

A Lagrangian perspective on magnetic Turbulence with energetic charged Tracer Particles

Physics Seminar at University of Rome, Tor Vergata

Ruhr University Bochum, Institute for Theoretical Physics I & IV SFB-1491: Cosmic Interacting Matter, Project F1

 Jeremiah Lübke, Frederic Effenberger, Mike Wilbert, Horst Fichtner, Rainer Grauer

- 1 Plasma Parameters
- 2 MHD Turbulence
- 3 Motion of charged particles
- 4 Fieldline curvature
- 5 Modeling

1 Plasma Parameters

- 2 MHD Turbulence
- 3 Motion of charged particles
- 4 Fieldline curvature
- 5 Modeling

Plasma Parameters

RUB

- Consider populations of fully ionized species with masses *m_s* and charges *q_s*, e.g. electrons *s* = *e* and ions *s* = *i*
- Assume quasi-neutrality $n_e \simeq n_i$, i.e. comparable number densities
- The populations are characterized by their kinetic temperature

$$T_s = \frac{1}{3} m_s \langle v_s^2 \rangle$$

- Charges are sources to an electric potential via $\Delta \phi = q_s n_s$, but individual charges are shielded by the population of opposite charges
- The shielding scale is given by the Debye length

$$\lambda_D \sim \sqrt{\frac{T}{ne^2}}$$

 The typical number of particles in the Debye sphere is given by the Plasma parameter

$$\Lambda = \frac{4\pi}{3} n \lambda_D^3$$

- $\blacksquare \ \Lambda \ll 1:$ sparse and cold, strongly coupled
- $\blacksquare \ \Lambda \gg 1:$ dense and hot, weakly coupled

Plasma Parameters

• The most complete description is given by the Vlasov-Boltzmann transport equation of the distribution function $f_s(\mathbf{x}, \mathbf{v})$

$$\frac{\partial f_s}{\partial t} + \mathbf{v} \cdot \nabla f_s + \frac{q_s}{m_s} (\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \nabla_{\mathbf{v}} f_s = C_s(f)$$

- This 6D problem can be simplified by computing the moments of f_s instead of evolving the entire distribution
 - **zeroth moment:** number density $n_s = \int f_s(\mathbf{x}, \mathbf{v}) d^3 \mathbf{v}$
 - **first moment:** momentum density $n_s \mathbf{u}_s = \int (\mathbf{v} \langle \mathbf{v} \rangle) f_s(\mathbf{x}, \mathbf{v}) d^3 \mathbf{v}$
 - second moment: pressure tensor $P_{s} = \int m_{s} (\mathbf{v} - \langle \mathbf{v} \rangle) (\mathbf{v} - \langle \mathbf{v} \rangle) f_{s}(\mathbf{x}, \mathbf{v}) d^{3}\mathbf{v}$
- The evolution equations of the moments are known as the multi-fluid description
- On sufficiently large spatial and temporal scales, typical velocities much smaller than c_{sound} , and if $f(\mathbf{v})$ is close to equilibrium, one can further simplify to single-fluid incompressible **Magnetohydrodynamics (MHD)**

1 Plasma Parameters

2 MHD Turbulence

- 3 Motion of charged particles
- 4 Fieldline curvature

5 Modeling

6 Conclusion

MHD Turbulence

$$\mathcal{R}_{m} = \frac{\nabla \times (\mathbf{u} \times \mathbf{B}) \sim UB/L}{\eta \Delta \mathbf{B} \sim \nu B/L^{2}} \sim \frac{UL}{\eta}$$

If $\eta \to 0$, flow and magnetic field are frozen into each other (flow advects, magnetic field exerts tension)

