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Drag: Stokes Timeβ<1 heavy particles
β>1 light particles

PARTICLES	 IN	COMPLEX	FLOWS	 I:	INERTIAL	PARTICLES

Preferential concentration!

Light(heavy)	particles accumulate	
inside(outside)	highly vortical regions

Maxey, J. Fluid Mech. 174, 441 (1987); Falkovich et al, Phys. Rev. Lett. 86, 2790 (2001)
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Particle trapping in three-dimensional fully developed turbulence
L.B., G Boffetta, A Celani, A Lanotte, F Toschi
Physics of Fluids 17 (2), 021701



TRGETTARGET

Reinforcement learning is a framework to find a good (optinal) POLICY for
achieving given long-term tasks. It is widely used in artificial intelligence

and machine learning. It is based on the interaction between a decision-
maker (in our case the inertial particle) and the environment. The decision

maker can change its behaviour in response to inputs from the system. By

trial and error the decision maker progressively learns how to behave
optimally
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Na actions	(densities)R = ⌦3

OBSERVATION:
DISCRETIZED	 VORTICY	LEVELS

⇡n : si ! aj
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Qn(aj , si)

1-step	Q-LEARNING	ALGORITHM

QUALITY	MATRIX	AT	STEP	nà

GREEDY	POLICY	AT	STEP	n:

EXPECTED	DISCOUNTED	FUTURE	RETURN	IF	ACTION		aj is	taken	 after	observation	of	state	si
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