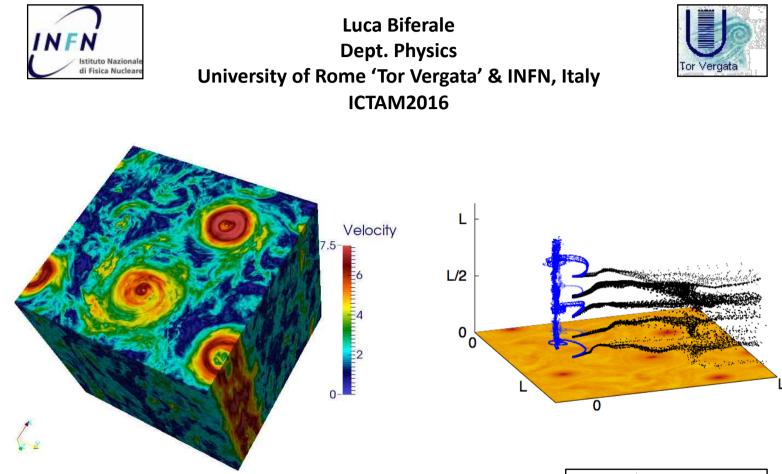
TURBULENT AT HIGH AND LOW ROTATION RATES: EULERIAN AND LAGRANGIAN STATISTICS



F.Bonaccorso, I.Mazzitelli, G. Sahoo (Rome, Italy) M.Hinsberg, F. Toschi (Eindhoven, The Netherlands) A.Lanotte (Lecce, Italy) S. Musacchio (Nice, France) P.Perlekar (Hydebarad, India)

PRACE 09_2256 ROTATING TURBULENCE 2015 – 55MH NAVIER_STOKES EQS IN A ROTATING FRAME (NO BOUNDARIES)

DNS: A. Pouquet, P. Mininni, A. Alexakis, S. Chen, G. Eyink

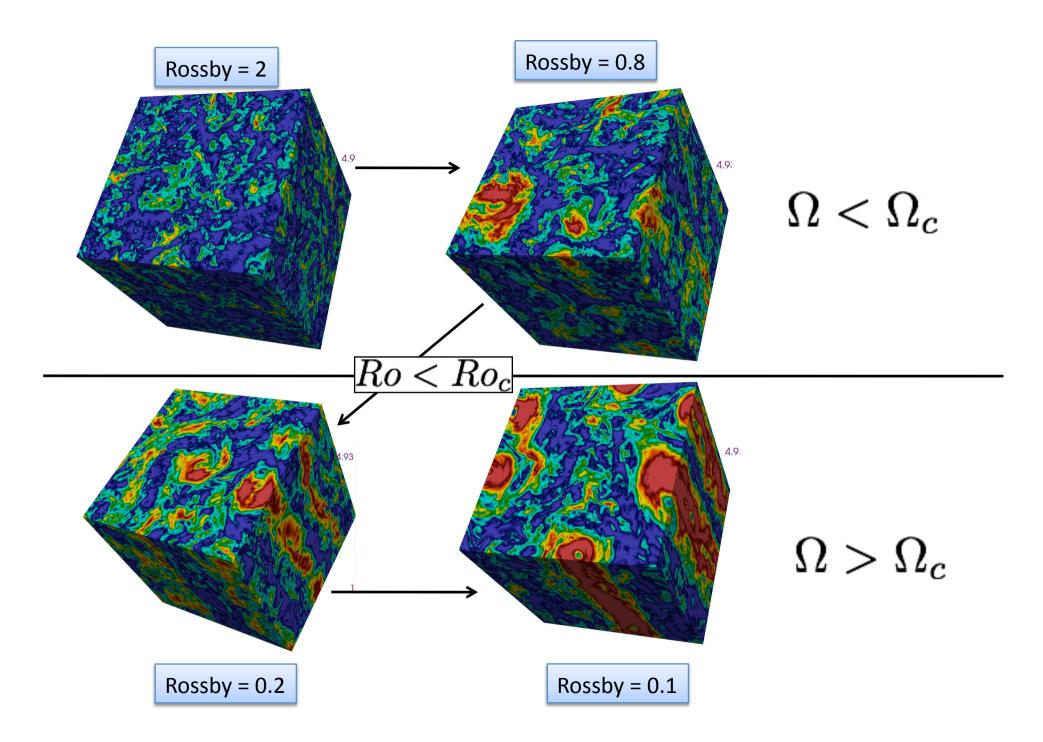
$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \mathbf{\Omega} \times \mathbf{v} = \nabla P + \nu \nabla^2 \mathbf{v} + \mathbf{F} - \alpha \mathbf{v}$$

