Isotropic Helicoids in Complex Flows

Luca Biferale
Dept. of Physics and INFN University of Rome "Tor Vergata"
biferale@roma2.infn.it

```
CREDITS: K. GUSTAFSSON (U. GOTHEBORG ), R. SCATAMACCHIA, F. BONACCORSO (U. TOR VERGATA)
```


European Research Council erc

Established by the European Commission
Supporting top researchers
from anywhere in the world

COMPLEX PARTICLES IN COMPLEX FLOWS:

HOW TO ESCAPE/FALL FROM/ON EULERIAN TURBULENT TRAPS?

Intermittency - Lagrangian

Particle trapping in three-dimensional fully developed turbulence

L. Biferale

Dipartimento di Fisica and INFN, Università degli Studi di Roma "Tor Vergata,"
Via della Ricerca Scientifica 1, ool33 Roma, Italy
G. Boffetta
ipartimento di Fisisa Generale and INFN, Università degli Studi di Torino, Via Pietro Giuria 1,
Torino, Ital
A. Celan

NRS, INLN, 1361 Route des Lucioles, 06560 Valbonne, France
A. Lanotte
F. Toschi

Stituso per le Applicazioni del Calcolo, CNR, Vale del Policlinico 137, 00161 Roma, Italy

vortex trapping

Lagrangian Properties of Particles in Turbulence

Federico Toschi ${ }^{1}$ and Eberhard Bodenschatz ${ }^{2}$
ISstutuo per le Applicazioni del Calcolo, CNR, I-00161 Rome, Italy, INFN, Seziore di Ferrara 44100 Ferrars, Italy, Departunent of Physios and Depratment of Mathematis and Compute Science, Eindlowen Univessity of Technologg; 5600 MB Eindhoven, The Net
International Conlaboration for Turfulence Reserch; emaili toschieGiac.anrit
Max Planck Institute for Dynamices and Self-Organization, D-37077 Goettingen, Germany; Labortory of Atomic and Solid-State Physics and Silley School of Mechanical and Aerosppace Enginerering, Correll University, Ithacc, New York 14853, Instiute for Nonninear Dynamics,
University of Goettingen, D-37073 Goettingen, Germany, and International Collaboration for Turbulence Research


```
-LAGRANGIAN TURBULENCE
-INERTIAL PARTICLES
-EFFECTS OF PREFERENTIAL CONCENTRANTIONS
-EFFECTS OF CAUSTICS
-COMPLEX PARTICLES (TODAY)
-SMART PARTICLES
```


Eqs of motion for a single particle

Small particles
Small Reynolds numbers (on the particle radiud)
Undeformable
Small volume fraction
collisionless

$$
\begin{aligned}
& \frac{a(u-V)}{\nu} \ll 1 \quad a \ll \eta \\
& m_{p} \frac{d V_{i}}{d t}=\left(m_{p}-m_{f}\right) g_{i}+\left.m_{f} \frac{D u_{i}}{D t}\right|_{\boldsymbol{X}(t)} \\
& \text { Buoyoancy + fluid accel eration } \\
& -6 \pi a \mu\left[V_{i}(t)-u_{i}(\boldsymbol{X}(t), t)-\left.\frac{1}{6} a^{2} \nabla^{2} u_{i}\right|_{\boldsymbol{X}(t)}\right] \\
& \text { Stokes drag } \\
& -\frac{m_{f}}{2} \frac{d}{d t}\left[V_{i}(t)-u_{i}(\boldsymbol{X}(t), t)-\left.\frac{1}{10} a^{2} \nabla^{2} u_{i}\right|_{\boldsymbol{X}(t)}\right] \\
& \text { Added mass } \\
& -6 \pi a \mu \int_{0}^{t} d s\left(\frac{d / d s\left[V_{i}(s)-u_{i}(\boldsymbol{X}(s), s)-\left.\frac{1}{6} a^{2} \nabla^{2} u_{i}\right|_{\boldsymbol{X}(s)}\right]}{\sqrt{\pi \nu(t-s)}}\right)
\end{aligned}
$$

