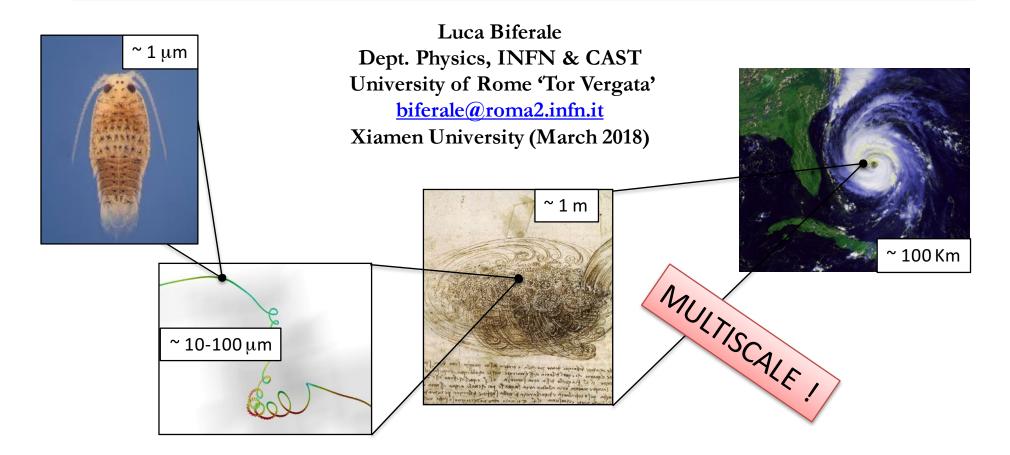
ENERGY TRANSFER AND ENERGY DISSIPATION IN TURBULENT FLOWS

Παντα ρει (everything flows)



WHERE DOES ENERGY GO ? WHAT CAN WE SAY ABOUT THE STATISTICAL PROPERTIES OF TURBULENT FLOWS AT LARGE/SMALL SCALES ?

NAVIER-STOKES EQUATIONS:



Leonardo da Vinci (~ 1500): "doue la turbolenza de <u>si genera [injected]</u>; doue la turbolenza dell aqua <u>si mantiene [advected]</u> plugho; doue la turbolenza dell acqua s<u>i posa [dissipated]</u>"

NAVIER-STOKES $3D \leftarrow \rightarrow 2D$

(NASA - Space Flight Center Scientific Visualization Studio)

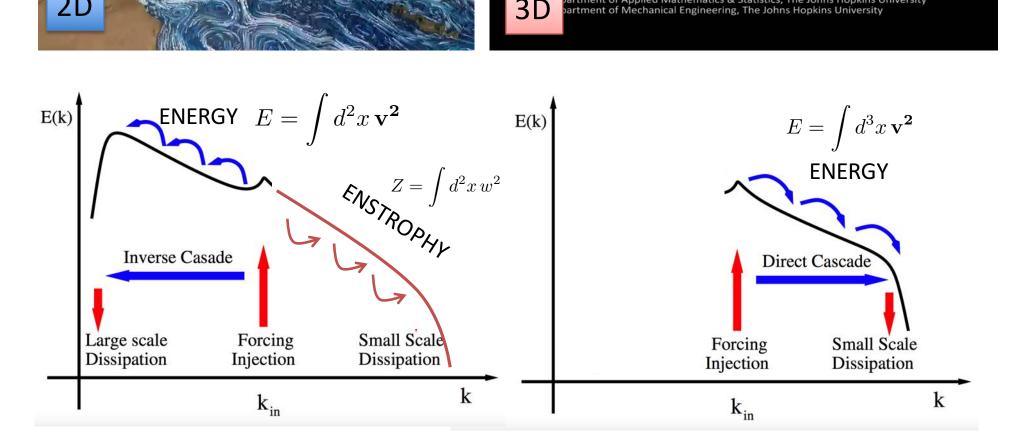
(Vortices within vortices - APS Gallery of Fluid Motions)

