of energy gaining and energy loss are related (2) by
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which, at a first glance, is also suggested by the shape of the tails
of PDFs in Fig. 2C. Our measurements of ln½Pð−W Þ=PðW Þ$ at
different values of time-lag τ, shown in Fig. 2D, however, shows
a more complicated dependence onW than the simple linear law 1.
This suggests that fluctuation theorems do not apply directly to
tracer particles in turbulence. This we attribute to the properties
of the forces acting on fluid particles, which are very different from
the forces in usual thermodynamic systems (8).

Statistics of Power Fluctuations: Quantifying Detailed Balance Violations.
As we demonstrate that the results obtained in the general context
of stochastic thermodynamics do not apply to a small fluid element
carried by the fluid, the asymmetry observed for the distribution of
the energy differences along a trajectory (Fig. 2C) points to a more
fundamental aspect, namely the breakdown of time reversibility in
the system. In fact, as we show in the following, the third moment of
W ðτÞ allows us to quantify the irreversibility, and to relate it to the
range of scales in the system.
Let us consider the rate of change of the kinetic energy fol-

lowing a tracer particle, i.e., the power p= limτ→0½W ðτÞ=τ$=
dE=dt=V · a, with a= dV=dt being the fluid acceleration. At
thermal equilibrium, time reversibility is equivalent to detailed
balance in the sense that the probability of energy gain ðp> 0Þ is
the same as the probability of energy loss ðp< 0Þ for any particle
with any velocity. Asymmetric (skewed) PDFs of p, as shown in
Fig. 3 A and B, are therefore a signature that detailed balance is
violated. [We note that the statistics of the power p may be af-
fected by specific, nonuniversal aspects of the forcing, especially
in 2D, in which the external forcing acts at small scales and is
fast-changing (SI Text).] This violation can then be quantified by
odd moments of the fluctuations of p, which change sign when
reversing t→ − t, thus enabling to detect whether the movie of
turbulence is playing backwards or forwards (9). Similar to W ðτÞ,
the first moment of p vanishes for stationary and homogeneous
flows. The third moment, which can be measured reliably, is
sufficient to quantify the violation of detailed balance.
As already explained, a proper measure must be dimension-

less. A natural choice is the dimensionless power p=«, whose
third moment, Ir, defined as
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allows us to measure irreversibility. Fig. 3 C and D show that Ir
increases with the Reynolds number in both 2D and 3D, hence
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Fig. 1. Asymmetry of the statistics of energy differences. (A) The trajectory of
a fluid particle in a 3D laboratory flow at Rλ = 690. The color coding refers to the
instantaneous power pðtÞ=dE=dt = aðtÞ ·VðtÞ acting on the fluid particle,
showing that energy builds up slowly and dissipates quickly. The particle enters
the observation volume from above and leaves from below. The scale bar is
expressed in terms of the Kolmogorov scale η, which is the dissipation scale of
this flow, lD = η= 30  μm. (B) The evolution of the kinetic energy EðtÞ of the same
particle as a function of time, in units of the Kolmogorov time τK , the fastest
time scale of the flow, characterizing the dynamics at scale lD. B,Upper is for the
entire trajectory, while Lowermagnifies the period with strong energy change,
i.e., high power fluctuations (same color coding as inA). The particle experiences
higher values of negative p, compared with positive p, indicating that the par-
ticle loses kinetic energy more rapidly than gaining energy.
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Can	one	detect	irreversibility	from	one	
single	par%cle	trajectory	?	

Observa%on:	large	velocity	jumps	of	one	given	trajectory	are	
associated	with	a	stronger	par%cle	decelera%on	than	accelera%on.	
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Asymmetry	of	the	PDF	of	W	and	breaking	
of	detailed	balance	

The	observed	lack	of	symmetry																								
from	the	PDFs	implies	that:	

Detailed	balance	is	broken	!!		