Simplified limit

$$
\begin{aligned}
& \frac{d \boldsymbol{X}}{d t}=\boldsymbol{V} \quad \tau_{p}=\frac{a^{2}}{3 \nu \beta} \\
& \frac{d \boldsymbol{V}}{d t}=\beta \frac{D \boldsymbol{u}(\boldsymbol{X}, t)}{D t}+\frac{\boldsymbol{u}(\boldsymbol{X}, t)-\boldsymbol{V}}{\tau_{p}}+(1-\beta) \boldsymbol{g}
\end{aligned}
$$

Three-parameters problem

$\tau_{f} \quad$ Fluid characteristic time
$\tau_{p} \quad$ Particle's characteristic time

$$
\begin{aligned}
& \rho_{p} \gg \rho_{f} \rightarrow \beta=0 \quad \begin{array}{l}
\text { HEAVV } \\
\rho_{f}=\rho_{p} \rightarrow \beta=1
\end{array} \quad \begin{array}{l}
\text { TRACRS }
\end{array}
\end{aligned}
$$

Stokes number

$$
S t=\frac{\tau_{p}}{\tau_{f}}
$$

Density contrast

$$
\beta=\frac{3 \rho_{f}}{\rho_{f}+2 \rho_{p}}
$$

Reynolds
$R e=\frac{U L}{\nu}$

$$
\rho_{f} \gg \rho_{p} \rightarrow \beta=3 \quad \text { ـКнт }
$$

Validity of assumption $a / \eta<1$

$$
S t=\frac{\tau_{p}}{\tau_{f}} \uparrow_{\text {Heavy }} \left\lvert\, \begin{array}{ll}
\frac{d \boldsymbol{X}}{d t}=\boldsymbol{V} \\
\text { Light } & \frac{d \boldsymbol{V}}{d t}=\beta \frac{D \boldsymbol{u}(\boldsymbol{X}, t)}{D t}+\frac{\boldsymbol{u}(\boldsymbol{X}, t)-\boldsymbol{V}}{S t}
\end{array}\right.
$$

$$
\begin{gathered}
\frac{d \boldsymbol{X}}{d t}=\boldsymbol{V} \\
\frac{d \boldsymbol{V}}{d t}=\beta \frac{D \boldsymbol{u}(\boldsymbol{X}, t)}{D t}+\frac{\boldsymbol{u}(\boldsymbol{X}, t)-\boldsymbol{V}}{S t} \\
\boldsymbol{V}(\boldsymbol{x}, t) \approx \boldsymbol{u}(\boldsymbol{x}, t)+S t(\beta-1)\left[\partial_{t} \boldsymbol{u}(\boldsymbol{x}, t)+\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}\right] \\
\boldsymbol{\nabla} \cdot \boldsymbol{V}(\boldsymbol{x}, t)=S t(\beta-1) \boldsymbol{\nabla} \cdot[\boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u}]=S t(\beta-1) \sum_{i j}\left(\frac{\partial u_{j}}{\partial x_{i}}\right)\left(\frac{\partial u_{i}}{\partial x_{j}}\right) \\
\beta<1 \quad S^{2}>\Omega^{2} \Longrightarrow \boldsymbol{\nabla} \cdot \boldsymbol{V}<0 \\
\beta>1
\end{gathered} \Omega^{2}>S^{2} \Longrightarrow \boldsymbol{\nabla} \cdot \boldsymbol{V}<0 \quad \text { heavy } \quad \text { ? }
$$

Preferential Concentration

$$
\Delta=\left(\frac{\operatorname{det}[\hat{\boldsymbol{\sigma}}]}{2}\right)^{2}-\left(\frac{\operatorname{Tr}\left[\hat{\boldsymbol{\sigma}}^{2}\right]}{6}\right)^{3} \Delta \leq 0
$$

Okubo-Weiss parameter Q is the determinant of the strain matrix

$$
\sigma_{i j}=\frac{\partial u_{i}}{\partial x_{i}}
$$

J. Bec et al. Phys. Rev. Lett. 98, 084502 (2007)

Spherical particle

Equations for velocity v and angular velocity ω for small spherical particle at position r : Happel \& Brenner, Low Reynolds number hydrodynamics (1963)

$$
\begin{aligned}
\dot{\boldsymbol{v}} & =\frac{1}{\tau_{\mathrm{p}}}[\boldsymbol{u}(\boldsymbol{r}, t)-\boldsymbol{v}] \\
\dot{\boldsymbol{\omega}} & =\frac{1}{\tau_{\mathrm{p}}}\left[\frac{10}{3}(\boldsymbol{\Omega}(\boldsymbol{r}, t)-\boldsymbol{\omega})\right]
\end{aligned}
$$

u Fluid velocity
Ω Half fluid vorticity
τ_{p} Particle relaxation time
Dynamics statistically invariant under rotations and reflections if u statistically invariant under rotations and reflections

