

European Research Council

Established by the European Commission

Slide of the Seminar

Energy fluxes, scale energy and turbulent separation

Prof. C.M. Casciola

ERC Advanced Grant (N. 339032) "NewTURB" (P.I. Prof. Luca Biferale)

Università degli Studi di Roma Tor Vergata C.F. n. 80213750583 – Partita IVA n. 02133971008 - Via della Ricerca Scientifica, 1 – 00133 ROMA

European Research Council

Energy fluxes, scale energy and turbulent separation C.M. CASCIOLA

> DEPT. OF MECHANICAL AND AEROSPACE ENGINEERING SAPIENZA UNIVERSITY

NewTURB Meeting July 18 2016, Dept. of Physics, Tor Vergata

-20 -17 -14 -11 -8 -5 -2 4 7 10

 Φ_M

Kolmogorov's four-fifths law

 $\mathbf{r} = \mathbf{y} - \mathbf{x}$ $\mathbf{X}_c = \frac{\mathbf{y} + \mathbf{x}}{2}$

 $\delta \mathbf{u} = \mathbf{u}(\mathbf{y}) - \mathbf{u}(\mathbf{x}), \ \delta u^2 = [\mathbf{u}(\mathbf{y}) - \mathbf{u}(\mathbf{x})] \cdot [\mathbf{u}(\mathbf{y}) - \mathbf{u}(\mathbf{x})]$

$$\nabla_r \cdot \langle \delta u^2 \delta \mathbf{u} \rangle = -4\epsilon + \frac{2}{\text{Re}} \nabla_r^2 \langle \delta u^2 \rangle + \frac{2}{\text{Fr}^2} \langle \delta \mathbf{f} \cdot \delta \mathbf{u} \rangle$$

Extension to homogeneous anisotropic flows $\mathbf{S} = S \, \hat{\mathbf{e}}_y \times \hat{\mathbf{e}}_x$ (Townsend, 1976; CMC, Gualtieri, Benzi, Piva, 2003. J. Fluid Mech. 476.) $\nabla_r \cdot \langle \delta u^2 \delta \mathbf{u} \rangle + \nabla_r \cdot \left(\mathbf{r} \cdot \mathbf{S} \langle \delta u^2 \rangle \right) + 2\mathbf{S} : \langle \delta \mathbf{u} \otimes \delta \mathbf{u} \rangle = -4\epsilon + \frac{2}{\mathrm{Re}} \nabla_r^2 \langle \delta u^2 \rangle$ $\frac{\partial}{\partial r_i} \langle \delta u^2 \delta u_i \rangle + S \frac{\partial}{\partial r_x} \left(r_y \langle \delta u^2 \rangle \right) + 2S \langle \delta u_x \delta u_y \rangle = -4\epsilon + \frac{2}{\text{Re}} \frac{\partial^2}{\partial r_i \partial r_i} \langle \delta u^2 \rangle$ $\mathbf{\Phi}\left(\mathbf{r}\right) = \langle \delta u^{2} \delta \mathbf{u} \rangle + \mathbf{r} \cdot \mathbf{S} \langle \delta u^{2} \rangle - \frac{2}{\mathbf{R} \mathbf{e}} \nabla_{r} \langle \delta u^{2} \rangle$ $\Pi = -\frac{1}{2}\mathbf{S} : \langle \delta \mathbf{u} \otimes \delta \mathbf{u} \rangle$ $\nabla_r \cdot \mathbf{\Phi} = -4 \left(\epsilon - \Pi \right)$

Dimensional analysis: scaling à la Kolmogorov ($\delta u \propto \epsilon^{1/3} r^{1/3}$) Inertial flux balances production: $\epsilon r \simeq \epsilon^{2/3} r^{5/3} S$

 $L_S = \sqrt{\epsilon/S^3}$ (Shear scale) (CMC, Gualtieri, Jacob, Piva, Phys. Rev. Lett '05)