Vortices within vortices: hierarchical nature of vortex tubes in turbulence

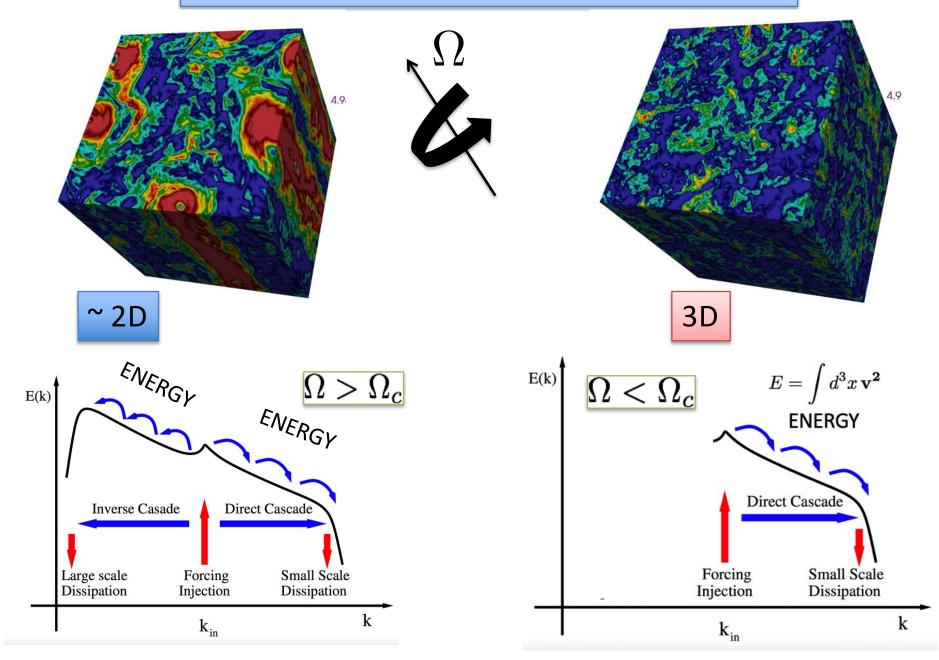
Entry #: 84174

Kai Bürger¹, Marc Treib¹, Rüdiger Westermann¹, Suzanne Werner², Cristian C Lalescu³, Alexander Szalay², Charles Meneveau⁴, Gregory L Eyink^{2,3,4}

¹ Informatik 15 (Computer Graphik & Visualisierung), Technische Universität München bartment of Physics & Astronomy, The Johns Hopkins University partment of Applied Mathematics & Statistics, The Johns Hopkins University partment of Mechanical Engineering, The Johns Hopkins University