MHD Turbulence

- Kolmogorov (1941): constant energy flux from scale to scale with rate $\varepsilon \Rightarrow E(k) \sim \varepsilon^{2/3} k^{-5/3}$, $\delta v_{\lambda} \sim (\varepsilon \lambda)^{1/3}$
- Kraichnan&Iroshnikov (1965/63): collisions of counter-traveling Alfvén waves with $v_A = B_0$ $\Rightarrow E(k) \sim (\varepsilon v_A)^{1/2} k^{-3/2}$, $\delta v_\lambda \sim (\varepsilon v_A \lambda)^{1/4}$
- Goldreich&Sridhar (1995): MHD turbulence is anisotropic on all scales due to **B**₀. Critical balance $I_{\parallel}/\nu_A \sim \lambda/\delta\nu_\lambda$ ($\lambda \sim k_{\parallel}$) $\Rightarrow E(k_{\perp}) \sim \varepsilon^{2/3} k_{\perp}^{-5/3}$, $I_{\parallel} \sim \nu_A \varepsilon^{-1/3} \lambda^{2/3}$
- Boldyrev (2006): $\delta \mathbf{v}_{\perp}$ and $\delta \mathbf{B}_{\perp}$ tend to align with each other \Rightarrow sheet-like structures with aspect ratio $\lambda/\xi \sim \sin \theta_{\lambda}$ (with $\boldsymbol{\xi} \parallel \delta \mathbf{B}_{\perp}$)

Spectra of magnetic and kinetic energy, with $k^{4/3}$ (Grete+ 2021)

Sketch of critical balance and aligned eddy (Boldyrev 2006)

MHD Turbulence

■ Boldyrev (cont.):
$$\Rightarrow E(k_{\perp}) \sim k_{\perp}^{-3/2}$$
,
 $l_{\parallel} \sim \lambda^{1/2}$, sin $\theta_{\lambda} \sim \lambda^{1/4}$

- Scale-invariance is broken, λ is more intermittent than I_{\parallel} , **B** is more intermittent than **v**
- strong alignment reduces non-linearity, MHD organizes in coherent structures of aligned fields, separated by highly non-linear regions

Distributions of alignment angles (Matthaeus+ 2015)

Anisotropic structure function scaling

Non-linearity in the B-field

Jeremiah Lübke et al. | Magnetic Turbulence with charged Tracer Particles | March 19, 2024

RUB

1 Plasma Parameters

- 2 MHD Turbulence
- 3 Motion of charged particles
- 4 Fieldline curvature
- 5 Modeling

Motion of charged particles

Equation of motion due to the Lorentz force

$$\ddot{\mathbf{x}} = q/m \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right), \quad \mathbf{v} = \dot{\mathbf{x}}$$

- Particle energy is conserved in static *B*-fields, i.e. $\|\dot{\mathbf{x}}\| = \text{const.}$
- Uniform B and vanishing E results in gyro motion perpendicular to B with frequency and radius

$$\omega_g = |q|B/m, \quad r_g = v_\perp/\omega_g$$

If $r_g \ll B/\nabla B$, split dynamics in fast oscillation about **guiding center** and slow drift, such as gradient and curvature drifts

$$\mathbf{v}_{\nabla B} = \bar{\mu}/m\omega_g \, \mathbf{B} \times \nabla B/B^2, \quad \mathbf{v}_{curv} = \mathbf{v}_{\parallel}^2/\omega_g \, \hat{\mathbf{B}} \times (\mathbf{B} \cdot \nabla \mathbf{B})/B^2$$

 Dynamics are typically very complicated, only simple setups admit analytical treatment

Motion of charged particles

- The magnetic moment µ
 = mv²_⊥/2B is conserved in the guiding center approximation
- Particle energy is conserved in static *B*-fields, i.e. $\mathcal{E} = m v_{\parallel}^2 / 2 + \bar{\mu} B = \text{const.}$
- A particle moving along an increasing *B*-field has to decrease its v_{||} until it reverses its direction
- The particle energy at this bounce point is $\mathcal{E} = \bar{\mu} B_{max}$ and the trapping condition is $|\mathbf{v}_{\parallel}|/|\mathbf{v}_{\perp}| < \sqrt{B_{max}/B_{min}-1}$

