
Data-driven Bayesian olfactory search in a
turbulent flow

R. A. Heinonen1, F. Bonaccorso1, L. Biferale1, A. Celani2, and
M. Vergassola3

1Dept. Physics and INFN, University of Rome, “Tor Vergata”
2The Abdus Salam International Center for Theoretical Physics

3Dept. Physics, Ecole Normale Supérieure

Supported by the European Research Council under grant No. 882340

Introduction: searching for an odor source in a turbulent
environment

Insects often need find
source (usually upwind) of
an odor or other cue
advected by the atmosphere

E.g. mosquito looking for
human drawn by CO2 and
odors; moth looking for
mate drawn by pheromones

Source may be ∼ 100 m
away(!)

Figure Artist’s conception of a moth searching for a mate
via pheromone cues.

Introduction: searching for an odor source in a turbulent
environment

Classical search strategy is
chemotaxis, i.e. just go up
the concentration gradient

But: (far from source)
turbulence mixes cue into
patches/plumes over
background of very small
concentration =⇒ insect
only detects the cue
intermittently. Gradient
estimation is unfeasible

Figure Artist’s conception of chemotaxis strategy.

Figure A turbulent environment leads to a patchy odor
landscape with intermittent detections.

Model search problem

Agent makes observation — detection or nondetection, then moves

Try to reach source in as few ∆t as possible — give reward γT for
reaching source in T steps (0 < γ < 1)

Key physics input is Pr(obs|s), r − r0. Spatial dependence of
concentration statistics in turbulent environment? (see
[Celani et al., 2014])

source

mean wind

!

!
!

!!!r0

r

Δ𝑥

Δ𝑦

Figure In our setup, agent lives on the gridworld (blue points) and tries to find the source (red x)

Capturing the information

At timestep t, agent has history (a1, o1, a2, o2, . . . , at−1, ot).
What does this say about source location?

Assuming system is Markovian, information can be stored in a
probability distribution (“belief”) b over s

Update b after each observation using Bayes’ theorem

b(s ′)o,a = Pr(o|s ′)
∑
s

b(s)Pr(s ′|s, a)/Z

This describes a partially observable Markov decision process
(POMDP) — state not accessible to agent, only observations

Model-based approach — need Pr(o|s)

Optimal policy: Bellman equation

Define value function Vπ(b) as total expected reward E[γT]
under π, conditioned on b. Optimal value function satisfies
Bellman equation

V ∗(b) = max
a∈A

∑
s∈S

R(s, a)b(s)︸ ︷︷ ︸
immediate expected

reward

+γ
∑
o∈O

Pr(o|b, a)V ∗(bo,a)︸ ︷︷ ︸
future expected rewards

Partial observability makes solution computationally hard —
belief simplex very large (dimension |S | − 1). “Curse of
dimensionality”

Previous work

Recent work has shown this problem can be solved effectively
using at least three algorithms (Perseus w/ reward shaping,
SARSOP, stochastic gradient descent)

1 Loisy and Eloy Proc. R. Soc. Lond. (2022)
2 Heinonen, Biferale et al. (2022, under review)
3 Loisy, Heinonen et al. (in preparation)

This research focused on the “toy problem” where the model
is exact

Now we move to a “real” turbulent flow (DNS)!

The DNS

3-D Navier-Stokes with mean wind on 1024× 512× 512 grid,
Re ≃ 750

Lagrangian particles emitted simultaneously from 5 different
sources, data outputted every τη (∼ 5000τη total)

Have data for 5 different wind speeds (V /ṽ ≃ 0, 1.5, 3, 6, 9)

Let us know if you have interest in this dataset!

N.B. our simulation guy got the flu and didn’t finish the 3-D movie

Coarse-graining

To move to POMDP setting, data are coarse-grained on a
quasi-2D slice to obtain 99× 33 grid, spacing is ∼ 10η

Particles counted to obtain concentration field

N.B. these movies have V = 6, data in the rest of talk are for V = 9

Thresholding

Agent moves 1 square per τη, observes instantaneous
concentration c

Hit defined as c ≥ cthr = 100

0 50 100 150 200 250 300 350 400
time

0

50

100

150

200

250

co
nc
en

tra
tio

n

Figure Conc. time series at fixed point 58∆x downwind from the source, with detection threshold

Empirical likelihood

Pr(c ≥ cthr |s) averaged over time
and source locations,
symmetrized across wind axis

Now, fit to two-parameter model
based on [Celani et al., 2014]:

Pr(c ≥ cthr |x , y) =
θ(x) (1− exp (χEi(−b/x))) ,

χ =
a

x
exp

[
−
(

V

ṽ⊥

)2 (y
x

)2
]