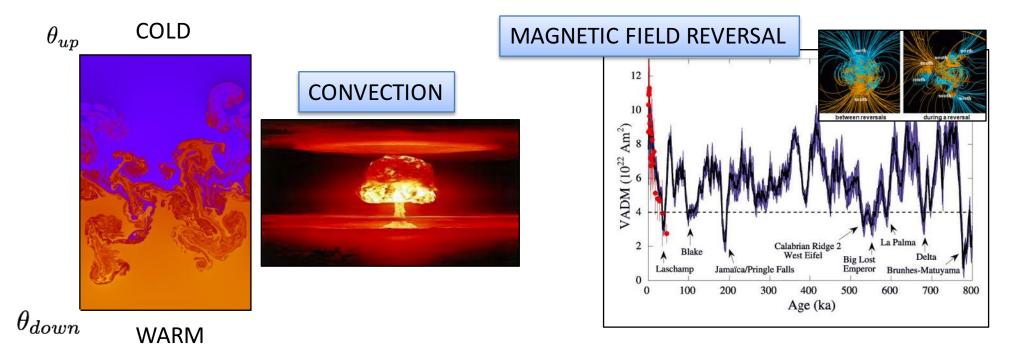


(PHASE) TRANSITIONS IN THE ENERGY TRANSFER: ROTATING FLOWS



COMPLEX FLUID & COMPLEX FLOWS

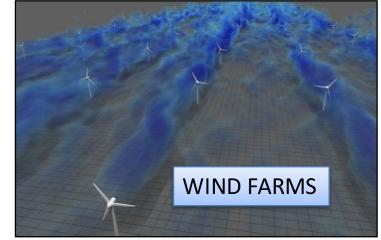
$$\begin{cases} \partial_{t}v + v\partial v = -\partial p + \nu \Delta v \\ \partial_{t}\theta + v \cdot \partial \theta = \chi \partial^{2}\theta \\ \partial_{t}B + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}B + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial B = B \cdot \partial_{t}\theta + \chi \partial^{2}B \\ \partial_{t}\theta + v \cdot \partial_{t}\theta + v \\ \partial_{t}\theta + v \cdot \partial_{t}\theta + v \\ \partial_{t}\theta$$

