

Numerical simulation of breakup of small aggregates in turbulence

Matthäus U. Bäbler

Dept. Chemical Engineering and Technology, KTH, Stockholm, Sweden

Luca Biferale

Dept. Physics and INFN, University of Rome Tor Vergata, Italy

Alessandra S. Lanotte

ISAC-CNR and INFN, Sez. Lecce, Italy

ECCE10 - 10th European Congress of Chemical Engineering Nice, September 27 to October 1, 2015

 Processing of industrial colloids (polymers, metal oxides, minerals)

Pictures: M. Soos, D. Marchisio, J. Sefcik, AIChE J. (2013) and Soos, et al., J. Colloid Interface Sci. (2008)

- Processing of industrial colloids (polymers, metal oxides, minerals)
- Dispersion of powder agglomerates for, e.g. inhalation drugs

Picture: Getty images (2015-03-22)

- Processing of industrial colloids (polymers, metal oxides, minerals)
- Dispersion of powder agglomerates for, e.g. inhalation drugs
- Evolution and transport of sediments and suspended mater in natural waters

Picture: Satelite image Rio de la Plata Estuary, March 10, 2010 (www.eosnap.com, retrieved 2014-03-12),

Breakup of a polystyrene aggregate in homogeneous and isotropic turbulence, monitored by 3D-Particle Tracking Velocimetry.

$$Re_{\lambda} \approx 117$$
 $\eta = 0.15 \,\mathrm{mm}$
 $au_{\eta} = 0.02 \,\mathrm{s}$
 $d_{\mathrm{agg}} = 1 \,\mathrm{mm}$

Aim and structure of this talk

Aim of this work:

Dynamics of breakup of small aggregates caused by turbulent fluid motions

~ How many breakup events per unit time

Aim and structure of this talk

Colloidal aggregates in homogeneous isotropic turbulence

Colloidal aggregates in non-homogeneous flows

Aerosol aggregates in homogeneous isotropic turbulence

- Stationary homogeneous isotropic turbulent flow, loaded with few aggregates
- Small colloidal aggregates
 - Aggregate size small with resect to η
 - Aggregate density close to fluid density

- Aggregates are broken due to due hydrodynamic stress acting on them
- Brittle limit: Aggregate break up when the hydrodynamic stress exceeds a critical value σ_{cr}
- σ_{cr} is a characteristic for a given type of aggregates

$$\sigma_{\rm cr} \sim R^{-1/q}$$

$$q \approx 0.35 - 0.55$$

 $R \ll \eta$ $\rho_a \sim \rho_f$

Harshe et al., Langmuir (2011), Zaccone et al., PRE (2009)

- Aggregates are broken due to due hydrodynamic stress acting on them
- Brittle limit: Aggregate break up when the hydrodynamic stress exceeds a critical value σ_{cr}
- σ_{cr} is a characteristic for a given type of aggregates

$$\sigma_{\rm cr} \sim R^{-1/q}$$

 $q \approx 0.35 - 0.55$

Harshe et al., Langmuir (2011), Zaccone et al., PRE (2009)

• Upon release, we follow the aggregate until the first crossing of σ_{cr}

- Upon release, we follow the aggregate until the first crossing of σ_{cr}
- Breakup rate:

$$f_{\sigma_{\rm cr}} = \frac{1}{\langle \tau_{\sigma_{\rm cr}} \rangle}$$

- Upon release, we follow the aggregate until the first crossing of σ_{cr}
- Breakup rate:

$$f_{\sigma_{\rm cr}} = \frac{1}{\langle \tau_{\sigma_{\rm cr}} \rangle}$$

• Quasi-Eulerian proxy:

$$f_{\sigma_{\rm cr}}^{(E)} = \frac{1}{\langle T_{\sigma_{\rm cr}} \rangle} = \frac{\int_0^\infty d\dot{\sigma} \, \dot{\sigma} p_2(\sigma_{\rm cr}, \dot{\sigma})}{\int_0^{\sigma_{\rm cr}} d\sigma \, p(\sigma)}$$

Babler, Biferale, Lanotte, PRE (2012)

- Task: Measure σ along turbulent trajectories and detect crossings of $\sigma_{\rm cr}$
- Turbulent trajectories for HIT are available on http://turbase.cineca.it (as part of EuHIT program)

- Resolution
 2048³
- $Re_{\lambda} = 400$

Babler, Biferale, Lanotte, PRE (2012)