W →−W
breaking of detailed-balance

Lagrangian velocity
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The statistical properties of turbulencediffer in an essentialway from
those of systems in or near thermal equilibriumbecause of the flux of
energy between vastly different scales at which energy is supplied
and atwhich it is dissipated.We elucidate this difference by studying
experimentally and numerically the fluctuations of the energy of
a small fluid particle moving in a turbulent fluid. We demonstrate
how the fundamental property of detailed balance is broken, so that
the probabilities of forward and backward transitions are not equal
for turbulence. In physical terms, we found that in a large set of flow
configurations, fluid elements decelerate faster than accelerate,
a feature known all too well from driving in dense traffic. The
statistical signature of rare “flight–crash” events, associatedwith fast
particledeceleration,providesawaytoquantify irreversibility ina tur-
bulent flow. Namely, we find that the third moment of the power
fluctuations along a trajectory, nondimensionalized by the energy
flux, displays a remarkable power law as a function of the Reynolds
number, both in two and in three spatial dimensions. This establishes
a relation between the irreversibility of the system and the range of
active scales. We speculate that the breakdown of the detailed bal-
ance characterized here is a general feature of other systems very far
from equilibrium, displaying a wide range of spatial scales.

nonequilibrium systems | turbulent mixing |
direct and inverse turbulent energy cascades |
nonequilibrium statistical mechanics | Lagrangian description

In systems at thermal equilibrium, the probabilities of forward
and backward transitions between any two states are equal,

a property known as “detailed balance.” This fundamental prop-
erty expresses time reversibility of equilibrium statistics (1). In
the important class of nonequilibrium problems, where the dy-
namics of the system is coupled with a heat bath, the notion of
detailed balance can be extended and fluctuation theorems
successfully describe the behavior (2, 3). This class contains many
experimental situations (4) where quantitative information on
irreversibility was obtained (3). When a system driven by thermal
noise is characterized by a probability current, the fluctuation–
dissipation theorem and detailed balance was found to apply in
a comoving reference frame (5).
In comparison, very little is known concerning the statistical

properties of a small part embedded in a fluctuating, turbulent
background. The fundamental notion of detailed balance is not
expected to apply in such systems. Here we ask, what does the
time irreversibility inherent to the large system imply for the
statistical properties of small parts in the system and how do we
measure the degree of irreversibility (6, 7) (or equivalently, how
far is the system away from equilibrium) by monitoring a small
part in the system? We focus here on fluid turbulence, a para-
digm for ultimate far-from-equilibrium states, where irrevers-
ibility of fluctuations is a fundamental property (8, 9). We show
that the simplest and most fundamental scalar quantity, namely,
the kinetic energy of a fluid particle, enables a clear identifica-
tion and quantification of the irreversibility of the turbulent flow.

The characteristic properties of turbulence rest on the vastly
different scales: from the scale lF , where the flow is forced and in-
ertia dominates, to the scale lD, where dissipation takes over. For
a balance between forcing and dissipation in a statistically steady
flow, energy is transferred through scales at an average rate «,
a phenomenon called “energy cascade.” In 3D flows, where lF ! lD
(9, 10), energy cascades from large to small scales. In contrast, en-
ergy transfers from small to large scales in 2D flows, where lF " lD
(11, 12). The energy flux is ultimately the source of statistical irre-
versibility. It is important to understand that the fluctuations in
turbulence are fundamentally different from those about thermal
equilibrium (8). The energy flux through scales, «, however, cannot
in itself be a measure of irreversibility in the system because « is
a dimensional quantity, so it can be made arbitrarily large by
changing the units even if the system is very close to equilibrium.
Moreover, it can be expressed as amoment of velocity differences at
a single time (10, 13) without any reference to the evolution of
the flow.
As we demonstrate below, the irreversibility induced by the

energy flux through spatial scales can be revealed and quantified
by following the change of the kinetic energy of small fluid ele-
ments (particles). The kinetic energy per unit mass of the fluid
is simply EðtÞ= ð1=2ÞV 2ðtÞ, where VðtÞ is the velocity of a given
fluid element. It should be stressed that detecting irreversibility
from the motion of a single particle requires going beyond ve-
locity structure functions, defined as the moments of velocity
differences along trajectories, VðtÞ−Vð0Þ, whose statistical prop-
erties are invariant under the t→ − t transformation (14).

Significance

Irreversibility is a fundamental aspect of the evolution of nat-
ural systems, and quantifying its manifestations is a challenge
in any attempt to describe nonequilibrium systems. In the case
of fluid turbulence, an emblematic example of a system very
far from equilibrium, we show that the motion of a single fluid
particle provides a clear manifestation of time irreversibility.
Namely, we observe that fluid particles tend to lose kinetic
energy faster than they gain it. This is best seen by the pres-
ence of rare “flight–crash” events, where fast moving particles
suddenly decelerate into a region where fluid motion is slow.
Remarkably, the statistical signature of these events estab-
lishes a quantitative relation between the degree of irrevers-
ibility and turbulence intensity.
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How to rationalise the observed scaling behaviour?
Is there a link with Eulerian intermittency?

