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!
𝐗̇!" 	 = 𝒗 𝐗!" + 𝐔# 𝑡 	
𝐗̇!$ 	 = 𝒗 𝐗!$ + 𝐔 𝑡 	
𝐔 𝑡 = 𝑉% +𝒏 𝑡 … .	 … .	

𝐔 𝑡 =	?

Problem setup

!𝒏 𝑡 = cos 𝜃! , sin 𝜃!

Tools:
(1) Heuristic policies
(2) Optimal Control (OC) theory
(3) Reinforcement Learning (RL)

2 AGENTS 

searcher

MOVING Target

P!(𝑡)

𝐔(𝑡)

capture

P!

P"

Goal: minimize the separation
in a finite time horizon



Trivial Policy: constantly chooses the direction that points towards the moving target
"𝒏(𝑡) = −)𝑹#

Surfing policy*: valid at large scales, i.e., 𝑹! ≫ 𝐿	. Based on a free parameter 𝜏"	.	

Perturbative policy:  valid at small scales, i.e., 𝑹! ≪ 𝐿 . Based on a free parameter 𝜏#	.	

𝑹/ = 𝐗/0 − 𝐗/1

𝐿 = characteristic scale of the flow
𝐔 𝑡 =	?!

𝐗̇!" 	 = 𝒗 𝐗!", 𝑡 	 .
𝐗̇!$ 	 = 𝒗 𝐗!$, 𝑡 + 𝐔 𝑡 	
𝐔 𝑡 = 𝑉% +𝒏 𝑡 … .	 … .	

*Monthiller, Rémi, et al. Surfing on Turbulence: A Strategy for Planktonic Navigation. Phys. Rev. Lett. 129, 064502 (2022)

(1) (semi) Heuristic policies



Trivial Policy: constantly chooses the direction that points towards the moving target
"𝒏(𝑡) = −)𝑹#

Surfing policy: valid at large scales, i.e., 𝑹! ≫ 𝐿 . Based on a free parameter 𝜏"$%& .

Perturbative policy:  valid at small scales, i.e., 𝑹! ≪ 𝐿 . Based on a free parameter 𝜏#'%!$( .

𝑹/ = 𝐗/0 − 𝐗/1

𝐿 = characteristic scale of the flow

Surfing policy* - derivation

𝐔 𝑡 = ?

• Approximate linearly the underlying flow, 𝒗 𝐗!", 𝑡 ;

• Find 𝐔 𝑡 such that −𝐗#"
" ⋅ 𝑹!# is maximum;  

(Assuming constant gradients 
for a time 𝜏$)

(Assuming constant the 
direction  𝑹%! for a time 𝜏$)

𝐗̇!) = 𝒗!! + 𝛁𝒗 !! ⋅ 𝐗*"
) − 𝐗!!

) +
𝜕𝒗
𝜕𝑡 !!

𝜏" − 𝑡+ + 𝐔 𝑡 ,

!
𝐗̇!" = 𝒗 𝐗!", 𝑡 .
𝐗̇!$ = 𝒗 𝐗!$, 𝑡 + 𝐔 𝑡
𝐔 𝑡 = 𝑉% +𝒏 𝑡 … . … .

7𝒏 𝑡 = −
𝑒(*"-!) ∇𝒗#!

1
⋅ 𝑹!!

‖ 𝑒(*"-!) ∇𝒗#!
1
⋅ 𝑹!!‖

• Numerically optimize the free parameter 𝜏$.
𝑹! ≫ 𝐿	

*Monthiller, Rémi, et al. Surfing on Turbulence: A Strategy for Planktonic Navigation. Phys. Rev. Lett. 129, 064502 (2022)

(1) (semi) Heuristic policies



Trivial Policy: constantly chooses the direction that points towards the moving target
"𝒏(𝑡) = −)𝑹#

Surfing policy: valid at large scales, i.e., 𝑹! ≫ 𝐿 . Based on a free parameter 𝜏"$%& .

Perturbative policy:  valid at small scales, i.e., 𝑹! ≪ 𝐿 . Based on a free parameter 𝜏#'%!$( .

𝑹/ = 𝐗/0 − 𝐗/1

𝐿 = characteristic scale of the flow

Perturbative policy - derivation

𝐔 𝑡 = ?

• Consider linearity between the two agents, i.e.,   

!
𝐗̇!" = 𝒗 𝐗!", 𝑡 .
𝐗̇!$ = 𝒗 𝐗!$, 𝑡 + 𝐔 𝑡
𝐔 𝑡 = 𝑉% +𝒏 𝑡 … . … .