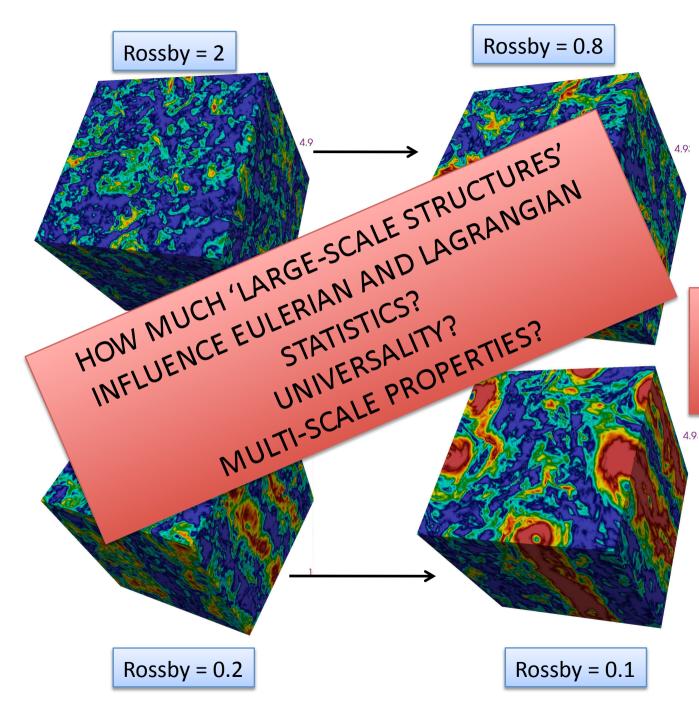
 $oldsymbol{\Omega}$ =rotation $P=P_0+rac{1}{2}|oldsymbol{\Omega} imes {f r}|^2$

 \mathbf{F} -large scale Forcing $\alpha = \text{large scale energy sink}$

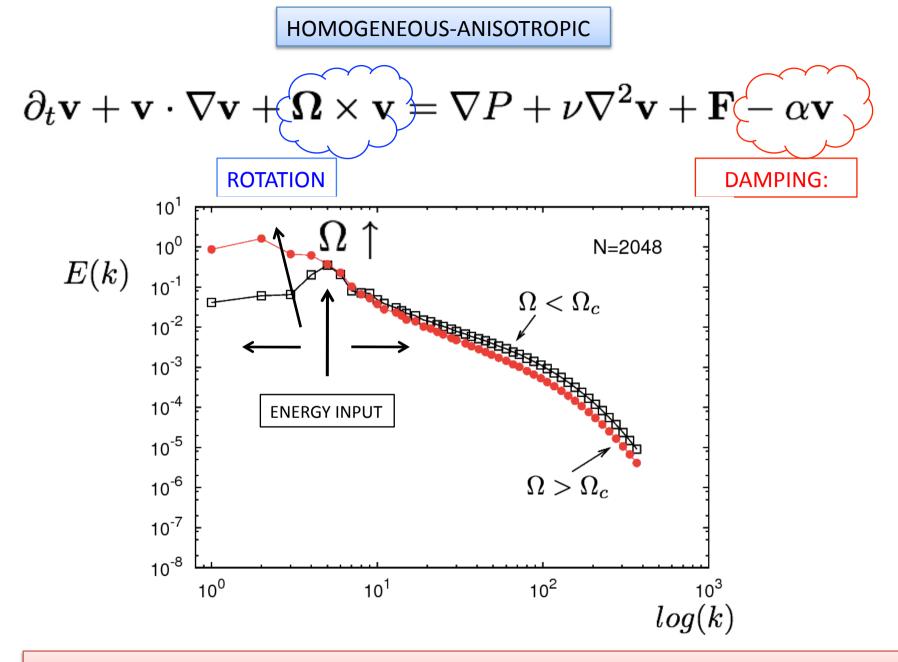
ROSSBY NUMBER ~ NON-LINEAR/ROTATION $Ro \sim \frac{v_0}{\Omega L}$

$$\mathrm{Ro} \geq Ro_c o$$
 forward energy transfer
 $\mathrm{Ro} \leq Ro_c o$ forward & backward energy transfer