Motion of charged particles

- In magnetized turbulence, particle motion becomes highly chaotic
- Quasi-linear theory assumes a strong regular magnetic field and weak fluctuations $\mathbf{B} = \mathbf{B}_0 + \delta \mathbf{B}, \|\delta \mathbf{B}\| \ll \|\mathbf{B}_0\|$
- Particles are said to interact resonantly with magnetic fluctuations with wavenumbers k_m such that $k_m r_g \mu \sim 1$
- Particles undergo scattering of pitch angle $\mu = \hat{\mathbf{v}} \cdot \hat{\mathbf{B}}$, resulting in diffusive behaviour, described by a distribution $f(t, z, \mu)$ with a transport equation

$$rac{\partial f}{\partial t} + \mathbf{v} \mu rac{\partial f}{\partial z} = rac{\partial}{\partial \mu} \left(D_{\mu\mu} rac{\partial f}{\partial \mu}
ight),$$

where ${\it D}_{\mu\mu}=\langle\Delta\mu^2\rangle/2\Delta t$ is the pitch angle diffusion coefficient

Motion of charged particles

• QLT models the magnetic fluctuations $\delta {f B}$ as a superposition of waves with random phases and a prescribed spectrum

Jeremiah Lübke et al. | Magnetic Turbulence with charged Tracer Particles | March 19, 2024

- 1 Plasma Parameters
- 2 MHD Turbulence
- 3 Motion of charged particles
- 4 Fieldline curvature
- 5 Modeling

- No definite transport theory of charged particles in strong MHD turbulence exists
- Particles experience fast super-diffusion along coherent structures characterized by small curvatures and lengths ~ l₀
- Consider the fieldline curvature as a scattering mechanism (Kempski+ 2023, Lemoine 2023)

 $\kappa = \left\| \hat{\mathbf{B}} \times (\mathbf{B} \cdot \mathbf{B}) \right\| / B^2$

■ Conservation of the particle's magnetic moment μ̄ is violated through interactions with resonant fieldline curvature ⟨κ⟩_{rg} r_g ~ 1

 $r_{\rm g} \sim l, \; \kappa_l r_{\rm g} \gtrsim 1 \; \Rightarrow \; |\Delta \hat{M}| \, \sim \, \mathcal{O}(1) \; \; r_{\rm g} \ll l, \; \kappa_l r_{\rm g} \ll 1 \; \Rightarrow \; |\Delta \hat{M}| \, \ll 1$

Interaction of a particle with a localized fieldline bend (Lemonie 2023)

Consider local guiding center average of some quantity X along particle trajectory $\mathbf{x}(t)$

$$X_{T_g}(\mathbf{x}(t)) = \frac{1}{T_g(\mathbf{x}(t))} \int_{0}^{T_g(\mathbf{x}(t))} X(\mathbf{x}(t-\tau)) \, \mathrm{d}\tau$$

- Record joint distribution $p(\delta v_{T_{\sigma}}, \kappa_{T_{\sigma}})$ of scattering angle cosine $\delta v_{T_g} = \hat{\mathbf{v}}_{T_g}(t_i) \cdot \hat{\mathbf{v}}_{T_g}(t_{i-1})$ and fieldline curvature $\kappa_{T_{\sigma}}$
- Conditional average $\langle \delta v_{T_{\sigma}} | \kappa_{T_{\sigma}} \rangle$ reveals two distinct transport regimes with resonant threshold $\kappa_{thres} = I_0/2\pi r_{\sigma}$
- coherent geometry \Rightarrow fast transport, non-linear geometry \Rightarrow slow transport

conditional scattering angle cosine average for various particle energies

roughness and intermittencv along particle trajectories conditional on avg. fieldline curvature

RUB

RUB

Jeremiah Lübke et al. | Magnetic Turbulence with charged Tracer Particles | March 19, 2024

RUB

- 1 Plasma Parameters
- 2 MHD Turbulence
- 3 Motion of charged particles
- 4 Fieldline curvature
- 5 Modeling