Use SARSOP (or other) to solve
for policy assuming fit model is
exact

N.B. Ei(x) =
∫ x
−∞

et

t
dt

DNS data

fit to model

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Pr(c>100)

−1400 −1200 −1000 −800 −600 −400 −200 0
x position along symmetry axis

0.0

0.2

0.4

0.6

0.8

1.0

Pr
(c
>1

00
)

DNS data
fit to model

Searching in the DNS: near-optimal vs. heuristics

Near-optimal policy (SARSOP) generally outperforms the two
tested heuristic (i.e. not optimized) policies when starting
reasonably far from the source

Arrival time statistics

0 100 200 300 400 500
arrival time

10−4

10−3

10−2

pd
f

toy environment
SARSOP
infotaxis
SAI

0 100 200 300 400 500
arrival time

10−4

10−3

10−2

pd
f

DNS
SARSOP
infotaxis
SAI

policy toy env. DNS

SARSOP 36.9 125.6
SAI 40.2 38.9

infotaxis 47.8 41.5

Table Mean arrival times E[T |T < 2500]

policy toy env. DNS

SARSOP 0% 0.55%
SAI 0.37% 5.8%

infotaxis 0.22% 5.2%

Table Failure rates Pr(T ≥ 2500)

Failure rate larger and tails fatter in

DNS

Correlations between detections

Simplest explanation for discrepancy: real turbulence is not
Markovian. Detections are positively correlated in time in DNS

Consecutive detections more likely than in Markov model
=⇒ POMDP agent sometimes “fooled”
Define binary signal σ(t) = θ(c(t)− cthr), then

⟨σ(t + τ)σ(t)⟩ − ⟨σ(t)⟩2 = χPr(det. at t + τ |det. at t)− χ2

where χ = Pr(c ≥ cthr). Expect ∝ δτ,0 if uncorrelated

0 2 4 6 8 10 12 14 16 18 20
τ

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

⟨σ
(t)

σ(
t+

τ)
⟩−

⟨σ
(t)

⟩2

10⟨units⟨downwind
⟩0⟨units⟨downwind
50⟨units⟨downwind

Nonzero positive

correlations,

especially close to

the source! (Here

cthr = 10 for

better statistics)

Conclusions

Have high-quality Lagrangian data for particles in a turbulent
flow emitted from point source in the presence of mean wind

Have used the data + POMDP algorithms to solve for
near-optimal policies for olfactory search

Correlations between detections can spoil performance

Next steps:
1 How does a model-free policy with memory compare to

POMDP?
2 Move to risk-averse setting: try to minimize E[exp(βT)] for

β > 0 =⇒ optimize the tail and avoid failure
3 Performance sensitive to model parameters, but model not

always available in real world. How to relax this?

References I

Celani, A., Villermaux, E., and Vergassola, M. (2014).

Odor landscapes in turbulent environments.
Physical Review X, 4(4):041015.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998).

Planning and acting in partially observable stochastic domains.
Artificial intelligence, 101(1-2):99–134.

Loisy, A. and Eloy, C. (2021).

Searching for a source without gradients: how good is infotaxis and how to beat it.
arXiv preprint arXiv:2112.10861.

Vergassola, M., Villermaux, E., and Shraiman, B. I. (2007).

‘Infotaxis’ as a strategy for searching without gradients.
Nature, 445(7126):406–409.

Detection likelihood model details

[Celani et al., 2014] calculated concentration statistics far
from a source in the presence of wind

Concentration of a puff controlled by the size of the puff when
it passed through the source

Compute puff size statistics, prob. of passing through source
→ can compute χ = Pr(c > 0) and C = ⟨c |c > 0⟩
For jet flow and Gaussian fluctuations, obtain
χ ∝ exp(−(Vy/ṽ x)2)/x , C ∝ 1/x

Poisson statistics for rare events → tail of pdf shown to be
p(c) ∼ χ

c exp(−c/C)

Can integrate to find Pr(c ≥ cthr)

Heuristic strategies

QMDP: take action which essentially minimizes the expected
distance to the source. Exploitative (greedy)

Infotaxis [Vergassola et al., 2007]: take action maximizing the
expected gain in information (negative entropy)
I =

∑
s b(s) log b(s). Explorative (less greedy)

Space-aware infotaxis [Loisy and Eloy, 2021]: take action
minimizing a function with contributions from both the
distance and the entropy

Thompson sampling: sample a point r∗ from b, move for τ
timesteps towards r∗, repeat.

