Turbulence structure subjected to "precession-like" rotation

Kartik P. Iyer ${ }^{1}$,Irene Mazzitelli ${ }^{1}$, Luca Biferale ${ }^{1}$, Fabio Bonaccorso ${ }^{1}$

$$
{ }^{1} \text { University of Rome and INFN, Tor Vergata, Rome, Italy }
$$

- Rotation effect on turbulence studied for fixed rotation axis
- Forward energy cascade weakened Inverse cascade amplified
- Quasi-2D-behavior: columnar structures along rotation axis

- Rotation effect on turbulence studied for fixed rotation axis
- Forward energy cascade weakened Inverse cascade amplified
- Quasi-2D-behavior: columnar structures along rotation axis

What happens if orientation of rotation axis is varied?

- Rotation effect on turbulence studied for fixed rotation axis
- Forward energy cascade weakened Inverse cascade amplified
- Quasi-2D-behavior: columnar structures along rotation axis

What happens if orientation of rotation axis is varied?

- Precession- rotational motion of spin axis of rotating body
- E.g. earth's precession period $=26000$ years
- Weak Precession sustains turb. (Malkus'68, Goto et. al. '07): $0<\Gamma \ll 1 \quad R_{\lambda} \equiv u^{\prime} L / \nu \gg 1$
- Geophysical applications: $\Gamma \sim O\left(10^{-7}\right)$

Equations

- Preliminary exploratory study!
- Co-ordinate system with angular velocity $\boldsymbol{\Omega} \equiv \boldsymbol{\Omega}(t)$:

$$
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}+2 \boldsymbol{\Omega} \times \mathbf{u}+\frac{d(\boldsymbol{\Omega} \times \mathbf{r})}{d t}=-\nabla p+\mathbf{f}+\nu \mathbf{\Delta} \mathbf{u}-\gamma \boldsymbol{\Delta}^{-1} \mathbf{u}
$$

- γ : large scale damping constant; $\boldsymbol{\Delta}$: Laplacian operator
- Sub-volumes close to rotation axis: $r \ll L$
- $|d(\Omega \times \mathbf{r}) / d t| \ll|\boldsymbol{\Omega} \times \mathbf{u}|$ for $0<\Gamma \ll 1$ and/or $r \ll L$.

Equations

- Preliminary exploratory study!
- Co-ordinate system with angular velocity $\boldsymbol{\Omega} \equiv \boldsymbol{\Omega}(t)$:

$$
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}+2 \boldsymbol{\Omega} \times \mathbf{u}+\frac{d(\boldsymbol{\Omega} \times \mathbf{r})}{d t}=-\nabla p+\mathbf{f}+\nu \mathbf{\Delta} \mathbf{u}-\gamma \boldsymbol{\Delta}^{-1} \mathbf{u}
$$

- γ : large scale damping constant; $\boldsymbol{\Delta}$: Laplacian operator
- Sub-volumes close to rotation axis: $r \ll L$
- $|d(\Omega \times \mathbf{r}) / d t| \ll|\boldsymbol{\Omega} \times \mathbf{u}|$ for $0<\Gamma \ll 1$ and/or $r \ll L$.
- Solve:

$$
\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}+2 \boldsymbol{\Omega} \times \mathbf{u}=-\nabla p+\mathbf{f}+\nu \boldsymbol{\Delta} \mathbf{u}-\gamma \boldsymbol{\Delta}^{-1} \mathbf{u}
$$

1024^{3} DNS

- Pseudo-spectral algorithm, $(2 \pi)^{3}$ box, Periodic B.C

- I.C $(t<0): \Omega=(10,0,0), R o \equiv \epsilon /(2 K \Omega)=0.0063$

Mean kinetic energy (K), mean dissipation (ϵ)
$K=\frac{1}{2}\left\langle u_{i}^{2}\right\rangle$
$\epsilon=2 \nu\left\langle\frac{\partial u_{i}}{\partial x_{j}} \frac{\partial u_{j}}{\partial x_{i}}\right\rangle$
$K(t) / K(0)$

- Inverse cascade in $\mathbf{R}_{\mathbf{1}}$ at late-time
- Larger ϵ in $\mathbf{R}_{\mathbf{2}} \Longrightarrow$ stronger spectral transfer down-scale

Energy spectrum $E(k, t)=C_{\Omega}(\epsilon(t) \Omega)^{1 / 2} k^{-2}, k_{f} \ll k \ll k_{\Omega}$

Spectral Flux

$$
\Pi(k, t) \equiv \frac{d}{d t} \int_{0}^{k} E_{c}(p, t) d p
$$

- $\mathbf{R}_{\mathbf{1}}$: Positive flux \Longrightarrow Inverse cascade
- $\mathbf{R}_{\mathbf{2}}$: Negative flux \Longrightarrow Forward cascade

Large scale structure (iso-contours of $\sqrt{K(t)}$)

Large scale structure (iso-contours of $\sqrt{K(t)}$)

Conclusions and future work

- Varying spin axis by fixed $\Delta \theta$ at times $\sim \tau_{\Omega}$ negates rotation effects

Conclusions and future work

- Varying spin axis by fixed $\Delta \theta$ at times $\sim \tau_{\Omega}$ negates rotation effects
- Neglected non-homogeneous term $d(\Omega \times \mathbf{r}) / d t$ in NSE
- Periodic B.C can cause large scale structures to wrap around lattice
- Can include $d(\Omega \times \mathbf{r}) / d t$ in spectral algorithm using penalization technique (E.g: Schneider, Comp. \& Fluids 2005)

Conclusions and future work

- Varying spin axis by fixed $\Delta \theta$ at times $\sim \tau_{\Omega}$ negates rotation effects
- Neglected non-homogeneous term $d(\Omega \times \mathbf{r}) / d t$ in NSE
- Periodic B.C can cause large scale structures to wrap around lattice
- Can include $d(\Omega \times \mathbf{r}) / d t$ in spectral algorithm using penalization technique (E.g: Schneider, Comp. \& Fluids 2005)
- For more details see lyer et. al. EPJE 2015 (available on http://arxiv.org/abs/1511.06159)

Acknowledgements

- Annick Pouquet
- Pablo Minnini

Supported by ERC Grant No. 339032

Supercomputing resources at CINECA