• Numerically optimize the free parameter 𝜏%.

𝒗 𝐗!), 𝑡 ≃ 𝒗 𝐗!2, 𝑡 + ∇𝒗!	𝑹! ,

𝑹̇! = 𝛻𝒗!𝑹! + 𝐔(𝑡)

(Assuming constant 
gradients for a time 𝜏&)

7𝒏 𝑡 = −
𝑒(*$-!) ∇𝒗#!

1
⋅ 𝑒 𝛁𝒗 #!*$ ⋅ 𝑹!!

‖ 𝑒(*$-!) ∇𝒗#!
1
⋅ 𝑒 𝛁𝒗 #!*$ ⋅ 𝑹!!‖

𝑹! ≪ 𝐿	

𝑹*$ = 𝑒[ 𝛁𝒗	 #!*$]𝑹!! + 𝑉"A
!!

!!7*$
𝑑𝑡	𝑒[ 𝛁𝒗 #!(*$-!)]	 7𝒏 𝑡 	;

• Find 𝐔 𝑡 such that 𝑹#' ⋅ 𝑹#'
&'(( is minimum;  

(1) (semi) Heuristic policies



(2) Optimal Control theory – Pontryagin minimum principle

Minimize 𝐽 = 𝐶8 𝒙 𝑡& +	A
!!

!%
𝑑𝑡	[𝐿 𝒙 𝑡 , 𝒖 𝒙, 𝑡 , 𝑡 ]

Imposing 𝒙̇ = 𝒇(𝒙, 𝒖, 𝑡)
and other possible constraints, 
e.g.: 𝒙 𝑡+ = 𝒙⋆	,	 𝒙 𝑡+ ≤ 𝒙⋆ ,

‖𝒖(𝑡)‖) = 1	,‖𝒖(𝑡)‖) ≤ 1	, exc.

state variables  

performance index

control variables  

M
𝐗̇!2 	 = 𝒗 𝐗!2 	
𝐗̇!) 	 = 𝒗 𝐗!) + 𝐔 𝑡 	
𝐔 𝑡 = 𝑉" 7𝒏 𝑡 	 , , . 	 … .	

(∗)
𝑹⋆ = 𝑹!# /100

capture’s distance
In our case:

𝐽 = 𝑹!*
"
+ 𝑐 ∫!+

!* 𝑑𝑡	𝜃 𝑹! " − 𝑹⋆ "Minimize

Imposing  (∗) and the control constraint  ‖7𝒏(𝑡)‖) = 1	
Minimize trajectories’ separation

Minimize time of arrival at the desired distance

• Model based and analytical tool

• Perfect knowledge required

𝑹!+ ∼
𝑉$
𝜆
← border of controllability

lyapunov



Optimal Control vs heuristic policies at small scales

Velocity field*

*Buzzicotti et al. Lagrangian statistics for Navier–Stokes turbulence under Fourier-mode reduction: fractal and homogeneous decimations. 
New J. Phys., 18 (11) (2016), p. 113047

3D Direct Numerical Simulations 𝑁 = 1024%

homogeneous and 
isotropic forcing 

NSEs: P𝜕!𝒗 = −𝛁p	 − 𝒖 ⋅ 𝛁 	𝒖 + 𝜈	𝛁𝟐𝒖 + 𝐅
𝛁 ⋅ 𝒗 = 0

(1)

(2)

(3)

Inertial range

Small scales

Large scales

C
𝐗̇!& 	 = 𝒗 𝐗!& + 𝐔' 𝑡 	
𝐗̇!" 	 = 𝒗 𝐗!" + 𝐔 𝑡 	
𝐔 𝑡 = 𝑉$ !𝒏 𝑡 … .	 … .	

𝑹̇! = 𝛁𝒗𝒕𝑹! + 𝐔(𝑡)

𝑹/! < 𝜂I

𝒗 𝐗!) ≃ 𝒗 𝐗!2 + 𝛁𝒗𝒕𝑹!

Linear regime(1)

𝜂< = 0.0043
𝜏= = 0.023	

DNS parameters

𝑅𝑒 ≃ 17000



𝑇( =Capture time: (time of arrival at the desired distance)

𝑹̇! = 𝛁𝒗!𝑹! + 𝐔(𝑡)

PDF of normalized capture time

Optimal Control vs heuristic policies in linear regime

PRELIMINARY UNPUBLISHED 



Optimal Control

Heuristic policies

It is optimized
It is model based and needs perfect information from the environment
It is sensitive to variation of the initial condition
It is difficult to consider a decision time in the control variable

They are not optimized
They need only partial information
They are stable wrt variation of the initial condition
They work also with a discrete decision time

Next step: Reinforcement Learning

It is optimized
It is model free
It needs partial information
It is data-hungry 

+
-
-
-

+
+

-
+
+
+

+

pros & cons

-



Open questions:
1. How to control a multi-agent system to minimize turbulent dispersion in realistic 

geophysical flows (beyond the linear regime) ? 
2. Can we identify the key degrees-of-freedom to control the agents’ trajectories 

(key flow structures)?
3. Are the agents able to collaborate with each-other during the navigation?