 Scaling is anomalous



Multifractal prediction for Lagrangian power
 Bridging Lagrangian and Eulerian frames
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FIG. 1. (color online) Left: Three dimensional rendering
of the Lagrangian power spatial distribution in the whole
simulation volume: red/blue represents the iso-surfaces p =
±6prms (with prms = hp2i1/2), which appear clusterized in
dipole structures. Right: Log-lin standardised PDF of p for
Re� ⇡ 104. Notice that the asymmetry of the distribution is
very small, hence the di�culty to quantify and rationalise the
physics behind irreversible e↵ects along a particle trajectory.

di↵erent definitions as discussed above. Second, we show
that it is possible to extend the Multifractal Formalism
(MF) [15] to predict the scaling of the absolute value
of the Lagrangian power statistics. Moreover, in order
to explore a wider range of Reynolds numbers, we also
investigate the equivalent of the Lagrangian power statis-
tics in shell models [16, 17].

Background material on MF. – We start recalling MF
for the Eulerian statistics [7, 15]. The basic idea is
to replace the global scale invariance á la Kolmogorov
(K41) with a local scale invariance, by assuming that
spatial velocity increments �ru over a distance r ⌧ L are
characterized by a range of scaling exponents h 2 I ⌘
(hm, hM ), i.e. �ru ⇠ uL(r/L)h. Eulerian structure func-
tions, h(�ru)qi, are obtained by integrating over h 2 I
and the large scale velocity uL statistics, P(uL), which
can be assumed independent of h. MF assumes the expo-
nent h to be realized on a fractal set of dimension D(h),
so that the probability to observe a particular value of
h, for r ⌧ L, is Ph(r) ⇠ (r/L)3�D(h). Hence, we find
h(�ru)qi ⇠ huq

Li
R
h2I dh(r/L)hp+3�D(h) ⇠ huq

Li(r/L)⇣q ,
where a saddle point approximation for r ⌧ L gives

⇣q = inf
h2I

{hq + 3�D(h)} . (1)

For the MF to be predictive, D(h) should be derived from
NSE, which is out of reach. One can, however, use the
measured exponents ⇣p and, by inverting (1), derive an
empirical D(h). Here, following [18], we use

D(h) = d(h) [ln (d(h)/d0)� 1] + 3� d0 , (2)

with d(h) = 3(h� 1/9)/ln� and d0 = 2/[3(1� �)] corre-
sponding, via (1), to ⇣q = q/9 + (2/3)(1� �q/3)/(1� �)

that, for � = 0.6, fits measured exponents fairly well [19].
The MF has been extended from Eulerian to La-

grangian velocity increments [20, 21]. The idea is that
temporal velocity di↵erences �⌧v over a time lag ⌧ , along
fluid particle trajectories can be connected to equal time
spatial velocity di↵erences �ru by assuming that the
largest contribution to �⌧v comes from eddies at a scale
r such that ⌧ ⇠ r/�ru. This implies �⌧v ⇠ �ru with

⌧ ⇠ TL(r/L)
1�h (3)

TL = L/uL. By combining Eq. (3) and theD(h) obtained
from Eulerian statistics, one can derive a prediction for
Lagrangian structure functions, which has been found
to agree with experimental and DNS data [19, 21–23].
The MF can be used also for describing the statistics
of the acceleration a along fluid elements [20, 23]. The
acceleration can be estimated by assuming

a ⇠ �⌧⌘v/⌧⌘ . (4)

According to the MF, the dissipative scale fluctuates as
⌘ ⇠ (⌫Lh/uL)1/(1+h) [24], which leads via (3) to

⌧⌘ ⇠ T (⌫/LuL)
(1�h)/(1+h) . (5)

Substituting (5) in (4) yields the acceleration conditioned
on given values of h and uL:

a ⇠ ⌫(2h�1)/(1+h)u3/(1+h)
L L�3h/(1+h) . (6)

The above equation has been successfully used to predict
the acceleration variance [20] and PDF [23].
MF prediction on power statistics. – We now use