Particle symmetries

| Rotation invariance |
| :--- | :--- | :--- |
| Reflection |
| invariance | (this talk)

Example of an isotropic helicoid

Recipe from Lord Kelvin:
"An isotropic helicoid can be made by attaching projecting vanes to the surface of a globe in proper positions; for instance cutting at 45° each, at the middles of the twelve quadrants of any three great circles dividing the globe into eight quadrantal triangles."

Kelvin, Phil. Mag. 42 (I87I)

THES SIMPLEST (BUT NOT SIMPLER) GENERALISATION OF SPHERICAL HEAVY PARTCILES

Example of an isotropic helicoid

Recipe from Lord Kelvin (I884)
Start with a sphere

Example of an isotropic helicoid

Recipe from Lord Kelvin (1884)
\checkmark Start with a sphere
Draw 3 great circles

Example of an isotropic helicoid

Recipe from Lord Kelvin (I884)
\checkmark Start with a sphere
\checkmark Draw 3 great circles
Identify 12 vane positions at midpoints of quarter-arcs

Example of an isotropic helicoid

Recipe from Lord Kelvin (I884)
\checkmark Start with a sphere
\checkmark Draw 3 great circles
\checkmark Identify 12 vane positions at midpoints of quarter-arcs Put a vane on each vane position (45° to arc line)

Chirality

In a constant flow u, the isotropic helicoid starts spinning around the flow direction with angular velocity ω.
The spinning direction depends on the chirality of the vanes.

Motion of an 'isotropic helicoid'

Equations for velocity v and angular velocity ω for small isotropic helicoid:

Happel \& Brenner, Low Reynolds number hydrodynamics (I963)

$$
\begin{aligned}
\dot{v} & =\frac{1}{\tau_{\mathrm{p}}}\left[\boldsymbol{u}(\boldsymbol{r}, t)-\boldsymbol{v}+\frac{2 a}{9} C_{0}(\boldsymbol{\Omega}(\boldsymbol{r}, t)-\boldsymbol{\omega})\right] \\
\dot{\boldsymbol{\omega}} & =\frac{1}{\tau_{\mathrm{p}}}\left[\frac{10}{3}(\boldsymbol{\Omega}(\boldsymbol{r}, t)-\boldsymbol{\omega})+\frac{5}{9 a} C_{0}(\boldsymbol{u}(\boldsymbol{r}, t)-\boldsymbol{v})\right]
\end{aligned}
$$

Stokes' law translation - rotation coupling (scalar)
$a=\sqrt{5 I_{0} /(2 m)}$ Particle 'size' (defined by mass m and moment of inertia I_{0})
C_{0} Helicoidality
Ratio of rotational and translational inertia fixed to that of sphere

Equations break spatial reflection symmetry (ω pseudovector)

REGIONS WITH STRONGLY MULTI-SCALE HELICAL CHOERENCY -> REVERT ENERGY CASCADE

$$
\left\{\begin{array}{l}
E=\sum_{\boldsymbol{k}}\left|u^{+}(\boldsymbol{k})\right|^{2}+\left|u^{\prime} /(\boldsymbol{k})\right|^{2} \\
H=\sum_{\boldsymbol{k}} k\left(\left|u^{+}(\boldsymbol{k})\right|^{2}-\left.(\boldsymbol{k})\right|^{2}\right)
\end{array}\right.
$$

L.B., S. MUSACCHIO \& F. TOSCHI Phys. Rev. Lett. 108 164501, 2012.

Dimensionless parameters

Stokes number $\mathrm{St} \equiv \frac{\tau_{\mathrm{p}}}{\tau_{\eta}} \quad$ Size $\quad \bar{a} \equiv \frac{a}{\eta} \quad$ Helicoidality C_{0}

$$
\text { with } \tau_{\eta} \text { and } \eta \text { smallest time- and length scales of flow. }
$$

Dynamics may grow indefinitely unless $-\sqrt{27}<C_{0}<\sqrt{27}$.
St and \bar{a} constrained by particle density higher than that of the fluid and geometrical size must be smaller than η.