Tools:
- We can use RL to control autonomous swimmers in a realistic way (i.e., with a 
limited knowledge of the underlying flow - only local or instantaneous features);
- We can use OC as a benchmark to test the RL solutions.

Conclusions

Smart two-way feedback

http://stilton.tnw.utwente.nl/people/stevensr/afid.html https://argo.ucsd.edu/

http://stilton.tnw.utwente.nl/people/stevensr/afid.html
https://argo.ucsd.edu/


Backup slides



Failures (no capture):

⟨‖𝑹𝒕‖⟩ ⟨ 𝑹𝒕 𝟐⟩ ⟨log 𝑹𝒕 ⟩

𝑹̇! = 𝛁𝒗!𝑹! + 𝐔(𝑡)Optimal Control vs heuristic policies at small scales
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Tools:
Optimal Control (OC) theory
Reinforcement Learning (RL)

Heuristic policies 

Control Theory

Heuristic 
policies



C. Calascibetta, L. Biferale, F. Borra, A. Celani, M. Cencini, Optimal Control tools to minimize dispersion in chaotic flows, (in preparation).

!
𝐗̇!" 	 = 𝒗 𝐗!" + 𝐔# 𝑡 	
𝐗̇!$ 	 = 𝒗 𝐗!$ + 𝐔 𝑡 	
𝐔 𝑡 = 𝑉% +𝒏 𝑡 … .	 … .	

𝐔 𝑡 =	?

Problem setup

‖𝑹#‖ ≫ 𝐿	
‖𝑹#‖ ≪ 𝐿

!𝒏 𝑡 = cos 𝜃! , sin 𝜃!

MAIN POINT: Different approaches for different range of scales:

𝑹! = 𝐗!) − 𝐗!2

𝐿 = Characteristic 
scale of the flow 

Small scales

Large scales

Tools:
(1) Heuristic policies
(2) Optimal Control (OC) theory
(3) Reinforcement Learning (RL)

2 AGENTS 

searcher

MOVING Target

P!(𝑡)

𝐔(𝑡)

capture

P!

P"

Goal: minimize the separation
in a finite time horizon



!
𝐗̇!" 	 = 𝒗 𝐗!", 𝑡 	 .
𝐗̇!$ 	 = 𝒗 𝐗!$, 𝑡 + 𝐔 𝑡 	
𝐔 𝑡 = 𝑉% +𝒏 𝑡 … .	 … .	

𝐔 𝑡 =	? 𝑹/ = 𝐗/0 − 𝐗/1

(1) (semi) Heuristic policies

Trivial Policy: constantly chooses the direction that points towards the moving target, 7𝒏 𝑡 = −𝑹̀! .

Surfing Policy*: - constant gradients for a time 𝜏" (free parameter);
- maximization of the searcher displacement along the 𝑹! direction;   
- good for slowly varying 𝑹! (i.e. at large scales)

4𝒏 𝑡 = −
𝑒(#"-!) ∇𝒗-#

1
⋅ 𝑹!#

𝑒(#"-!) ∇𝒗-#
1
⋅ 𝑹!#

	 .

Perturbative Policy:  - 0th order OC with constant gradients for a time 𝜏# (free parameter) ; 
- valid at small scales

4𝒏 𝑡 = −
𝑒(#'-!) ∇𝒗-#

1
⋅ 𝑒 𝛁𝒗 -##' ⋅ 𝑹!#

𝑒(#'-!) ∇𝒗-#
1
⋅ 𝑒 𝛁𝒗 -##' ⋅ 𝑹!#

	 .

*Monthiller, Rémi, et al. Surfing on Turbulence: A Strategy for Planktonic Navigation. Phys. Rev. Lett. 129, 064502 (2022)



Heuristic policies in a 2d stochastic flow

The Lagrangian 
dynamics is chaotic



Heuristic policies in a 2d stochastic flow

𝜏a, 𝜏b

2×103
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𝐗%(
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!
.
	

𝐗%(
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!
.