Breakup rate I - Colloids/HIT

• Small colloidal aggregates $(R \ll \eta, \rho_a \sim \rho_f)$

Breakup rate I - Colloids/HIT

• Small colloidal aggregates $(R \ll \eta$, $\rho_a \sim \rho_f$)

Small thresholds

$$f_{\sigma_{\rm cr}}^{(E)} = \frac{\int_0^\infty d\dot{\sigma} \, \dot{\sigma} p_2(\sigma_{\rm cr}, \dot{\sigma})}{\int_0^{\sigma_{\rm cr}} d\sigma \, p(\sigma)}$$

Closure

$$p_2(\sigma, \dot{\sigma}) = p(\sigma)p(\dot{\sigma})$$

 $p(\sigma) \sim \text{Gaussian}$

Babler, Biferale, Lanotte, PRE (2012)

Breakup rate I - Colloids/HIT

• Small colloidal aggregates $(R \ll \eta$, $ho_a \sim
ho_f$)

Small thresholds

$$f_{\sigma_{\rm cr}}^{(E)} = \frac{\int_0^\infty d\dot{\sigma} \, \dot{\sigma} p_2(\sigma_{\rm cr}, \dot{\sigma})}{\int_0^{\sigma_{\rm cr}} d\sigma \, p(\sigma)}$$

Closure

$$p_2(\sigma, \dot{\sigma}) = p(\sigma)p(\dot{\sigma})$$

 $p(\sigma) \sim \text{Gaussian}$

Babler, Biferale, Lanotte, PRE (2012), Babler et al., J. Fluid Mech. (2015)

Colloidal aggregates in channel flow

- Stationary turbulent flow between two parallel plates
- Periodic in x and z,
 Resolution 128×128×129
- $Re_{\tau} = u_{\tau}h/v = 150$, Re = 2Uh/v = 4200

 u_{τ} = shear velocity, U = bulk velocity

Marchioli and Soldati, Intl. J. Muliphase Flow (2009), Babler et al., J. Fluid Mech. (2015)

Breakup rate II - Colloids/Channel

- Colloidal aggregates released in two locations:
 - Center-plane
 - Close to the wall

Breakup rate II - Colloids/Channel

- Colloidal aggregates released in two locations:
 - Center-plane
 - Close to the wall

Breakup rate II - Colloids/Channel

- Colloidal aggregates released in two locations:
 - Center-plane
 - Close to the wall

Location of breakup for release in the center-plane

Babler, et al., J. Fluid Mech. (2015)

- Small & heavy aggregates:
 - Aggregate size small with resect to η
 - Aggregate density large with respect to fluid density

- Small & heavy aggregates:
 - Aggregate size small with resect to η
 - Aggregate density large with respect to fluid density

 Hydrodynamic stress exerted on the aggregates is comprised of shear stress and drag stress

• Brittle limit: Aggregate break up when the hydrodynamic stress exceeds a critical value σ_{cr}

 $R < \eta$

 $\rho_a \gg \rho_f$

K.A. Kusters (1991), Bagster and Tomi, Chem. Eng. Sci. (1974)

 Hydrodynamic stress exerted on the aggregates is comprised of shear stress and drag stress

• Brittle limit: Aggregate break up when the hydrodynamic stress exceeds a critical value σ_{cr}

K.A. Kusters (1991), Bagster and Tomi, Chem. Eng. Sci. (1974)

Breakup rate III - Aerosols/HIT

• Aggregates of size $R/\eta = 0.1$ and varying density

Breakup rate III - Aerosols/HIT

• Aggregates of size $R/\eta = 0.1$ and varying density

Breakup rate III - Aerosols/HIT

• Aggregates of size $R/\eta = 0.1$ and varying density

Conclusions

- We studied the breakup of colloidal and aerosol aggregates in different flow configurations. Breakup of an individual aggregate occurs instantaneously once the stress exceeds a critical threshold σ_{cr} . The latter depends on the aggregate properties such as size, structure, and nature of bonds. In this work σ_{cr} is used to characterize the aggregates.
- In all cases, the breakup rate as a function of σ_{cr} shows a power law-like behavior for small threshold values and a sharp cut-off for large threshold values. The former is caused by the calm parts of the flow while the latter is caused by rare intense fluctuations.
- In non-homogeneous flows we observe an intermediate regime in between small and large threshold values caused by transport of aggregates to the high shear zones close to the walls.
- Breakup of aerosol aggregates is influenced by drag stress. The drag stress increases with increasing the aggregate Stokes number.

Acknowledgements

- Swedish Research Council VR (M.U.B.)
- European Research Council ERC (L.B.)
- EU-COST Action MP1305 Flowing Matter