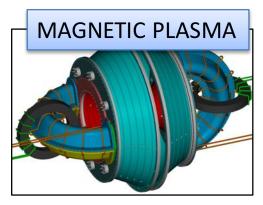


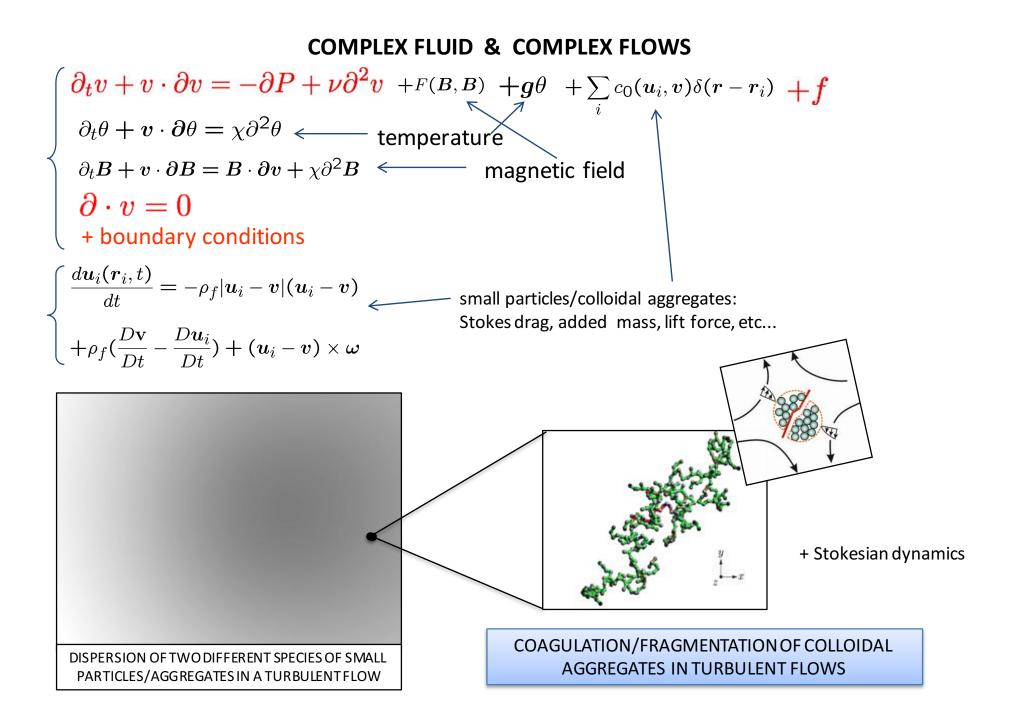
COMPLEX FLUID & COMPLEX FLOWS

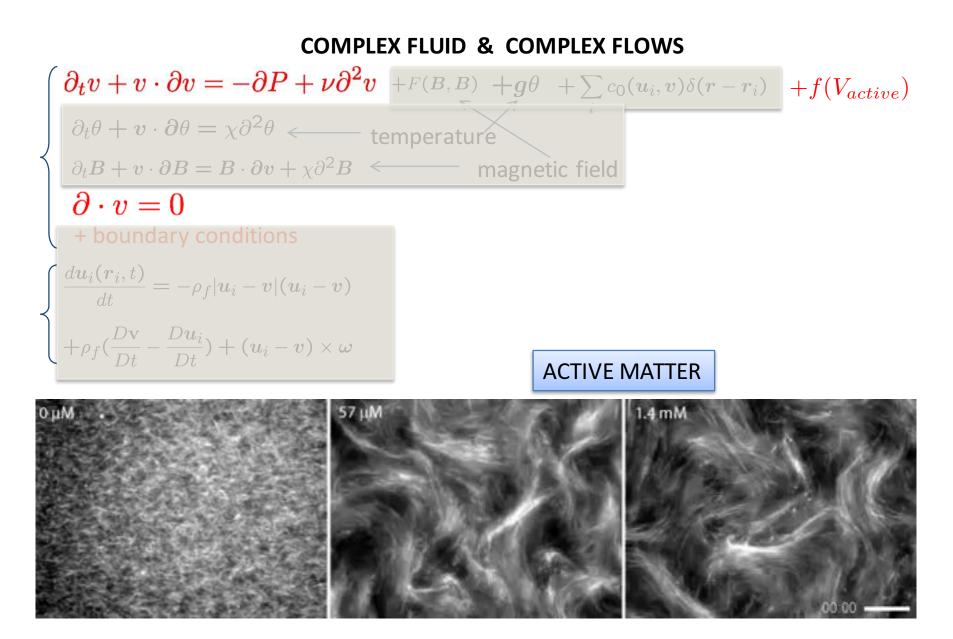
$$\begin{cases} \partial_{t}v + v\partial v = -\partial p + \nu \Delta v & +F(B,B) + g\theta + \sum_{i} c_{0}(u_{i},v)\delta(r-r_{i}) + f \\ \partial_{t}\theta + v \cdot \partial \theta = \chi \partial^{2}\theta & \text{control parameter:} \\ \partial_{t}B + v \cdot \partial B = B \cdot \partial v + \chi \partial^{2}B & \text{control parameter:} \\ \partial \cdot v = 0 & \text{control parameter:} \\ \frac{\partial v}{\nu} = 0 & \text{control parameter:} \\ \frac{du_{i}(r_{i},t)}{dt} = -\rho_{f}|u_{i} - v|(u_{i} - v) & Re \to \infty \\ +\rho_{f}(\frac{Dv}{Dt} - \frac{Du_{i}}{Dt}) + (u_{i} - v) \times \omega & \text{FULLY NON-LINEAR} \end{cases}$$

ROTATING CONVECTION









Sanchez et al Nature 2012 "Microtubules activated by Kinesin Motor Proteins"

$$\begin{cases} \partial_t v + v \partial v = -\partial p + \nu \Delta v \\ \partial_t \theta + v \cdot \partial \theta = \chi \partial^2 \theta \\ \partial_t B + v \cdot \partial B = B \cdot \partial v + \chi \partial^2 B \\ \partial \cdot v = 0 \\ + \text{boundary conditions} \end{cases}$$
$$\begin{cases} \frac{du_i(r_i, t)}{dt} = -\rho_f |u_i - v| (u_i - v) \\ +\rho_f (\frac{Dv}{Dt} - \frac{Du_i}{Dt}) + (u_i - v) \times \omega \end{cases}$$

$$+F(B,B)$$
 $+g\theta$ $+\sum c_0(u_i,v)\delta(r-r_i)$ $+f$

control parameter:

Re =	$rac{l_0 v_0}{ u}$
$\begin{cases} Re \rightarrow \\ \nu \rightarrow 0 \end{cases}$	

Too many turbulences? NO! -> UNIVERSALITY ALL TURBULENT FLOWS RECOVER ISOTROPY AND HOMOGENEITY (AT SCALES SMALL ENOUGH)

- Homogeneous & Isotropic Turbulence

- Fully periodic 3D domain
- Gaussian delta-correlated forcing
- Incompressible

Homogeneous and Isotropic turbulence: the (UNSOLVED) hydrogen atom of fluid dynamics

WHY STILL UNSOLVED? (EQUATIONS ARE KNOWN SINCE 250 YEARS AGO!)