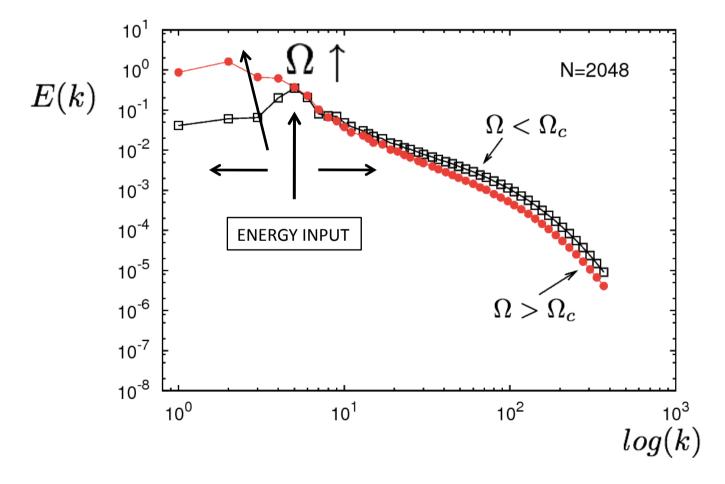


HOMOGENEOUS ANISOTROPIC 2D & 3D PHYSICS CHOERENT -STRUCTURES



FORCING: 2°-order OU-PROCESSS: ISOTROPIC, HOMOGENEOUS NOT DELTA-CORRELATED

WHAT ABOUT THE EFFECTS OF THE LARGE-SCALE COHERENT STRUCTURES ON THE EULERIAN AND LAGRANGIAN STATISTICS?



OUR DNS DATA-BASE (EULERIAN + LAGRANGIAN)

NEW FEATURES:

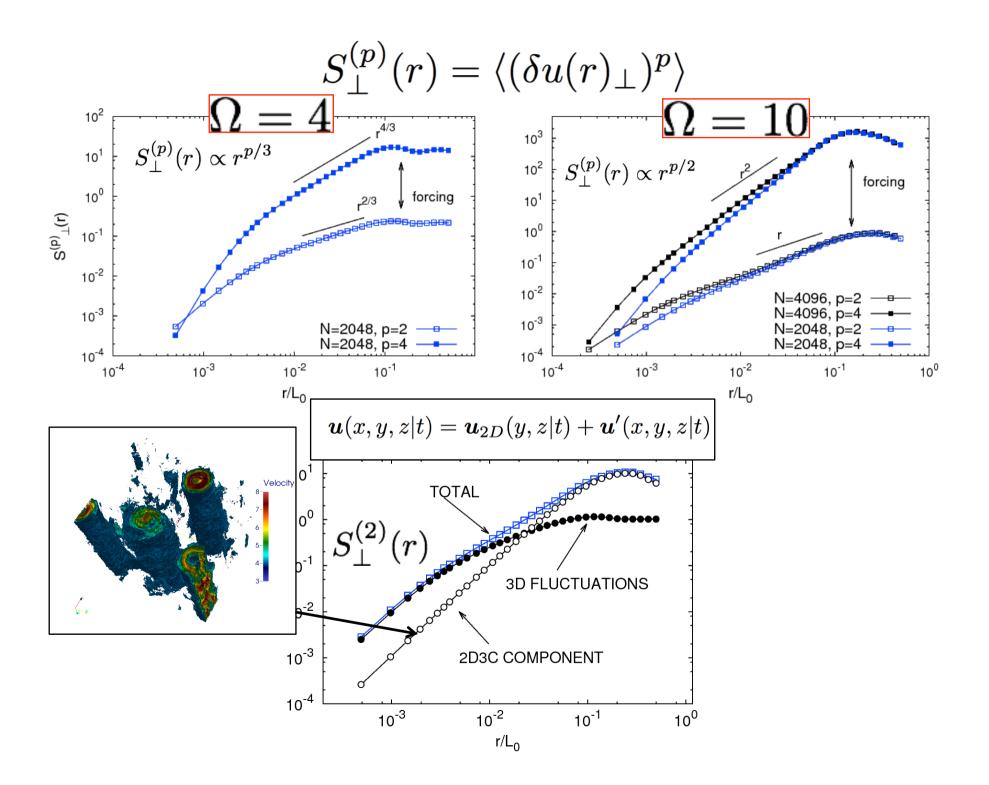
- 1) IDEAL FORCING MECHANISM (AS NEUTRAL AS POSSIBLE: ISOTROPIC; NON HELICAL, TIME-COLORED) + LARGE SCALE FRICTION
- 2) UNPRECEDENTED NUMERICAL RESOLUTION/SCALE SEPARATION (UP TO 4096^3)
- 3) LAGRANGIAN STATISTICS (MILLIONS OF TRACERS AND INERTIAL PARTICLES)