(6) to predict the scaling behavior of the Lagrangian
power moments with Re�. These can be estimated
as hpqi ⇠ h(auL)qi ⇠

R
duLP(uL)

R
h2I dhPh(⌧⌘)(auL)q

with Ph(⌧⌘) = (⌧⌘/T )(3�D(h))/(1�h). Using (5) with
⌫ = ULLRe2� (with U2

L = hu2
Li), we have

hpqi
✏q

⇠
Z
dṽP(ṽ)

Z

h2I
dhṽ

4q+h�3+D(h)
1+h Re

2 (1�2h)q�3+D(h)
1+h

� , (7)

with ṽ = uL/UL [25]. In the limit Re� ! 1, a sad-
dle point approximation of the integral (7) yields, up to
a multiplicative constant (depending on the large scale

statistics), hpqi/✏q⇠ Re↵(q)� with

↵(q) = sup
h

⇢
2
(1� 2h)q � 3 +D(h)

1 + h

�
. (8)

Comparison with DNS. – To test the above predictions
we use two sets of DNS of homogeneous isotropic tur-
bulence on cubic lattices of sizes from 1283 up to 20483,
with Re� up to 540, obtained with two di↵erent forcings
(see Supplementary material for details). In particular,
to probe both the symmetric and asymmetric compo-
nents of the Lagrangian power statistics, we study the
following nondimensional moments

Sq = h|p|qi/✏q; Aq = hp|p|q�1i/✏q , (9)

(M. Borgas 1993, LB et al 2004)

same D(h) as that used for Eulerian statistics
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Results from DNS
In order to probe the symmetric and asymmetric 

components of power statistics we studied

2

Set N Re
�

✏ U L T
L

⌘ ⌧
⌘

T k
f,min

k
f,max

⌧
f

DNS1 2048 544 1.43 1.62 4.51 2.77 0.0021 0.015 15 0.5 1 0.14

DNS1 512 176 1.68 1.74 4.70 2.70 0.0083 0.035 10 0.5 1 0.6

DNS1 256 115 1.19 1.50 4.26 2.84 0.019 0.066 48 0.5 1 0.6

DNS2 1024 171 0.1 0.529 2.22 4.19 0.005 0.063 46 0 1.5 n/a

DNS2 512 104 0.1 0.520 2.11 4.06 0.01 0.10 160 0 1.5 n/a

DNS2 256 65 0.1 0.513 2.05 3.98 0.02 0.16 280 0 1.5 n/a

DNS2 128 38.9 0.1 0.507 1.95 3.85 0.04 0.25 280 0 1.5 n/a

TABLE I. Type of forcing, resolution N , Reynolds number Re
�

= U�/⌫ (� = (5E/Z)1/2 is the Taylor microscale, ✏ the mean

energy dissipation rate, E the kinetic energy and Z the enstrophy), large scale velocity U = (2E/3)1/2, integral scale L = UE/",
integral time T

L

= E/", dissipative scale ⌘ = (⌫3/")1/4, Kolmogorov time ⌧
⌘

= (⌫/")1/2, total time of integration T . Because
of the di↵erent forcing in the two sets of simulations, for DNS2 the contribution of the modes at wavenumbers k  1 have been
removed in the analysis.

[1] S. Orszag, J. Atmos. Sciences 28, 1074 (1971).
[2] B. Sawford, Phys. Fluids A 3, 1577 (1991).
[3] C. Canuto and A. Quarteroni, Spectral methods (Wiley Online Library, 2006).
[4] A. G. Lamorgese, D. A. Caughey, and S. B. Pope, Phys. Fluids 17, 015106 (2005).
[5] J. P. Boyd, Chebyshev and Fourier spectral methods (Courier Corporation, 2001).
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FIG. 1. (color online) Left: Three dimensional rendering
of the Lagrangian power spatial distribution in the whole
simulation volume: red/blue represents the iso-surfaces p =
±6prms (with prms = hp2i1/2), which appear clusterized in
dipole structures. Right: Log-lin standardised PDF of p for
Re� ⇡ 104. Notice that the asymmetry of the distribution is
very small, hence the di�culty to quantify and rationalise the
physics behind irreversible e↵ects along a particle trajectory.

di↵erent definitions as discussed above. Second, we show
that it is possible to extend the Multifractal Formalism
(MF) [15] to predict the scaling of the absolute value
of the Lagrangian power statistics. Moreover, in order
to explore a wider range of Reynolds numbers, we also
investigate the equivalent of the Lagrangian power statis-
tics in shell models [16, 17].