Simulations and theory is done using a random single-scale flow characterised by the Kubo number

$$
\mathrm{Ku} \equiv \frac{u_{0} \tau_{\eta}}{\eta}
$$

with u_{0} typical speed of flow.

Clustering at small St

Expand compressibility of particle-velocity field $\nabla \cdot v$ in small St $\sim \tau_{\mathrm{p}}$

$$
\nabla \cdot \boldsymbol{v}=-\frac{27}{27-C_{0}^{2}} \tau_{\mathrm{p}}\left[\operatorname{Tr}\left(\nabla \boldsymbol{u}^{\mathrm{T}} \boldsymbol{\nabla} \boldsymbol{u}^{\mathrm{T}}\right)-\frac{1}{15} \mathrm{aC}_{0} \operatorname{Tr}\left(\nabla \boldsymbol{u}^{\mathrm{T}} \boldsymbol{\nabla} \boldsymbol{\Omega}^{\mathrm{T}}\right)\right]
$$

Reflection-invariant systems have $\left\langle\operatorname{Tr}\left(\nabla \boldsymbol{u}^{\mathrm{T}} \boldsymbol{\nabla} \boldsymbol{\Omega}^{\mathrm{T}}\right)\right\rangle=0$
Isotropic helicoids violate that relation $\left\langle\operatorname{Tr}\left(\boldsymbol{\nabla} \boldsymbol{u}^{\mathrm{T}} \boldsymbol{\nabla} \boldsymbol{\Omega}^{\mathrm{T}}\right)\right\rangle \propto \tau_{\mathrm{p}} \mathrm{C}_{0}$
\Rightarrow In a parity-invariant isotropic flow clustering does not depend on sign of C_{0}

Eulerian smooth but Lagrangian non-trivial

ABC flow in $\mathbf{d =}=3$

1

$$
\begin{aligned}
\dot{x}= & A \sin z+C \cos y, \\
\dot{y}= & B \sin x+A \cos z, \\
\dot{z}= & C \sin y+B \cos x . \\
& \mathbf{v} \| \omega
\end{aligned}
$$

Exact stationaty solution of Euler equation

$$
\partial_{i} v_{i} \propto-\operatorname{Tr}\left[\mathbb{A}^{2}\right]\left(27-\frac{9 \bar{a} C_{0}}{10}\right)
$$

HELICOIDS MIGHT BEHAVE AS LIGHT OR HEAVY PARTICLES !!!

STOCHASTIC HELICAL FLOW

$$
P_{\mathrm{M}_{H}}(H)=\frac{|H| \exp \left[\frac{\alpha H \mathrm{M}_{H}}{\beta+\gamma \mathrm{M}_{H}^{2}}\right] K_{1}\left[\frac{\delta|H|}{\beta+\gamma \mathrm{M}_{H}^{2}}\right]}{\sqrt{\beta+\gamma \mathrm{M}_{H}^{2}}}
$$

Figure 5: An example of a complex particle, a "strain probe" is basically a chiral-dipole and is sensitive to the local strain level in turbulence. This type of 3D printed particles have been designed and tracked for both position and
orientation in turbulent flows by means of optical techniques [20], [24]. Similarly shaped particles were studied orientation in turbulent flows by means of optical techniques (20], [24]. Similarly shaped particles were studied
numerically by means of Stokesian dynamics simulations [25) (see Eigure 6). numerically by means of Stokesian dynamics simulations (25) (see Figure 6).

S. Kramel, S. Tympel, F. Toschi, and G. A. Voth, "Preferential rotation of chiral dipoles in isotropic turbulence."

Conclusions

Isotropic helicoids are rotation invariant particles which break reflection invariance (two chiralities)

Coupling between translational and rotational degrees of freedom changes dynamics compared to spherical particles (modified clustering, preferential sampling etc.)

The two chiralities may show different dynamics if the particle size is not too small and flow is persistent

Flows with broken parity invariance increase the differences in the dynamics of the two particles
K. GUSTAFSSON AND L.B. PHYS. REV. FLUIDS (IN PRESS) 2016.