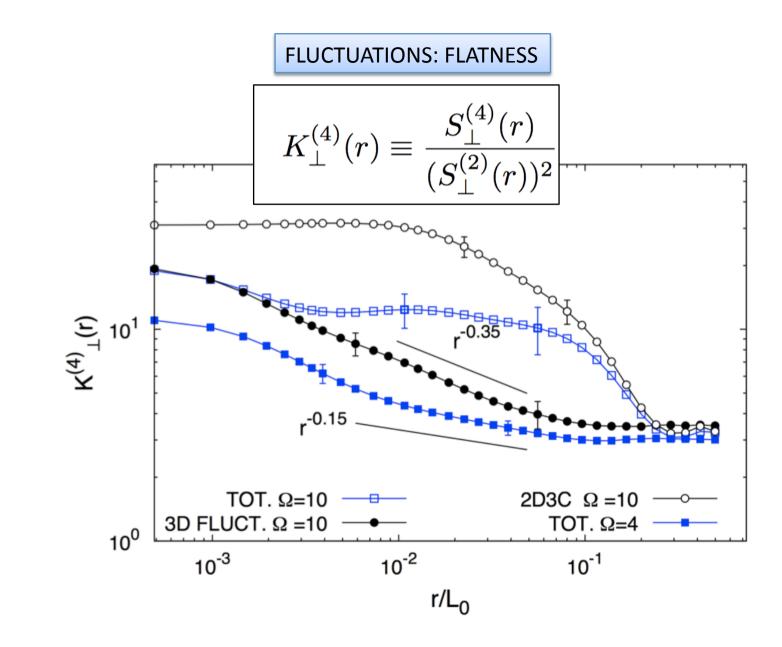
N	Ω	ν	ϵ	ϵ_{f}	u_0	η/dx	$ au_\eta/dt$	Re_{λ}	Ro	f_0	$ au_{f}$	T_0	α
1024	4	$7 imes 10^{-4}$	1.2	1.2	1.05	0.67	120	150	0.78	0.02	0.023	0.17	0.0
1024	10	$6 imes 10^{-4}$	0.46	0.59	1.6	0.76	294	580	0.24	0.02	0.023	0.25	0.1
2048	4	$2.8 imes10^{-4}$	1.2	1.2	1.05	0.67	380	230	0.76	0.02	0.023	0.17	0.0
2048	10	$2.2 imes 10^{-4}$	0.45	0.64	1.7	0.72	550	1170	0.25	0.02	0.023	0.3	0.1
4096	10	1×10^{-4}	0.46	0.65	1.7	0.78	1010	1600	0.25	0.02	0.023	0.3	0.1

TABLE I: Eulerian dynamics parameters. N: number of collocation points per spatial direction; Ω : rotation rate; ν : kinematic viscosity; $\epsilon = \nu \int d^3x \sum_{ij} (\nabla_i u_j)^2$: viscous energy dissipation; $\epsilon_f = \int d^3x \sum_i f_i u_i$: energy injection; $u_0 = 1/3 \int d^3x \sum_i u_i^2$: mean kinetic energy; $\eta = (\nu^3/\epsilon)^{1/4}$: Kolmogorov dissipative scale; $dx = L_0/N$: numerical grid spacing; $L_0 = 2\pi$: box size; $\tau_\eta = (\nu/\epsilon)^{1/2}$: Kolmogorov dissipative time; $Re_\lambda = (u_0\lambda)/\nu$: Reynolds number based on the Taylor micro-scale; $\lambda = (15\nu u_0^2/\epsilon)^{1/2}$: Taylor micro-scale; $Ro = (\epsilon_f k_f)^{1/3}/\Omega$: Rossby number defined in terms of the energy injection properties, where $k_f = 5$ is the wavenumber where the forcing is acting; f_0 : intensity of the Ornstein-Uhlenbeck forcing; τ_f : decorrelation time of the forcing; $T_0 = u_0/L_0$: Eulerian large-scale eddy turn over time; α : coefficient of the damping term $\alpha \Delta^{-1} u$.