/0

0.0 0.2 0.4 0.6 0.8 1.0
0.0
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0.6

𝑝𝑟
𝑜𝑏
𝑎𝑏
𝑖𝑙𝑖
𝑡𝑦
	𝑜
𝑓	
𝑐𝑎
𝑝𝑡
𝑢𝑟
𝑒

𝜏a, 𝜏b

Performance at small scales

• The surfing policy performs bad at small scales. 
• The perturbative policy performs well at small scales,  ∃	𝑏𝑒𝑠𝑡	𝜏# ≠ 0	.

There is a way to perform better than the Trivial Policy

𝑹!+ ≪ 𝐿	

Trivial Policy



Heuristic policies in a 2d stochastic flow

𝜏a, 𝜏b

9×10-4
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𝑐𝑎
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𝑒

𝜏a, 𝜏b

8×10-4

• The surfing policy performs well  at large scales, ∃	𝑏𝑒𝑠𝑡	𝜏" ≠ 0	.
• The perturbative policy performs well at large scales,  ∃	𝑏𝑒𝑠𝑡	𝜏# ≠ 0	.

There is a way to perform better than the Trivial Policy

𝑹!+ ≫ 𝐿	

Trivial Policy

Performance at large scales



Optimal Control vs heuristic policies at small scales

Linear regime

Velocity field (double gyre flow*)

C
𝐗̇!& 	 = 𝒗 𝐗!& + 𝐔' 𝑡 	
𝐗̇!" 	 = 𝒗 𝐗!" + 𝐔 𝑡 	
𝐔 𝑡 = 𝑉$ !𝒏 𝑡 … .	 … .	

𝒗 𝐗!) ≃ 𝒗 𝐗!2 + 𝛁𝒗𝒕𝑹!

𝑹̇! = 𝛁𝒗𝒕𝑹! + 𝐔(𝑡)

*Krishna K, Song Z, Brunton SL. 2022 Finite-horizon, energy-efficient trajectories in unsteady flows. Proc. R. Soc. A 478: 20210255. 



𝑇( = Capture time: (time of arrival at the desired distance)

𝑹̇! = 𝛁𝒗!𝑹! + 𝐔(𝑡)

PDF of normalized capture time

Optimal Control vs heuristic policies in linear regime

Average of the Okubo Weiss parameter < 0 vorticity dominated
> 0 strain dominatedOW	 =



𝑇> = Capture time: (time of arriving at the desired distance)

𝑹̇! = 𝛁𝒗!𝑹! + 𝐔(𝑡)Optimal Control vs heuristic policies at small scales

𝑂𝑊 > 0
𝑂𝑊 ≃ 0
𝑂𝑊 < 0



Failures (no capture):

⟨‖𝑹𝒕‖⟩ ⟨ 𝑹𝒕 𝟐⟩ ⟨log 𝑹𝒕 ⟩

𝑹̇! = 𝛁𝒗!𝑹! + 𝐔(𝑡)Optimal Control vs heuristic policies at small scales



OC vs SurfingOC vs Trivial Policy OC vs Perturbative

Trajectories examples  𝑹̇! = 𝛁𝒗!𝑹! + 𝐔(𝑡)



Perturbation of the initial condition

Policies' stability 𝑹̇! = 𝛁𝒗!𝑹! + 𝐔(𝑡)



PDF (only capture episodes)



2. OC theory – the basic idea behind the Pontryagin minimum principle

Minimize 𝐽 = 𝐶8 𝒙 𝑡& +	A
!!

!%
𝑑𝑡	[𝐿 𝒙 𝑡 , 𝒖 𝒙, 𝑡 , 𝑡 ]

Assuming 𝒙̇ = 𝒇(𝒙, 𝒖, 𝑡)
and other possible constraints, 
e.g.: 𝒙 𝑡+ = 𝒙⋆	,	 𝒙 𝑡+ ≤ 𝒙⋆ ,

‖𝒖(𝑡)‖) = 1	,‖𝒖(𝑡)‖) ≤ 1	, exc.

state variables  control variables  

Observe that this is a constrained minimization 

"𝐽 = 𝐶!3 𝒙 𝑡& +)
!#

!3
𝑑𝑡 𝐿 𝒙, 𝒖, 𝑡 + 𝝀𝐓 𝑡 ⋅ 𝒇 − 𝒙̇ +	…

performance index Lagrangian function

Lagrangian multipliers

We impose minimum in 𝒙 ⋅ , 𝒖 ⋅ , 𝝀 ⋅ , i.e., 𝑑 i𝐽 ≤ 0 ∶

𝛿 i𝐽
𝛿𝒙(𝑡) 	= 0	 ⇒ 𝝀̇ = −𝝏𝒙𝐿 − 𝝏𝒙𝑓 1𝝀 𝑡 	 ,

𝛿 i𝐽
𝛿𝒙(𝑡&)

= 0	 ⇒ 𝝀 𝑡& = 𝝏𝒙𝐶8 𝒙 𝑡& ,

@ AB
@𝒖(𝒙,!)