In statistically homogeneous flows a flux of "scale-energy" $\langle \delta u^2 \rangle$ occurs in in scale-space **r**

$$\Phi_{r}^{(HI)} = \langle \delta u^{2} \delta \mathbf{u} \rangle - \frac{2}{\text{Re}} \nabla_{r}^{2} \langle \delta u^{2} \rangle \qquad \text{homogeneous isotropic}$$

$$\Phi_{r}^{(HS)} = \langle \delta u^{2} \delta \mathbf{u} \rangle + \mathbf{r} \cdot \mathbf{S} \langle \delta u^{2} \rangle - \frac{2}{\text{Re}} \nabla_{r}^{2} \langle \delta u^{2} \rangle \qquad \text{homogeneous shear}$$

- The flux has convective and diffusive contributions
- In presence of shear the mean flow $\delta \mathbf{U} = \mathbf{r} \cdot \mathbf{S}$ contributes to the convective flux

convective flux
- Production
$$\Pi = \begin{cases} -\frac{1}{2}\mathbf{S} : \langle \delta \mathbf{u} \otimes \delta \mathbf{u} \rangle & \longleftarrow \text{ homogeneous shear} \\ \frac{2}{\mathrm{Fr}^2} \langle \delta \mathbf{f} \cdot \delta \mathbf{u} \rangle & \longleftarrow \text{ homogeneous isotropic} \end{cases}$$

Note i): in the inertial range of HI turbulence $\Phi_r^{(HI)} = \frac{\langle \delta u_{\parallel}^{\rm o} \rangle}{r} \mathbf{\hat{r}}$

Note ii): No spatial flux due to homogeneity

Channel Flow

Cimarelli, De Angelis, CMC, JFM 2013 Cimarelli, De Angelis, Jimenez, CMC, JFM 2016

Computational Aspects

Small Reynolds number 8192 Cores Large Reynolds number 32768 Cores

1GB RAM/ core6 TB stored data for statistics400 million grid points

40 million core hours (PRACE)

Fermi@CINECA Blue Blue/Q

Spectral element method (NEK5000, Fisher et al., Argonne Nat. Lab) Direct Numerical Simulation (Incompressible Navier-Stokes eqns.) $\nabla \cdot \mathbf{u} = 0$ Re_h = $\frac{\rho_0 U_b h_0}{Re_h} = 2500, 5000, 10000$

$$\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{\operatorname{Re}_h} \nabla^2 \mathbf{u}$$

$$\operatorname{Re}_{h} = \frac{\rho_{0} U_{b} h_{0}}{\mu_{0}} = 2500, \ 5000, \ 10000$$
$$(L_{x} \times L_{y} \times L_{z}) = (26 \times 2 \times 2\pi) h_{0}$$

Simulation	Re_N	$\langle Re_{\tau} \rangle$	$Re_{\tau MAX}$	Δx^+	Δz^+	$\Delta {y^+}_{max}$	$\Delta {y^+}_{min}$
A1	2500	158	300	2.8	2.8	3.7	0.5
A2	5000	278	550	4.4	5.0	6.0	0.7
A3	10000	541	900	6.5	7.0	9.5	0.9

Van Dyke, M. (1982). An album of fluid motion.

Generalized Kolmogorov's equation

(Hill, JFM 468, 2002; Marati, CMC, Piva, JFM 521, 2004)

$$\mathbf{r} = \mathbf{y} - \mathbf{x} \qquad \mathbf{X}_{c} = (\mathbf{y} + \mathbf{x})/2 \\ \nabla_{r} = -\nabla_{x} + \nabla_{y} \qquad \nabla_{X_{c}} = \nabla_{x}/2 + \nabla_{y}/2 \\ \mathbf{x} = \mathbf{X}_{c} - \mathbf{r}/2 \qquad \mathbf{y} = \mathbf{X}_{c} + \mathbf{r}/2 \\ \nabla_{x} = \nabla_{X_{c}}/2 - \nabla_{r} \qquad \nabla_{y} = \nabla_{X_{c}}/2 + \nabla_{r} \qquad \mathbf{r} \qquad \mathbf{r$$