Modeling

Correlated Random Walk

- sample direction $\hat{\mathbf{v}} \in S^2$, regime $\hat{\kappa} \in \{0, 1\}$
- $\blacksquare \text{ while step} < \texttt{max_steps do}$
 - sample substeps $\in p(\mathtt{steps}|\hat{\kappa})$
 - \blacksquare while substep < substeps do
 - sample $\delta \mathbf{v} \in \mathbf{p}(\delta \mathbf{v} | \kappa)$
 - $\quad \bullet \ \ \, \hat{\mathbf{v}} \leftarrow \text{rotate} \ \ \, \hat{\mathbf{v}} \ \ \, \text{by} \ \, \delta v$
 - $\blacksquare \mathbf{X} \leftarrow \mathbf{X} + \hat{\mathbf{V}} \cdot \delta \mathbf{X}(\kappa)$
 - substep + +, step + +

Distributions of deflection angle cosines (left), regime escape times (upper right) and average guiding center step width (lower right), conditional on fast and slow curvature regime

Jeremiah Lübke et al. | Magnetic Turbulence with charged Tracer Particles | March 19, 2024

Modeling

RUB

CRW Results, preliminary

- Diffusion coefficients are only roughly reproduced
- Initial ballistic and intermediate subdiffusive transport are insufficiently reproduced
- Magnetic mirroring is not explicitly modeled

Generative Diffusion Models

- Generative diffusion models (GDM) are able to learn complicated, high-dimensional probability distributions
- See synthetic Lagrangian trajectories by *Li+ 2023*
- Aim: reproduce trajectory features over all relevant scales (small: intermittency, large: confinement and free streaming)

- 1 Plasma Parameters
- 2 MHD Turbulence
- 3 Motion of charged particles
- 4 Fieldline curvature
- 5 Modeling

Conclusion

MHD Turbulence

- intrinsically anisotropic, (local) B₀ persists on all scales
- forms large high-aspect ration coherent structures with reduced non-linearity, interleaved with highly non-linear chaotic regions

Motion of charged particles

- Gyro motion due to the Lorentz force
- Confinement due to magnetic mirror configurations
- no transport theory for strong turbulence yet

Fieldline curvature

- Particles exhibit three distinct transport regimes (free streaming, mirror confinement, chaotic confinement)
- Free streaming and chaotic confinement is distinguished by the fieldline curvature

Modeling

- CRW appears natural on the first glance, but implementation is not trivial
- Challenge: reproduce small-scale intermittency features and large-scale transport features

RUP

References

- Schekochihin, A.A. (2022) "MHD turbulence: a biased review" Journal of Plasma Physics, 88(5), p. 155880501
- Matthaeus W. H., Wan Minping, Servidio S., Greco A., Osman K. T., Oughton S. and Dmitruk P. (2015) "Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas" *Phil. Trans. R. Soc. A.* 373: 20140154.
- Plasma physics lecture by Richard Fitzpatrick https://farside.ph.utexas.edu/teaching/plasma/lectures/
- Mertsch, P. (2020) "Test particle simulations of cosmic rays" Astrophys Space Sci 365, 135.
- Lemoine, M. (2023) "Particle transport through localized interactions with sharp magnetic field bends in MHD turbulence" *Journal of Plasma Physics*, 89(5), p. 175890501.
- Kempski P., Fielding D. B., Quataert E., Galishnikova A. K., Kunz M. W., Philippov A. A., Ripperda B. (2023) "Cosmic ray transport in large-amplitude turbulence with small-scale field reversals" MNRAS, 525(4), pp. 4985–4998.
- Li T., Biferale L., Bonaccorso F., Scarpolini M. A., Buzzicotti M. (2023) "Synthetic Lagrangian Turbulence by Generative Diffusion Models" arxiv:2307.08529
- Lübke J., Effenberger F., Wilbert M., Fichtner H., Grauer R. (2024) "Towards Synthetic Magnetic Turbulence with Coherent Structures' arxiv:2307.08529

Jeremiah Lübke et al. | Magnetic Turbulence with charged Tracer Particles | March 19, 2024