= 0	 ⇒ 𝒖⋆ 𝒙, 𝑡 = 𝝏𝒖F7(𝝏𝒖𝒇)1𝝀(!)	
)I !

  

+ 𝜇 𝑡 1 − 𝒖 𝑡 .

Note: computationally heavy
It requires iterative searching with
backward and forward integration
such as to identify the optimal control



2. OC theory – the basic idea behind the Pontryagin minimum principle

Minimize 𝐽 = 𝐶8 𝒙 𝑡& +	A
!!

!%
𝑑𝑡	[𝐿 𝒙 𝑡 , 𝒖 𝒙, 𝑡 , 𝑡 ]

Assuming 𝒙̇ = 𝒇(𝒙, 𝒖, 𝑡)
and other possible constraints, 
e.g.: 𝒙 𝑡+ = 𝒙⋆	,	 𝒙 𝑡+ ≤ 𝒙⋆ ,

‖𝒖(𝑡)‖) = 1	,‖𝒖(𝑡)‖) ≤ 1	, exc.

performance index Lagrangian function

We impose minimum in 𝒙 ⋅ , 𝒖 ⋅ , 𝝀 ⋅ , i.e., 𝑑 i𝐽 ≤ 0 ∶

𝛿 i𝐽
𝛿𝒙(𝑡) 	= 0	 ⇒ 𝝀̇ = −𝝏𝒙𝐿 − 𝝏𝒙𝑓 1𝝀 𝑡 	 ,

𝛿 i𝐽
𝛿𝒙(𝑡&)

= 0	 ⇒ 𝝀 𝑡& = 𝝏𝒙𝐶8 𝒙 𝑡& ,

@ AB
@𝒖(𝒙,!)

= 0	 ⇒ 𝒖⋆ 𝒙, 𝑡 = 𝝏𝒖F7(𝝏𝒖𝒇)1𝝀(!)	
)I !

  

!
𝐗̇!" 	 = 𝒗 𝐗!" 	
𝐗̇!$ 	 = 𝒗 𝐗!$ + 𝐔 𝑡 	
𝐔 𝑡 = 𝑉% +𝒏 𝑡 	 , , . 	 … .	

(∗)

𝑹⋆ = 𝑹!# /100
capture’s distance

In our case:

𝐽 = 𝑹!*
"
+ 𝑐 ∫!+

!* 𝑑𝑡	𝜃 𝑹! " − 𝑹⋆ " ,Minimize

assuming (∗) and the constraint  ‖7𝒏(𝑡)‖) = 1	,	

Minimize the trajectories’ separation

Minimize the time of arriving at the desired distance

𝑹!+ ∼
𝑉$
𝜆
← border of controllability

lyapunov



Engineering applications:

Theoretical interests:
Turbulent flows

How to exploit coherent structures?

How to avoid (or exploit) intense fluctuations 
when navigating inside the flow?

Which is the best limited-control to 
navigate in such complex flows? 

Dispersion of particles 
in turbulent flows.

https://svs.gsfc.nasa.gov/3827

https://svs.gsfc.nasa.gov/3827


Lagrangian approach

𝐗̇ = 𝒗(𝐗#, 𝑡)

𝛿𝑅! = ‖𝐗!" − 𝐗!&‖

𝛿𝑅! ∼ 𝛿𝑅+	𝑒J!

𝜆 = lim	
%→5	

lim
78!→9

1
𝑡
𝑙𝑛
𝛿𝑅%
𝛿𝑅9

⟨ 𝛿𝑅! )⟩ ∼ 𝑡K

⟨ 𝛿𝑅! )⟩ ∼ 𝐷L𝑡

Trajectories separation:

Dispersion at small scales(1) Dispersion at intermediate scales(2) Dispersion at large scales(3)
(Inertial range)

Lagrangian Chaos

Lyapunov exponent

non-differentiable 
velocity field

If                Fully Developed Turbulence
Richardson’s Dispersion 

𝑅𝑒 → ∞

Advection 
+

molecular diffusion

effective diffusion

(1)
(2)

(3)

Particles dispersion in complex flows

Eq. of motion of a tracer