MAX RESOLUTION

 $\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla \mathbf{v} + \mathbf{\Omega} \times \mathbf{v} = \nabla P + \nu \nabla^2 \mathbf{v} + \mathbf{F} - \alpha \mathbf{v}$

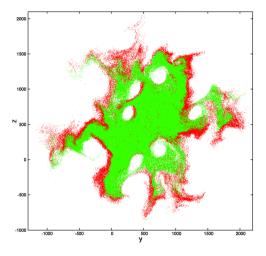


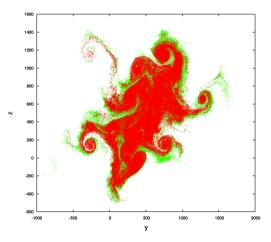


- NON-GAUSSIAN PROPERTIES DEPEND ON THE WAY YOU DECOMPOSE THE FIELD - AFTER FILTERING THE 2D3C COMPONENT: SCALING PROPERTIES ARE BACK (BUT NOT HIT!)

RMS FORCES ALONG TRAJECTORIES

$$\frac{d\mathbf{v}}{dt} = \beta \frac{D\mathbf{u}}{Dt} - \frac{1}{\tau_p} (\mathbf{v} - \mathbf{u}) + 2(\mathbf{v} - \beta \mathbf{u}) \times \mathbf{\Omega} - (1 - \beta)\mathbf{\Omega} \times (\mathbf{\Omega} \times \mathbf{r})$$



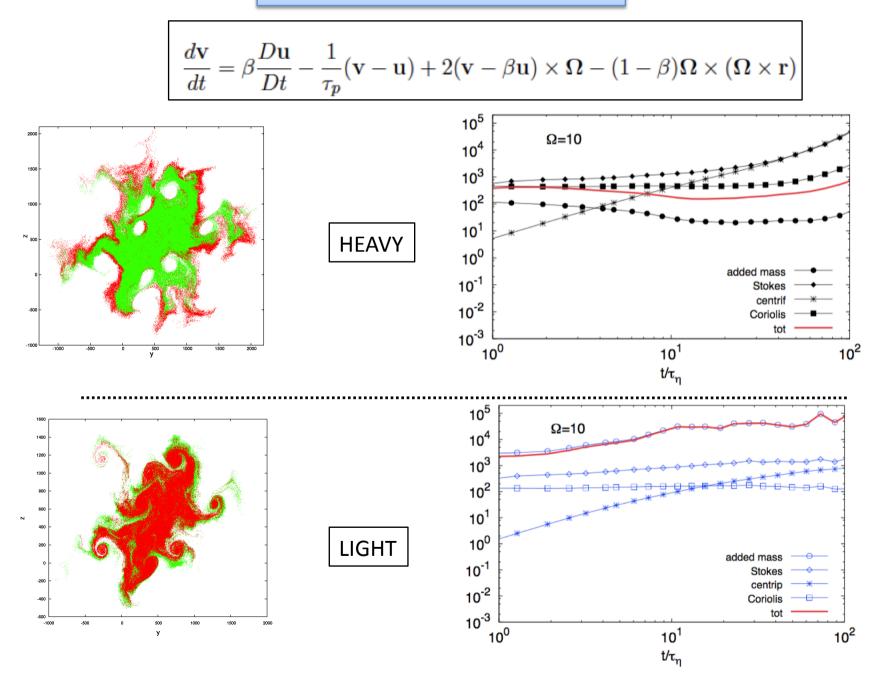


HEAVY

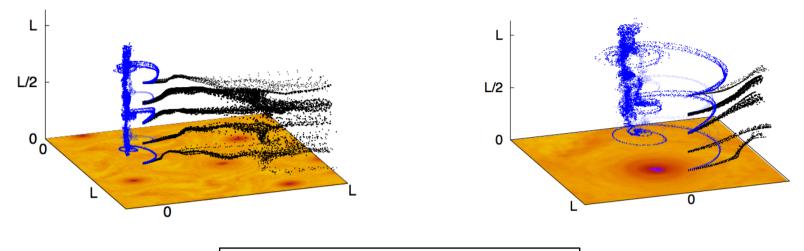
$$\begin{cases} a_{rms}^{tot}(t) = \langle \dot{\boldsymbol{v}}^2 \rangle; \quad \text{total} \\ a_{rms}^{am}(t) = \beta^2 \langle (D_t \mathbf{u})^2 \rangle; \quad \text{added mass} \\ a_{rms}^{St}(t) = 1/\tau_p^2 \langle (\mathbf{v} - \mathbf{u})^2 \rangle; \quad \text{Stokes drag} \\ a_{rms}^{Co}(t) = 4 \langle [\mathbf{\Omega} \times (\mathbf{v} - \beta \mathbf{u})]^2 \rangle; \quad \text{Coriolis} \\ a_{rms}^{Cp}(t) = (1 - \beta)^2 \langle [\mathbf{\Omega} \times (\mathbf{\Omega} \times (\mathbf{r}_t - \mathbf{r}_0)]^2 \rangle; \text{centripetal.} \end{cases}$$