Background material on MF. – We start recalling MF
for the Eulerian statistics [7, 15]. The basic idea is
to replace the global scale invariance á la Kolmogorov
(K41) with a local scale invariance, by assuming that
spatial velocity increments �ru over a distance r ⌧ L are
characterized by a range of scaling exponents h 2 I ⌘
(hm, hM ), i.e. �ru ⇠ uL(r/L)h. Eulerian structure func-
tions, h(�ru)qi, are obtained by integrating over h 2 I
and the large scale velocity uL statistics, P(uL), which
can be assumed independent of h. MF assumes the expo-
nent h to be realized on a fractal set of dimension D(h),
so that the probability to observe a particular value of
h, for r ⌧ L, is Ph(r) ⇠ (r/L)3�D(h). Hence, we find
h(�ru)qi ⇠ huq

Li
R
h2I dh(r/L)hp+3�D(h) ⇠ huq

Li(r/L)⇣q ,
where a saddle point approximation for r ⌧ L gives

⇣q = inf
h2I

{hq + 3�D(h)} . (1)

For the MF to be predictive, D(h) should be derived from
NSE, which is out of reach. One can, however, use the
measured exponents ⇣p and, by inverting (1), derive an
empirical D(h). Here, following [18], we use

D(h) = d(h) [ln (d(h)/d0)� 1] + 3� d0 , (2)

with d(h) = 3(h� 1/9)/ln� and d0 = 2/[3(1� �)] corre-
sponding, via (1), to ⇣q = q/9 + (2/3)(1� �q/3)/(1� �)

that, for � = 0.6, fits measured exponents fairly well [19].
The MF has been extended from Eulerian to La-

grangian velocity increments [20, 21]. The idea is that
temporal velocity di↵erences �⌧v over a time lag ⌧ , along
fluid particle trajectories can be connected to equal time
spatial velocity di↵erences �ru by assuming that the
largest contribution to �⌧v comes from eddies at a scale
r such that ⌧ ⇠ r/�ru. This implies �⌧v ⇠ �ru with

⌧ ⇠ TL(r/L)
1�h (3)

TL = L/uL. By combining Eq. (3) and theD(h) obtained
from Eulerian statistics, one can derive a prediction for
Lagrangian structure functions, which has been found
to agree with experimental and DNS data [19, 21–23].
The MF can be used also for describing the statistics
of the acceleration a along fluid elements [20, 23]. The
acceleration can be estimated by assuming

a ⇠ �⌧⌘v/⌧⌘ . (4)

According to the MF, the dissipative scale fluctuates as
⌘ ⇠ (⌫Lh/uL)1/(1+h) [24], which leads via (3) to

⌧⌘ ⇠ T (⌫/LuL)
(1�h)/(1+h) . (5)

Substituting (5) in (4) yields the acceleration conditioned
on given values of h and uL:

a ⇠ ⌫(2h�1)/(1+h)u3/(1+h)
L L�3h/(1+h) . (6)

The above equation has been successfully used to predict
the acceleration variance [20] and PDF [23].
MF prediction on power statistics. – We now use

(6) to predict the scaling behavior of the Lagrangian
power moments with Re�. These can be estimated
as hpqi ⇠ h(auL)qi ⇠

R
duLP(uL)

R
h2I dhPh(⌧⌘)(auL)q

with Ph(⌧⌘) = (⌧⌘/T )(3�D(h))/(1�h). Using (5) with
⌫ = ULLRe2� (with U2

L = hu2
Li), we have

hpqi
✏q

⇠
Z
dṽP(ṽ)

Z

h2I
dhṽ

4q+h�3+D(h)
1+h Re

2 (1�2h)q�3+D(h)
1+h

� , (7)

with ṽ = uL/UL [25]. In the limit Re� ! 1, a sad-
dle point approximation of the integral (7) yields, up to
a multiplicative constant (depending on the large scale

statistics), hpqi/✏q⇠ Re↵(q)� with

↵(q) = sup
h

⇢
2
(1� 2h)q � 3 +D(h)

1 + h

�
. (8)

