

EFNC14 14th European Fluid Mechanics Conference

Reconstruction and Modulation of Convection through heat injection

Lokahith Agasthya EFMC14, Athens, Greece

September 2022

BERGISCHE UNIVERSITÄT WUPPERTAL

European Research Council Established by the European Commission

FR THE CYPRUS INSTITUTE

Collaborators

- Prof. Luca Biferale University of Rome "Tor Vergata", Italy
- Prof. Matthias Ehrhardt and Prof. Andreas Bartel University of Wuppertal, Germany
- Prof. Federico Toschi Eindhoven University of Technology, Netherlands
- Dr. Patricio Clark Di Leoni Universidad De SanAndres, Argentina

Outline of today's talk

- Introduction and Motivation
- Numerical set-up and methods
- Main Results
- Discussion

Introduction

- Modification of a flow using Lagrangian thermal fluctuations along the trajectory of virtual, thermally active tracer particles
- Perform 2D simulations of a thermal fluid system with particles suspended
- Particles are point-like, massless tracers with given temperature which locally heat or cool the fluid
- Temperature of the particle is set by a given temperature protocol

Motivation

- Devise proof of concept demonstration to show we can invent hard-wired Lagrangian protocols to modulate thermal flows
- Trigger more phenomenological studies, different protocols, extension with reinforcement learning
- Novelty Temperature of particle depends on underlying dynamics of fluid

Fluid equations

Oberbeck-Boussinesq system

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\partial_t \boldsymbol{u} + (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} = -\nabla p + \nu \nabla^2 \boldsymbol{u} - \beta T \mathbf{g};$$

$$\frac{\partial T}{\partial t} + \boldsymbol{u} \cdot \nabla T = \kappa \nabla^2 T + \Phi$$

• Thermal forcing is Lagrangian and depends on the particles (next slide)

Particle Policy and Thermal coupling

 Upward moving particles are hot and vice versa

$$T_i = \begin{cases} T_+, & \text{if } v_i > 0, \\ -T_+, & \text{if } v_i < 0. \end{cases}$$

 Each particle heats/cools a small local region

$$\alpha_i(\mathbf{r}, t) = \begin{cases} \alpha_0 \exp\left(-\frac{|\mathbf{r} - \mathbf{r}_i(t)|^2}{2e^2}\right), & \text{if } |\mathbf{r} - \mathbf{r}_i(t)| \le \eta, \\ 0, & \text{if } |\mathbf{r} - \mathbf{r}_i(t)| > \eta. \end{cases}$$

The strength of
 thermal coupling
 follows a Gaussian

$$\alpha(\mathbf{r},t) = \sum_{i=1}^{i=N_p} \alpha_i(\mathbf{r},t); \qquad T_p(\mathbf{r},t) = \frac{\sum_{i=1}^{i=N_p} \alpha_i(\mathbf{r},t)T_i(t)}{\sum_{i=1}^{i=N_p} \alpha_i(\mathbf{r},t)}$$

• The thermal forcing is thus set

$$\Phi = -\alpha (T - T_p).$$

Overview

 Fluid equations solved with a 2 population, D2Q9 Lattice-Boltzmann scheme

Behaviour of a single particle

- Net heat-transport from bottom of domain to top
- Simple, oscillatory motion

$$T_i = \begin{cases} T_+, & \text{if } v_i > 0, \\ -T_+, & \text{if } v_i < 0. \end{cases}$$

Behaviour of a single particle

- Net heat-transport from bottom of domain to top
- Simple, oscillatory motion

Aggregate Particle Behaviour

- Protocol leads to two types of flows
- **Stable** low kinetic energy, quiescent with no clear large-scale flow structure, a strongly stable temperature gradient
- **Convective** higher kinetic energy, convective large-scale flow and a weaker, stable temperature gradient

Aggregate Particle Behaviour

- Protocol leads to two types of flows
- **Stable** low kinetic energy, quiescent with no clear large-scale flow structure, a strongly stable temperature gradient
- **Convective** higher kinetic energy, convective large-scale flow and a weaker, stable temperature gradient

$$N_p = 96$$

$$N_p = 240$$

Large increase in TKE

 $\overline{E_k}=\frac{1}{2}\frac{\langle \| \pmb{u}\|^2\rangle}{u_0^2N_n}$ - Normalised Kinetic Energy per particle

$$u_0 = \sqrt{cg\beta \frac{\alpha_0}{\alpha_0 + \frac{\kappa}{2c^2}}}T_+$$

 Transition from stable to convective occurs for a small change in number of particles

Temperature Profile, Strength of Large scale circulation

- $\alpha_0 = 0.005$ 0.5 -0.4- $\cdots \bullet \cdots \quad T_+ = 0.02$ $T_{+} = 0.1$ 0.2- $T_{+} = 1.0$ $T_{+} = 0.01$ 0.1· ф $T_{+} = 0.6$ $T_{+} = 2.0$ 0.0 7296 140 180 240360 960 48 N_n
- Stable flows (blue) show a strongly stable temperature gradient which suppresses convection while the convective flows (red) show a weaker stable gradient
- The fraction of energy contained in the first mode of the Energy spectrum is a measure of the strength of the large scale convection

Summary of the study

- Individual particles lead to transport of heat from the bottom to the top of the domain, making the system more stable
- When number of particles is small, heating effect is local and the stabilising effect of the particles dominates
- On achieving a critical number of particles, a large-scale circulation develops with stable temperature gradient
- Temperature gradient of convective flow is weaker due to greater mixing, faster turnaround time of particle
- Transition can be triggered by increasing α or c
- Highly non-linear, non-trivial system with scope for much exploration, extensions

Acknowledgements

- This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 765048
- This work was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No. 882340)

Thank you

- Manuscript submitted to JFM, currently waiting for second round of review (arXiv:2205.03856)
- For study on reconstruction of Rayleigh-Bénard convection using partial thermal measurements with a similar thermal forcing/relaxation term, see - *Physics of Fluids* 34 (1) (2022) 015128