Conservative form of the GKE

$$\nabla_r \cdot \boldsymbol{\Phi}_r + \nabla_c \cdot \boldsymbol{\Phi}_c = \Pi - E$$

The second order structure function $\langle \delta u^2 \rangle = S_2(\mathbf{r}, \mathbf{X}_c)$ is governed by an equation in conservative form Two different fluxes: in the space of separations (scales) and in physical space

Planar channel

Bumpy channel (far downstream)

$$\dot{\boldsymbol{\xi}} = \mathbf{w}^* = \frac{\langle \mathbf{u}_T^* | \delta \mathbf{u} |^2 \rangle}{\langle | \delta \mathbf{u} |^2 \rangle} \qquad \dot{\boldsymbol{\zeta}} = \delta \mathbf{w} = \frac{\langle \delta \mathbf{u}_T | \delta \mathbf{u} |^2 \rangle}{\langle | \delta \mathbf{u} |^2 \rangle}$$
$$\mathbf{X}_c(t) \qquad \mathbf{X}_c(t) \qquad \mathbf{X}_c(t) \qquad \mathbf{X}_c(t) = \mathbf{w}^* \qquad \mathbf{X}_c(t) + \delta \mathbf{w} dt$$
$$\mathbf{X}_c(t) = \mathbf{w}^* \qquad \mathbf{X}_c(t) + \mathbf{w}^* dt$$

$$\frac{d\langle |\delta \mathbf{u}|^2 \rangle}{dt} = \frac{\partial \langle |\delta \mathbf{u}|^2 \rangle}{\partial t} + \dot{\boldsymbol{\xi}} \cdot \nabla_{\mathbf{X}_c} \langle |\delta \mathbf{u}|^2 \rangle + \dot{\boldsymbol{\zeta}} \cdot \nabla_{\mathbf{r}} \langle |\delta \mathbf{u}|^2 \rangle$$

$$\frac{1}{2} \frac{d\langle |\delta \mathbf{u}|^2 \rangle}{dt} = -\nabla_{\mathbf{X}_c} \cdot \langle \delta p \, \delta \mathbf{u} \rangle + \frac{\nabla_{\mathbf{X}_c}^2 \langle |\delta \mathbf{u}|^2 \rangle}{4\text{Re}} + \frac{\nabla_{\mathbf{r}}^2 \langle |\delta \mathbf{u}|^2 \rangle}{\text{Re}} \\ - \frac{1}{2} \langle |\delta \mathbf{u}|^2 \rangle \left(\nabla_{\mathbf{X}_c} \cdot \mathbf{w}^* \right) - \frac{1}{2} \langle |\delta \mathbf{u}|^2 \left(\rangle \nabla_{\mathbf{r}} \cdot \delta \mathbf{w} \right) + \Pi_{\mathbf{X}_c} + \Pi_{\mathbf{r}} - 2 \langle \varepsilon^* \rangle$$

Channel Flow

Cimarelli, De Angelis, CMC, JFM 2013 Cimarelli, De Angelis, Jimenez, CMC, JFM 2016

Conclusions & Outlook

- State of the art DNS of complex turbulent separated flow
- Separation bubble and form drag
- Budget of single point kinetic energy highly non trivial
- Generalized Kolmogorov equation in five-dimensional space
- Allows to identify mechanisms of transport in the space of scales, e.g. direct & inverse cascades

Acknowledgments PRACE ERC: Advanced Grant 2013 - BIC - Following Bubbles from Inception to Collapse

BIC - Following Bubbles from Inception to Collapse

Photron FASTCAM Mini UX100 1/50000 sec frame : -5 Time : 18:18	type 800K-C-1 1280 x 96 -0.10 ms	50000 fps Center Date : 2016/3/24	

Thank you

Francesco Battista Paolo Gualtieri Jean-Paul Mollicone