Comparison with DNS. – To test the above predictions
we use two sets of DNS of homogeneous isotropic tur-
bulence on cubic lattices of sizes from 1283 up to 20483,
with Re� up to 540, obtained with two di↵erent forcings
(see Supplementary material for details). In particular,
to probe both the symmetric and asymmetric compo-
nents of the Lagrangian power statistics, we study the
following nondimensional moments

Sq = h|p|qi/✏q; Aq = hp|p|q�1i/✏q , (9)
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Turbulence in the shell model
NS in Fourier space: @tu(k, t) = �ik⇧(k)

X

k+p+q=0

u(p, t)u(q, t)� ⌫k2u(k, t) + F (k, t)

u̇n = ikn
�
A�un+2u

⇤
n+1 +Bun+1u

⇤
n�1 + C��1un�1un�2

�
� ⌫k2nun + fnShell model

Basic ingredients
Physical invariants: A,B,C chosen to preserve Energy &“Helicity” triad by triad
kn=k0 λn  logarithmically spaced shells (typically λ=2) allowing to reach very high Re
1 representative (complex) velocity per shell u(kn)=un

Simplifying assumption locality: (un-1,un,un+1)

Sq(r) = h(�ku(r))qi ⇠ r⇣q

r ! k�1
n �ku(r) ! un

Sq(kn) = h|un|qi ⇠ k�⇣q
n

It displays anomalous scaling quantitatively similar to NS-turbulence!!

(V. L’vov et al PRE 1998)



Lagrangian properties & shell model
In the shell model there is no notion of space, no direct way to introduce a Lagrangian frame
But, shell models are intrinsically “Lagrangian”:  no sweeping from the large scales
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Lagrangian power statistics in the shell model 4
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FIG. 4. (color online) Lagrangian power statistics in the shell
model with N = 30 shells at varying ⌫. Re�-dependence
of Sq and �Aq for (a) q = 2 and (b) 3 compared with
the MF prediction (8) (solid lines) and the best fit of
the asymmetry-sensitive observables (dashed lines) provid-
ing slopes (a) 0.93(1) and (b) 1.87(1). Notice that �Aq is
shifted upwards to highlight the di↵erent scaling behavior.
(c) Scaling exponents, ↵(q), obtained by fitting Sq (blue cir-
cles) and �Aq (orange squares) as power laws in Re�, com-
pared with (solid/black curve) the MF prediction (8) and
(dashed/purple curve) K41 dimensional scaling. Inset: nondi-
mensional measure of the asymmetry in terms of the skewness
S = hp3i/hp2i3/2 (yellow circles) and of the statistically ho-
mogeneous asymmetry ratio S̃ = hp3i/h|p|3i (red squares).
Notice that the di↵erent scaling behavior of Sq and �Aq re-
flects on the Re�-dependence of the S that deviates from the
MF slope ↵(3) � (3/2)↵(2) (solid line). Data have been ob-
tained by averaging over 10 realizations each lasting 106 TL.

grangian velocity along a fluid particle as the sum of
the real part of velocity fluctuations at all shells v(t) ⌘PN

n=1 <{un}. Analogously, we define the Lagrangian ac-

celeration a ⌘
PN

n=1 <{u̇n} and power p(t) = v(t)a(t).
In Figs. 4a-b we show the moments Sq and Aq for q = 2, 3
obtained from the shell model. The symmetric ones, Sq,
perfectly agree with the multifractal prediction obtained
using the same D(h), i.e. (2) for � = 0.6, that fits the
Eulerian statistics. The asymmetry-sensitive moments
Aq are negative (for q > 1), as in NS-turbulence, and
display a power law dependence on Re� with a di↵erent
scaling respect to their symmetric analogs. In partic-
ular, as summarized in Fig. 4c, we observe smaller ex-
ponents with respect to MF up to q = 4. Rephrased
in terms of the Skewness, these findings mean that the
time-asymmetry becomes weaker and weaker by increas-
ing Reynolds numbers if measured in terms of S̃ (Fig. 4c
inset), as distinct from what observed for the NSE (Fig.
3 inset). The standard skewness S, on the other hand, is
still an increasing function of Re� though with an expo-
nent smaller than predicted by the MF, ↵(3)�(3/2)↵(2),
because A3 has a shallower slope than the multifractal
one.

