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Large Deviations

I Sampling extreme events in time-advancing numerical schemes is a matter of chance.
I Introduction of a novel – path integral based – computational approach to systematically

sample in areas of the configuration space related to extreme events.
I Idea: Use the Hybrid Monte Carlo (HMC) – standard algorithm in Lattice QCD community.
I Current model: stochastic 1D Burgers’ equation
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Stochastic 1D Burgers’ equation

∂tu + u∂x u − ν∂2x u = f (x , t),

where f is a white noise power-law
correlated Gaussian forcing, for which
the two-point correlation function in
Fourier space is given by:

〈f (k, t)f (k′, t′)〉 = 2D0|k|βδ(k + k′)δ(t − t′)
= Γ(k, t; k′, t′).
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The Hybrid Monte Carlo

A few words
1. A highly efficient Markov Chain Monte Carlo method – NOT a random walk in

the configuration space.

2. Requires an action functional which describes exactly the physical system under
consideration.

3. The HMC creates a Markov Chain and moves inside the configuration space
considering the whole 1 + 1 spatio-temporal evolution of the system.

Path integral approach: ∂t u + u∂x u − ν∂2
x u = f (x , t)

Martin-Siggia-Rose−−−−−−−−−−→
formalism

SBurgers,

Action: SBurgers = 1
2

∫
dk dt Γ−1 χ̂(u)2 and χ̂(u) ≡ FT{∂t u + u∂x u − ν∂2

x u}.
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Benchmark/fine tune of the HMC

I Thorough validation tests of the HMC against a standard pseudo-spectral algorithm. Next
follow results for fixed spatio-temporal resolution and different viscosities.
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Implementation of sampling constraints
I Goal: Highlight specific field configurations by systematically modifying the action. We

want to maximaze the velocity gradient at a particular space-time point.

I Idea: sample from a different action S′:

S′ = S + ∆S
I Bellow: local constraint acting only at (x = 0, t = tf ).
I ∆S1 = c1

∑
x,t
∂x u δ(x)δ(t − tf )→ linear local constraint | unbounded.

I ∆S2 = c2
∑

x,t

(
∂x u
s2

+ 1
)2
δ(x)δ(t − tf )→ quadratic local constraint.

I ∆S3 = c3
∑

x,t

[(
∂x u
s3

)2
− 1
]2

δ(x)δ(t − tf )→ quartic local constraint.
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Figure : Left plot: Averaged HMC using S1A for different values of c1. Right plot: Velocity gradients PDF P(vx ), with
vx = ∂x v(x = 0, t = tf ), of HMC for different values of c1 vs DNS.
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Reweighting
We need to probe the observable 〈O〉S′ measured using the ensemble which is generated by sampling S′, back
to the original unbiased observable 〈O〉S generated using S.

〈O〉S =
〈Oe−(S−S′)〉S′

〈e−(S−S′)〉S′
=
〈Oe∆S〉S′
〈e∆S〉S′

, where ∆S = S′ − S.
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Figure : Velocity gradients PDF of HMC against DNS. We consider here only the lattice point on which the
constraint ∆S acted (i.e x = 0, t = tf ). The data of the HMC and the DNS were produced with the same
computational cost.
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Reweighting
We outstandingly increased the statistics of the left tail of the velocity gradients
PDF, by systematically producing gradients as intense as 30-40 times the rms value
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Instantons in Burgers equation

Idea: maximization of the velocity gradients
Martin-Siggia-Rose
−−−−−−−−−−−→

formalism
PDF of the velocity gradients can be written as:

P(a) =

∫
DuDp δ(∂x u|(t0,x0) − α) exp(−S̃(u, p))

Instantons: saddle point configurations
for the fields (u,p) that yield the
largest contribution to the path
integral for strong gradients.

The instanton equations for the fields (u,p) are:

ut + uux − νuxx = −i

∫
Γ(x − x′) p(x′, t)dx′

pt + upx + νpxx = 4iν2λδ(t)δ′(x)
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Figure : Left plot: Ensemble average of velocity configurations of the HMC using ∆S1 with c1 = 1.9. Right plot: Instanton
velocity field profile for λ = −1.148 and α = −24.23. It is clear that by averaging the ensemble of the HMC we remove the
fluctuations around the instanton, restoring its spatio-temporal shape.
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Conclusion – Perspectives

To conclude
I Novel and generic path integral based method to study the properties of

stochastic PDE’s, which is ideal for imposing sampling constraints to the
space/time domain.

I Successful benchmark of the stochastic 1D Burgers equation against DNS
(pseudospectral code).

I Successful application of gradient maximization local constraints to enhance the
occurrence of strong gradients. By averaging the generated velocity field
ensemble we managed to reconstruct an instanton-alike spatio-temporal
configuration (filtering off the fluctuations).

Perspectives
I Give further insights into intermittency and anomalous scaling in hydrodynamical,

out-of-equilibrium systems and quantify for the first time to what extent instantons –and
fluctuations around them– are important for anomalous scaling exponents.

I Extension of the approach to other applications and stochastic models to specifically target
the study of extreme and rare events.

Thank you for your attention!
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