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Motivations

Context
Implicit SGS arising when stabilizing for ν → 0 a Lattice Boltzmann

Method by equipping it with a H-theorem

Aim
Study the physical properties of

this implicit sub-grid scale (SGS) model

Tool
Development a tool based on balance equations to check
hydrodynamic recovery of simulated flows accross scales
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Introduction to Lattice Boltzmann Method (LBM)

LBM Equation with a relaxation time τ ≡ τ0 fixed

fi (~x + ~ci ∆t , t + ∆t)− fi (~x , t) = − 1
τ0

[
fi (~x , t)− f eq

i (~x , t)
]

Macroscopic quantities: Density: ρ =
∑

i fi Momentum: ρ~u =
∑

i fi~ci

wwww� Chapman-Enskog expansion: O(K 2
n ), O(M3

a )

ν = c2
s (τ − 0.5)∆t

wwww�
Weakly compressible Navier-Stokes with viscosity ν ≡ ν0 fixed

ρ∂tui + ρuj∂jui = −∂ip + ∂jρν (∂jui + ∂iuj ) +O(M3
a ) +O(K 2

n )

with c2
s the speed of sound is the lattice

Instabilities arising as τ0 → 0.5 ⇐⇒ ν0 → 0 at a fixed resolution
Can we get rid of those instabilities?
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Entropic LBM: Unconditionnal stability and implicit SGS

I Entropic LBM (ELBM) equips a H-theorem by locally adaptating τ

τ = τ eff (~x , t) =
2 τ0

α(fi(~x , t) )
where α has a non-linear dependency on fi(~x , t)

[Karlin et al., 1999]

In practice unconditionnally stable
νeff (~x , t) = c2

s (τeff (~x , t) − 0.5)∆t expression in terms of macroscopic quantities?

I A guess was derived using Chapman-Enskog expansion assuming
α ≈ 2 ⇐⇒ τ eff ≈ τ0 [Malaspinas et al., 2008]

νeff (~x , t) = ν0 + νM
t (~x , t) with νM

t (~x , t) ∝ −SθκSκγSγθ
SλµSλµ

where Sij = 1
2 (∂iuj + ∂jui )

Similar to a Smagorinsty model: νt (~x , t) = C
√

SθκSθκ

Objective: Numerically check the existence of this implied SGS
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Kinetic energy balancing averaged over a sub-volume V

Averaged kinetic energy balance equation for ν = ν0 fixed

LHSE
V = ∂t

〈ρuiui

2

〉
V

= −
〈
ui∂ip

〉
V
− ν0

〈
ρ (∂jui + ∂iuj) ∂jui

〉
V
+ ν0

〈
∂jρui (∂jui + ∂iuj)

〉
V

−
〈
∂j
ρuiui

2
uj
〉

V
+
〈
uiFi
〉

V

= RHSE, 1
V + RHSE, 2

V + RHSE, 3
V + RHSE, 4

V + RHSE, 5
V = RHSE

V

Averaged kinetic energy balance equation for ν = νeff (~x , t) = ν0 + νt (~x , t)

LHSE
V = ∂t

〈ρuiui

2

〉
V

= −
〈
ui∂ip

〉
V
− ν0

〈
ρ (∂jui + ∂iuj) ∂jui

〉
V
+ ν0

〈
∂jνρui (∂jui + ∂iuj)

〉
V

−
〈
∂j
ρuiui

2
uj
〉

V
+
〈
uiFi
〉

V
−
〈
νtρ (∂jui + ∂iuj) ∂jui

〉
V
+
〈
∂jνtρui (∂jui + ∂iuj)

〉
V

= RHSE, 1
V + RHSE, 2

V + RHSE, 3
V + RHSE, 4

V + RHSE, 5
V + RHSE, 6

V + RHSE, 7
V

= RHSE
V

where
〈
. . .
〉

V
denotes the average over a sub-volume V
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Simulations of 2D homogeneous isotropic turbulence

Periodic 256× 256 grid using a D2Q9 lattice

Forcing on a shell of wavenumber

F T
Ψ = F T

0

7∑
‖~k‖=5

cos
(

2π
L
~k .~x + φ

)

where φ is an arbitrary constant

Energy removal at large scale

~F E (~x , t) = −F E
0

2∑
‖~k‖=1

~̂u(~k , t)e
2 π

L
~k·~x

When forcing at kf , we have:

I a backward energy cascade to
large scales

I a forward enstrophy cascade to
small scales

[Boffetta & Ecke, 2012]
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Statistical analysis of the balancing errors δE
V

Kinetic energy balancing error

δE
V (t) =

∣∣RHSE
V (t)− LHSE

V (t)
∣∣

maxi

∣∣∣RHSE, i
V (t)

∣∣∣

We process outputs from
simulations that have reached

statistical stationnarity

Example of sub-volumes shown
on a vorticity field

For a scale L, we gather statistics of δE
L :

Balancing error over sub-volumes of shape V = L× L in space and time
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Evolution of the kinetic energy balancing on a single sub-volume

V = 181× 181 for a LBM simulation with τ ≡ τ0 = 0.55 fixed
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LBM for different fixed τ ≡ τ0 → 0.5: Superposed spectrum

τ ≡ τ0 fixed & Constant forcing amplitudes

Time-averaged superposed spectrum

where τlast = 0.515 is the lowest τ ensuring a stable LBM simulation at
this resolution and forcing amplitude
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LBM for different fixed τ ≡ τ0 → 0.5: δE
L and MaL = <uRMS>L

cs
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Entropic LBM for different τ0 → 0.5: Superposed spectrum

τ = τ eff (~x , t) = 2 τ0

α(fi (~x, t) )
& Constant forcing amplitudes

Time-averaged superposed spectrum

ELBM has the dissipative properties expected from a LES
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Entropic LBM for τ0 = 0.515: Correlation between ω and τ eff

Snapshot of τ eff (~x , t) = 2 τ0

α(fi (~x, t) ) Snapshot of ω = ∂x uy − ∂y ux

τ eff adapts itself to vorticity peaks
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Entropic LBM: Validation of Malaspinas νM
t

Is Malaspinas’ νM
eff (~x , t) = ν0 + νM

t (~x , t) with νM
t (~x , t) ∝ −SθκSκγSγθ

SλµSλµ

an accurate approximation of νeff (~x , t) = c2
s (τeff (~x , t)− 0.5) ∆t ?

Joint PDF between νM
t (~x, t)
ν0

and τ eff (~x , t) with νt (~x, t)
ν0

= νeff (~x, t)−ν0
ν0

in blue

τ0 = 0.503 τ0 = 0.50015

νM
t is indeed a 1st order expansion of νt
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Conclusions

I Developped a tool to check numerically the balance of kinetic
energy and enstrophy accross scales

I Applied it to standard LBM:
I Hydrodynamics is well recovered at large scales
I Recovery at small-scales is less good
I Enstrophy balance highlights higher order Ma terms

I Preliminary results on Entropic LBM:
I Dissipative properties as τ0 → 0.5 are as expected for a LES
I Malaspinas’ νM

t (~x , t) was numerically shown to be a 1st order
expansion of νt (~x , t) = νeff (~x , t)− ν0

I As τ0 → 0.5, τ eff variance increase and νeff can become locally
negative

I Systematic analysis of hydrodynamics recovery for Entropic
LBM by adding Malaspinas SGS term to the balance equations
is on-going
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