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Kolmogorov’s four-fifths law

rr · h�u2�ui = �4✏+
2

Re
r2

rh�u2i+ 2

Fr2
h�f · �ui

�u = u (y)� u (x) , �u2 = [u (y)� u (x)] · [u (y)� u (x)]

yx Xc {r
r = y � x

Xc =
y + x

2



S = S ê
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Extension to homogeneous anisotropic flows
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Dimensional analysis: scaling à la Kolmogorov (                         )                                           �u / ✏1/3r1/3

Inertial flux balances production: ✏r ' ✏2/3r5/3S

LS =
p

✏/S3 (Shear scale)

(Townsend, 1976;  CMC, Gualtieri, Benzi, Piva, 2003. J. Fluid Mech. 476.)

(CMC, Gualtieri, Jacob, Piva, Phys. Rev. Lett ’05)
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�(HI)
r = h�u2�ui � 2

Re
r2

rh�u2i homogeneous isotropic

�(HS)
r = h�u2�ui+ r · Sh�u2i � 2

Re
r2

rh�u2i homogeneous shear

- The flux has convective and diffusive contributions
- In presence of  shear the mean flow                        contributes to the 
convective flux

�U = r · S

In statistically homogeneous flows a flux of  “scale-energy”           occurs inh�u2i
in scale-space r

Note i): in the inertial range of  HI turbulence �(HI)
r =

h�u3
ki

r
r̂

Note ii): No spatial flux due to homogeneity

- Production
homogeneous shear

homogeneous isotropic
⇧ =

8
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6



7

Channel Flow
Cimarelli, De Angelis, CMC, JFM  2013 
Cimarelli, De Angelis, Jimenez, CMC, JFM 2016



Computational Aspects
Small Reynolds number   8192 Cores
Large Reynolds number 32768 Cores

Fermi@CINECA Blue Blue/Q 

1GB RAM/ core
6 TB stored data for statistics
400  million grid points

40 million core hours  (PRACE)

Spectral element method (NEK5000, Fisher et al., Argonne Nat. Lab)
Direct Numerical Simulation (Incompressible Navier-Stokes eqns.)
r · u = 0
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µ0
= 2500, 5000, 10000
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Generalized Kolmogorov’s equation

yx Xc {r

(Hill, JFM 468, 2002; Marati, CMC, Piva,  JFM 521, 2004)

inertial flux

production

dissipation diffusion
pressure term
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�Q = Q (y)�Q (x) Q⇤ = (Q (y) +Q (x)) /2



Conservative form of  the GKE

�r = h�u2�ui+ h�u2�Ui � 2

Re
r2

rh�u2i

rr ·�r +rc ·�c = ⇧� E

E = 4✏⇤

⇧ = �2h�u⌦ �ui : rr�U+ 2h�u⌦ u⇤i : rXc�U

scale-space flux

physical-space flux

production

dissipation

The second order structure function                                   is governed by 
an equation in conservative form                             

h�u2i = S2(r,Xc)

Two different fluxes: in the space of  separations (scales) and in physical 
space

�c = h�u2u⇤i+ h�u2U⇤i � 1

2Re
h�u2i � 2h�p �ui
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Planar channel Bumpy channel 
(far downstream)
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⇠̇ = w⇤ =
hu⇤
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Xc = (Xc, Yc, 0)

r = (0, 0, rz)

Lagrangian evolution @ Z
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= r
x

= r
y

= 0
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�wz =
h�uz|�u|2i
h|�u2|i ṙz = �wz
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Channel Flow
Cimarelli, De Angelis, CMC, JFM  2013 
Cimarelli, De Angelis, Jimenez, CMC, JFM 2016
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Conclusions & Outlook
- State of  the art DNS of  complex turbulent separated  flow
- Separation bubble and form drag

- Budget of  single point kinetic energy highly non trivial
- Generalized Kolmogorov equation in five-dimensional space 

- Allows to identify mechanisms of  transport in the space of  scales,          
e.g. direct & inverse cascades
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BIC - Following Bubbles from Inception to Collapse

Geometry as a Catalyst: How Vapor Cavities Nucleate from Defects
Alberto Giacomello,† Mauro Chinappi,‡ Simone Meloni,§,∥ and Carlo Massimo Casciola*,†
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§CINECA Consortium, Rome, Italy
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ABSTRACT: The onset of cavitation is strongly enhanced by the presence of rough surfaces or impurities in the liquid. Despite
decades of research, the way the geometry of these defects promote the nucleation of bubbles and its effect on the kinetics of the
process remains largely unclear. We present here a comprehensive explanation of the catalytic action that roughness elements
exert on the nucleation process for both pure vapor cavities and gas ones. This approach highlights that nucleation may follow
nontrivial paths connected with a sharp decrease of the free energy barriers as compared to flat surfaces. Furthermore, we
demonstrate the existence of intermediate metastable states that break the nucleation process in multiple steps; these states
correspond to what is commonly known as cavitation nuclei. A single dimensionless parameter, the nucleation number, is found
to control this rich phenomenology. The devised theory allows one to quantify the effect of the geometry and hydrophobicity of
surface asperities on nucleation. Within the same framework, it is possible to treat both vapor cavitation, which is relevant, e.g.,
for organic liquids, and gas-promoted cavitation, which is commonly encountered in water. The theory is shown to be valid from
the nano- to the macroscale.

Cavitation is the formation of gas or vapor cavities within a
liquid in a tensile state.1 Traditionally, in the field of

hydraulic and marine engineering, cavitation is a much-feared
phenomenon that leads to the rapid deterioration of fluid
machinery and hydraulic structures.2,3 The abrupt collapse of
cavitation bubbles is indeed accompanied by an intense increase
of the local pressure and temperature4 that leads to surface
reactions and physical modifications. In material science,5 the
extreme conditions in these hot spots have been favorably
exploited in the synthesis of biomaterials6,7 and nanostructured
materials.8−10 In medicine, cavitation induced by ultrasounds
shows promise as a noninvasive tool capable of in situ
destruction of damaged tissues, occlusions, etc.;11−13 at the
same time, cavitation may be exploited for drug delivery.14,15 A
fundamental physical question underlies these diverse applica-
tions: Where and when is cavitation to be expected?
A first theory of nucleation, known as classical nucleation

theory, is due to Volmer and dates back to the late 1930s16 (see

also refs 17 and 18). In this thermodynamic theory, the vapor
cavity is assumed to grow from the bulk liquid, to be spherical,
and its radius to be the reaction coordinate. It is worth stressing
that the Volmer theory focuses on vapor bubble nucleation.
The case of systems containing dissolved gases is treated in
other theories, such as the crevice model discussed below. The
cost of forming the bubble interface from the bulk liquid gives
rise to large free energy barriers for nucleation. Volmer theory,
therefore, predicts that liquids can withstand extreme negative
pressures before observing homogeneous nucleation from the
bulk of a liquid. For instance, in water at ambient temperature,
the homogeneous nucleation pressure exceeds −120 MPa: this
limit has only recently been reached in carefully controlled
experiments of ultrapure water inclusions in quartz.19,20
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