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Introduction: searching for an odor source in a turbulent
environment

Insects often need find
source (usually upwind) of
an odor or other cue
advected by the atmosphere

E.g. mosquito looking for
human drawn by CO2 and
odors; moth looking for
mate drawn by pheromones

Source may be ∼ 100 m
away(!)

Figure Artist’s conception of a moth searching for a mate
via pheromone cues.



Introduction: searching for an odor source in a turbulent
environment

Classical search strategy is
chemotaxis, i.e. just go up
the concentration gradient

But: (far from source)
turbulence mixes cue into
patches/plumes over
background of very small
concentration =⇒ insect
only detects the cue
intermittently. Gradient
estimation is unfeasible

Figure Artist’s conception of chemotaxis strategy.

Figure A turbulent environment leads to a patchy odor
landscape with intermittent detections.



Intermittent concentration signal

Figure Concentration field from jet flow experiment [Villermaux and Innocenti, 1999]. Fig taken from
[Celani et al., 2014]

Figure Time series from experiment showing concentration signal 50 m from a propylene source over 16 minutes.
From [Yee et al., 1993]



Basic motivation

How to search when cue detection is intermittent? What kind of
strategies work well? We can write down heuristics, but what is
the optimal strategy?



Model search problem

Agent makes observation — detection or nondetection, then moves

Try to reach source in as few ∆t as possible — give reward γT for
reaching source in T steps (0 < γ < 1)

Key physics input is p(obs|s), r − r0. Spatial dependence of
concentration statistics in turbulent environment? (c.f.
[Celani et al., 2014])
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Figure In our setup, agent lives on the gridworld (blue points) and tries to find the source (red x). Grid is large,
81 × 41



Detection likelihood model
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Advection-diffusion eq.

∂tc + V︸︷︷︸
mean wind

∂xc = D∇2c︸ ︷︷ ︸
turb. diffusion

+ Rδ(x)︸ ︷︷ ︸
point source

− c/τ︸︷︷︸
turb. mixing time

,

stationary solution + 4πaDc detections/time =⇒ detection rate

h =
aR

|x|
exp

(
Vx

2D
− |x|

λ

)
, p(obs|x) = 1− e−h∆t



Capturing the information

At timestep t, agent has history (a1, o1, a2, o2, . . . , at−1, ot).
What does this say about source location?

If agent knows p(o|s) (and system is Markovian), information
can be stored in a belief b over s

Update b after each observation using Bayes’ theorem

b(s ′)o,a = p(o|s ′)
∑
s

b(s)p(s ′|s, a)/Z

This describes a partially observable Markov decision process
(POMDP) — state not accessible to agent, only observations



Optimal policy: Bellman equation

Define value function Vπ(b) as total expected reward E[γT ]
under π, conditioned on b. Optimal value function satisfies
Bellman equation

V ∗(b) = max
a∈A


∑
s∈S

R(s, a)b(s)︸ ︷︷ ︸
immediate expected

reward

+γ
∑
o∈O

p(o|b, a)V ∗(bo,a)︸ ︷︷ ︸
future expected rewards


Partial observability makes solution computationally hard —
belief simplex very large (dimension |S | − 1). “Curse of
dimensionality”

Need approximation methods. We use “Perseus” algorithm
[Spaan and Vlassis, 2005, Shani et al., 2006], coupled with
potential reward shaping [Ng et al., 1999]



Reward shaping

Search problem suffers from reward sparsity — R(s, a) is zero
for almost all state-action pairs. Slow to propagate to beliefs
localized far from the source

However one can show that adding a function of the form

F (s, a) = −ϕ(s) + γ
∑
s′

p(s ′|s, a)ϕ(s ′)

to reward does not change the optimal policy

Good choice solves reward sparsity issue and can
accelerate convergence! E.g. ϕ(s) ∝ D(s) is good try for
search problem — yields small reward for moving closer
towards source



Sample trajectories using Perseus



Performance of Perseus policies vs. heuristics
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Figure Excess mean arrival times ⟨T̃⟩ = ⟨T⟩ − ⟨TMDP⟩ for test problems. S̄ = a∆tR/∆x is nondimensional
emission rate



