Generative Adversarial Networks to infer velocity component in rotating turbulent flows

T. Li ${ }^{\mathbf{a}}$, M. Buzzicottia ${ }^{\mathbf{a}}$, L. Biferale ${ }^{\text {a }}$ and F. Bonaccorso ${ }^{\text {a }}$

${ }^{a}$ Department of Physics and INFN, University of Rome "Tor Vergata", Via della Ricerca Scientifica 1, 00133, Rome, Italy

M2P 2023 TAORMINA, SICILY, ITALY
FIRST EDITION! $\mathbf{3 0}^{\text {th }}$ May $\mathbf{- 1} \mathbf{1}^{\text {st }}$ June 2023

T. Li et al., arXiv:2210.11921 (2022).
T. Li et al., Eur. Phys. J. E 46, 31 (2023).

Background

Rotating turbulence

Large-scale vortical structures
Small-scale non-Gaussian fluctuations

Atmosphere Turbomachinery

Data reconstruction

(i) Inpainting

(iii) Inference

M. Buzzicotti, Data reconstruction for complex flows using AI: recent progress, obstacles, and perspectives. Europhysics Letters (2023).

Problem set-up

L. Biferale, F. Bonaccorso, M. Buzzicotti, P. Clark Di Leoni, TURB-Rot. A large database of 3D and 2D snapshots from turbulent rotating flows. arXiv preprint arXiv:2006.07469 (2020).

EPOD inference (Extended Proper Orthogonal Decomposition)

$$
\boldsymbol{u}_{G}^{(p)}(\boldsymbol{x})=\sum_{n=1}^{N_{\Omega}} b_{S}^{(n)} \boldsymbol{\phi}_{E}^{(n)}(\boldsymbol{x})(\text { PEDICTION })
$$

J. Borée, Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows. Experiments in fluids (2003) 35.2: 188-192.

CNTA - DASEC inference with context encoders

M. Buzzicotti, F. Bonaccorso, P. C. Di Leoni, L. Biferale, Reconstruction of turbulent data with deep generative models for semantic inpainting from TURB-Rot database. Physical Review Fluids (2021) 6.5: 050503.

Generator

Loss functions

$$
\begin{aligned}
& \mathcal{L}_{G E N}=\left(1-\lambda_{a d v}\right) \mathcal{L}_{\mathrm{MSE}}+\lambda_{a d v} \mathcal{L}_{a d v} \\
& \mathcal{L}_{\mathrm{MSE}}=\left\langle\frac{1}{A_{\Omega}} \int_{\Omega}\left\|\boldsymbol{u}_{G}^{(p)}(\boldsymbol{x})-\boldsymbol{u}_{G}^{(t)}(\boldsymbol{x})\right\|^{2} \mathrm{~d} \boldsymbol{x}\right\rangle \\
& \mathcal{L}_{a d v}=\left\langle\log \left(1-D\left(\boldsymbol{u}_{G}^{(p)}\right)\right)\right\rangle
\end{aligned}
$$

Adversarial Discriminator
M. Buzzicotti, F. Bonaccorso, P. C. Di Leoni, L. Biferale, Reconstruction of turbulent data with deep generative models for semantic inpainting from TURB-Rot database. Physical Review Fluids (2021) 6.5: 050503.

Results: Inference task (I)

Results: Inference task (II)

Summary

1.Purpose: Explored practical geophysical/engineering problem of inferring one velocity component from another in 2D rotating turbulent flows.
2.Methods: Compared linear (EPOD) and nonlinear (CNN \& GAN) methods using two tasks with different complexities.

3.Findings:

1. For simpler tasks, EPOD produced meaningful but unsatisfactory results. Improvements observed using CNN and further refined with GAN.
2. For complex tasks, EPOD failed due to low correlation between components. CNN and GAN recognized coherent structures but had limitations.
4.Conclusion: GANs optimize both instantaneous and statistical reconstruction, outperforming EPOD, which only minimizes field variance. GANs deliver more realistic results, albeit at a higher computational cost.

Thank you! Questions?

T. Li, M. Buzzicotti, L. Biferale, F. Bonaccorso, Generative adversarial networks to infer velocity components in rotating turbulent flows. Eur. Phys. J. E 46, 31 (2023).