LIGHT

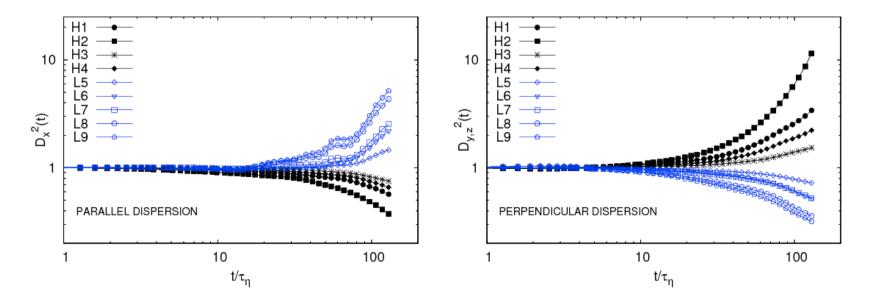
RMS FORCES ALONG TRAJECTORIES



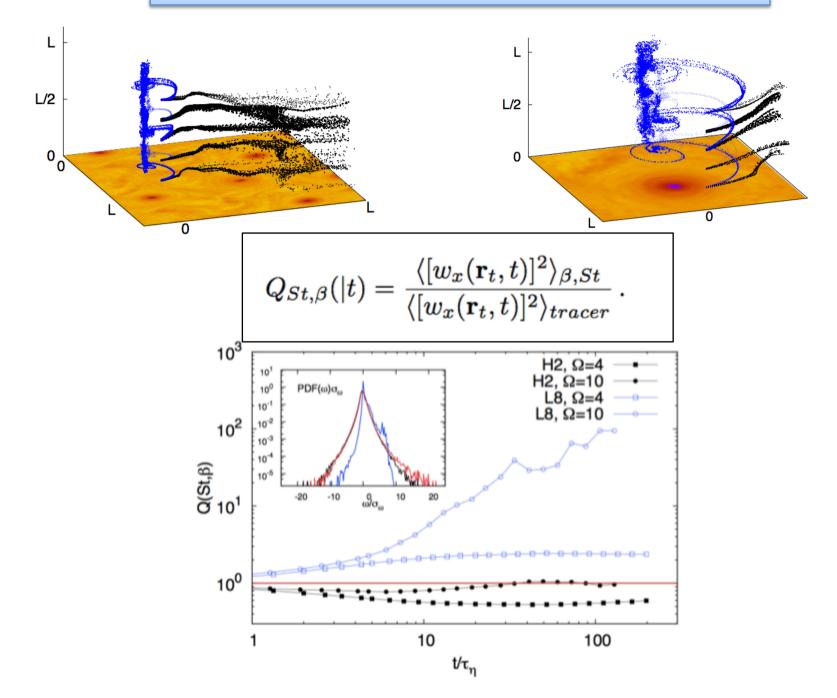
INERTIA: SINGULAR EFFECT ON SINGLE PARTICLE DISPERSION



$$D^{i}_{St,\beta}(t) = \frac{\langle (r^{i}_{t} - r^{i}_{0})^{2} \rangle_{St,\beta}}{\langle (r^{i}_{t} - r^{i}_{0})^{2} \rangle_{tracer}}$$



INERTIA: SINGULAR EFFECT ON SINGLE PARTICLE DISPERSION



-HIGH RESOLUTION ROTATING TURBULENCE: FIRST ATTEMPT TO CONTROL SIMULTANEOUSLY EULERIAN & LAGRANGIAN STATISTICS

-IDEAL SET-UP (1): HOMOGENEOUS AND ISOTROPIC TIME-COLORED FORCING

-IDEAL SET-UP (2): SCALE-SEPARATION

-STRONG INFLUENCE OF LARGE-SCALE (NON-UNIVERSAL?) VORTICAL STRUCTURES

-DEPARTURE FROM GAUSSIANITY (DEPENDING ON HOW YOU MEASURE IT: 2D3C-3D3D)

-EFFECTS OF LARGE-SCALE STRUCTURES ON PARTICLES' DISPERSION

-DISENTANGLING INVERSE CASCADES IN TERMS OF HELICAL-FOURIER INTERACTIONS