Conclusion

1 Have cast search problem as POMDP, solved for near-optimal
policy for broad range of emission rates on a large grid

2 Near-optimal policy outperforms all heuristics — supremacy
requires shaping the reward

3 Ongoing work: how do the policies perform in a “real”
turbulent flow (DNS)?
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Problem difficulty dependence on starting position

Immediate application — how hard is problem starting from
different positions (measured by ⟨T ⟩ − ⟨TMDP⟩)?
Anisotropic — starting further downwind generally harder
than further crosswind. Related to casting?
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Searching with an imperfect model

What happens when parameters used for inference and training are
incorrect? Now infotaxis much better than Perseus
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Perseus QMDP infotaxis SAI Thompson, τ=10

Figure Excess arrival time pdfs in R = 5 environment for the start point (45,-4), when the searcher’s model is
imperfect. Here D → 2D, V → V/2



Convergence of Perseus
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Figure Mean arrival time of Perseus policy (over ensemble of 100 start points) as function of iteration, for several
shaping functions. Here D = V = a = 1, τ = 150, R = 5, γ = 0.98 is empirically found to produce the best
policy for these parameters. g is the shaping function



Perseus algorithm sketch

1 Collect large (∼ 104) sample of
typical beliefs B by exploring
with a heuristic policy

2 Assume piecewise linear and
convex (PWLC) form for V ∗:

V ∗(b) = max
α∈A

b · α,

A a collection of hyperplanes

3 Use Bellman equation on
b ∈ B to iteratively generate α
and associated actions. Old α
used to approximate V ∗ in
next iteration

Figure PWLC value function for |S| = 3. High-information
beliefs are located towards the corner of the simplex. From
[Kaelbling et al., 1998]



Bellman error convergence
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Figure rms Bellman error for beliefs encountered during testing, as function of iteration, for R = 5



Initial belief

Uniform prior not realistic — real insects generally do not
begin searching until they get a detection
Forcing detection at t = 0 leads to strong initial bias towards
the source being very near
Instead, we let agent wait in place and update belief until it
gets a detection (up to 1000 timesteps). Thus initial belief is
stochastic
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Figure Typical initial belief. Starting location is red square



Sample trajectories (Perseus)

Perseus



Heuristic strategies

Now we need a policy π : b 7→ a. First try: use a hard-wired
heuristic

QMDP: take action which essentially minimizes the expected
distance to the source. Exploitative (greedy)

Infotaxis [Vergassola et al., 2007]: take action maximizing the
expected gain in information (negative entropy)
I =

∑
s b(s) log b(s). Explorative (less greedy)

Space-aware infotaxis [Loisy and Eloy, 2021]: take action
minimizing a function with contributions from both the
distance and the entropy

Thompson sampling: sample a point r∗ from b, move for τ
timesteps towards r∗, repeat.



Sample trajectories (heuristics)

QMDP infotaxis

SAI Thompson

QMDP: take action which essentially minimizes the expected distance to the source. Exploitative (greedy)

Infotaxis [Vergassola et al., 2007]: take action maximizing the expected gain in information (negative
entropy) I =

∑
s b(s) log b(s). Explorative (less greedy)

Space-aware infotaxis [Loisy and Eloy, 2021]: take action minimizing a function with contributions from
both the distance and the entropy

Thompson sampling: sample a point r∗ from b, move for τ timesteps towards r∗, repeat.



Single start point arrival time statistics, R = 0.5
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Perseus QMDP infotaxis SAI Thompson, τ=100

Figure Excess arrival time pdfs in R = 0.5 environment for the start point (45,-4), for Perseus and some heuristic
policies.



Single start point arrival time statistics, R = 5
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Perseus QMDP infotaxis SAI Thompson, τ=10

Figure Excess arrival time pdfs in R = 5 environment for the start point (45,-4), for Perseus and some heuristic
policies.



Single start point arrival time statistics, R = 50
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Figure Excess arrival time pdfs in R = 50 environment for the start point (45,-4), for Perseus and some heuristic
policies.