Conclusions. – Summarizing we have shown that the
multifractal formalism predicts the scaling behavior of

the Lagrangian power moments in excellent agreement
with DNS data and with previous results on the Burg-
ers equation. In the range of explored Re�, we have
found that symmetric and antisymmetric moments share
the same scaling exponents, and therefore MF is able
to reproduce both statistics. We underline that the ef-
fectiveness of MF in describing the scaling of Aq is not
obvious as the MF, in principle, bears no information
on statistical asymmetries [30]. By analysing the La-
grangian power statistics in a shell model of turbulence,
at Reynolds numbers much higher than those achievable
in DNS, we found that symmetric and antisymmetric mo-
ments possess two di↵erent sets of exponents. While the
former are still well described by the MF formalism, the
latter, in the range of q explored, are smaller. As a conse-
quence the ratios Aq/Sq in the shell model decrease with
Re�. However, we observe that the mismatch between
the two set of scaling is compatible with the assumption
that Aq ⇠ Sqhsign(p)i, i.e. that the main e↵ect is given
by a cancellation exponent introduced by the scaling of
the sign(p). Our findings raise the question whether the
apparent similar scaling among symmetric/asymmetric
components in the NSE is robust for large Reynolds num-
bers or a sort of recovery of time-symmetry would be ob-
served also in Navier-Stokes turbulence as for shell mod-
els.
We conclude by mentioning another interesting open

question. In [11, 12] it was found that the Lagrangian
power statistics is asymmetric also in statistically station-
ary 2D turbulence in the presence of an inverse cascade.
Like in 3D, the third moment is negative and its mag-
nitude grows with the separation between the timescale
of dissipation by friction (at large scale) and of energy
injection (at small scale), which is a measure of Re� for
the inverse cascade range. Moreover, the scaling expo-
nents are quantitatively close to the 3D ones. This raises
the question on the origin of the scaling in 2D that can-
not be rationalized within the MF, being the inverse cas-
cade not intermittent [31]. Likely, to answer the ques-
tion one needs a better understanding of the influence
of the physics at and below the forcing scale on the 2D
Lagrangian power.
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Structure functions

MF slope 1.17
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q=2
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Shell Model:  multifractal model predicts well the symmetric component
     while the asymmetric components is sub-leading!

The result is confirmed by using 3 different forcings: 
constant, time-correlated smooth & non-smooth in time
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Ė = 0 ⌫R(t) = �
R
d

3
xFuR

d

3
xu�u

⌫R(t) = �
R
d

3
xw(r⇥ F) +

R
d

3
xw(r⇥ (u⇥w))R

d

3
xw�w

TIME IRREVERSIBILITY IN REVERSIBLE SHELL MODELS

Following Gallavotti’s chaotic hypothesis
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STRUCTURE FUNCTIONS: REVERSIBLE VS IRREVERSIBLE

DIFFERENT DISSIPATIVE MECH

DASHED: REVERSIBLE
SOLID: IRREVERSIBLE



POWER STATISTICS: REVERSIBLE SHELL MODEL 

MF



Conclusions 
Scaling of symmetric components of Lagrangian power statistics is linked 
to Eulerian intermittency and can be rationalised within the multifractal 
formalism in both NS and SM turbulence 

For NS turbulence MF seems to be able to catch also the scaling of
statistical asymmetries in the range of explored Reynolds numbers
Is the latter property confirmed also at larger Re?

Why important:

10-1

100

101

102 103 104

Reλ

Shell model asymmetric/symmetric scaling

SK =
hp3i
hp2i3/2

S̃K =
hp3i
h|p|3i

Statistical recovery of 
time reversal symmetry

Something similar for statistical 
recovery of isotropy

(LB & M. Vergassola PoF 2001)

See arXiv:1707.08837 [physics.flu-dyn]



Open questions

red  p= 6<p2 >1
/2

blue p=-6<p2 >1
/2

p(x, t) = u(x, t) · a(x, t)

The spatial structure of power displays 
interesting (dipole-like) features
worth of further investigations

Spatial properties

2D turbulence

hpi = 0

hp2i ⇠ ✏2Re4/3�

hp3i ⇠�✏3Re2�

observed also in 2D turbulence 
in the inverse cascade

Inverse cascade is not anomalous and multifractal formalism cannot be 
applied, origin of the observed scaling behaviour?

(Xu et al PNAS 2014)


