



# On the role of the helicity in the energy transfer in three-dimensional turbulence

#### Ganapati Sahoo and Luca Biferale

University of Rome Tor Vergata, Italy Flowing Matter Across the Scales, March 24-27, 2015, Rome

Supported by European Research Council Advanced Grant "Newturb"



#### Introduction



- Energy and enstrophy are conserved in 2D Navier-Stokes equations.
- Forward cascade of energy is blocked, since enstrophy is positive and definite.
  (Boffetta, Ann. Rev. Fluid Mech 2012)
- Energy and Helicity are invariants of 3D Navier-Stokes equations.
- Both cascade forward, from large scales to small scales.
  (Chen, Phys. Fluids 2003)
- Helicity could be positive or negative.
- Each Fourier mode of velocity could be decomposed into positive and negative helical modes.

What happens when we change the relative weight of the positive and the negative helicity modes?



#### Helical decomposition



Following Waleffe, Phys. Fluids (1992)

$$\mathbf{u}(\mathbf{k},t) = \mathbf{u}^{+}(\mathbf{k},t) + \mathbf{u}^{-}(\mathbf{k},t),$$
  
$$\mathbf{u}^{\pm}(\mathbf{k},t) = u^{\pm}(\mathbf{k},t)\mathbf{h}^{\pm}(\mathbf{k})$$

where  $\mathbf{h}^{\pm}(\mathbf{k})$  are the eigenvectors of the curl operator  $i\mathbf{k} \times \mathbf{h}^{\pm}(\mathbf{k}) = \pm k\mathbf{h}^{\pm}(\mathbf{k})$ ,  $u^{\pm}(\mathbf{k},t)$  are the time-dependent scalar co-efficients.

Projection operator:

$$\mathcal{P}^{\pm}(\mathbf{k}) \equiv rac{\mathbf{h}^{\pm}(\mathbf{k}) \otimes \mathbf{h}^{\pm}(\mathbf{k})^{*}}{\mathbf{h}^{\pm}(\mathbf{k})^{*} \cdot \mathbf{h}^{\pm}(\mathbf{k})}$$

$$\mathbf{u}^{\pm}(\mathbf{k},t) = \mathcal{P}^{\pm}(\mathbf{k})\mathbf{u}(\mathbf{k},t)$$

Decimated Navier-Stokes equations in Fourier space:

$$\partial_t \mathbf{u}^{\pm}(\mathbf{k},t) = \mathcal{P}^{\pm}(\mathbf{k}) \mathbf{N}_{\mathbf{u}^{\pm}}(\mathbf{k},t) + \nu k^2 \mathbf{u}^{\pm}(\mathbf{k},t) + \mathbf{f}^{\pm}(\mathbf{k},t)$$

where  $\nu$  is kinematic viscosity and f is external forcing.

The non-linear term  $N_{u^{\pm}}(\mathbf{k},t) = \mathcal{F}T(\mathbf{u}^{\pm} \cdot \nabla \mathbf{u}^{\pm} - \nabla p)$ , contains 8 possible triadic interactions  $\mathbf{q} = \mathbf{k} + \mathbf{p}$  which fall into four classes.



## Classes of triadic interactions in NS equations



$$\mathbf{N}_{\mathbf{u}^{\pm}}(\mathbf{q}) = \mathcal{F} \mathcal{T} \left[ \mathbf{u}^{\pm}(\mathbf{k}) \cdot \mathbf{\nabla} \mathbf{u}^{\pm}(\mathbf{p}) \right]$$
 ;  $\mathbf{q} = \mathbf{k} + \mathbf{p}$ ;  $k \leq p \leq q$ 





European Research Counci

#### Partial Helical-decimation



#### What happens in between??

when we give different weights to different class of triads...

Modified projection operator:

$$\mathcal{P}_{\alpha}^{+}(\mathbf{k})\mathbf{u}(\mathbf{k},t) = \mathbf{u}^{+}(\mathbf{k},t) + \theta_{\alpha}(\mathbf{k})\mathbf{u}^{-}(\mathbf{k},t)$$

where  $\theta_{\alpha}(\mathbf{k})$  is 0 with probability  $\alpha$  and is 1 with probability  $1 - \alpha$ .

- We consider triads of Class-I with probability 1, Class-III with probability  $1 \alpha$  and Class-II and Class-IV with probability  $(1 \alpha)^2$ .
- $\alpha = 0 \rightarrow \text{Standard Navier-Stokes.}$  $\alpha = 1 \rightarrow \text{Fully helical-decimated NS.}$
- Critical value of  $\alpha$  at which forward cascade of energy stops? alternatively, inverse cascade of energy stops if forced at small scales.



$$\mathbf{N}_{\mathbf{u}^{\pm}}(\mathbf{q}) = \mathcal{F} \mathcal{T} \left[ \mathbf{u}^{\pm}(\mathbf{k}) \cdot \mathbf{\nabla} \mathbf{u}^{\pm}(\mathbf{p}) \right]$$
;  $\mathbf{q} = \mathbf{k} + \mathbf{p}$ ;  $k \leq p \leq q$ 



## Evolution of Energy and helicity



• Pseudo-spectral DNS on a triply periodic cubic domain of size  $L = 2\pi$  with resolutions up to  $512^3$  collocation points.



- The peaks suggest the building up of the energy at forced large scales before being able to transfer to the small scales.
- The cascade of energy starts only when helicity becomes active, i.e., modes with negative helicity becomes energetic.
- With increase in a the peak grows, a signature of inverse cascade.



## Robustness of energy cascade



- Spectra for all values of α showing k<sup>-5/3</sup> suggest the forward cascade of to be strongly robust.
- Unless we kill almost all the modes of one helicity-type energy always finds a way to reach small scales.
- The energy flux also remains unaffected by the decimation until a is very close to 1.
- Critical value of a is ~ 1!





## Reaction of negative modes



Chen, Phys. Fluids 2003

$$E^{\pm}(k) \sim C_1 \epsilon_E^{2/3} k^{-5/3} \left[ 1 \pm C_2 \left( \frac{\epsilon_H}{\epsilon_E} \right) k^{-1} \right],$$

where  $\epsilon_E$  is the mean energy dissipation rate and  $\epsilon_H$  is the mean helicity dissipation rate.



- The E<sup>+</sup>(k) does not change with decimation.
- Invariance of parity is restored through scaling of  $E^{-}(k)$  by the factor  $(1-\alpha)$ .



k





- As we increase decimation of the modes with negative helicity (α), the contribution of triads leading to inverse energy cascade grows.
- The forward cascade of energy is very robust in 3D turbulence. It requires only a few negative modes to act as catalyst to transfer energy forward.
- Only when a is very close to 1, i.e., we decimate almost all modes of one helical sign, inverse energy cascade takes over the forward cascade.
- We observe a strong tendency to recover parity invariance even in the presence of an explicit parity-invariance symmetry breaking ( $\alpha > 0$ ).
  - What about abrupt symmetry breaking at some k<sub>c</sub>?
    - can we stop the cascade by killing all negatives modes from k>k<sub>c</sub>?
    - or can we start it at our wish (killing all modes up to k<sub>c</sub>)?
  - What about intermittency in the forward cascade regime at changing a?



#### Classes of triadic interactions in NS equations



R-type: When large wavenumbers have same sign, middle one is unstable and could transfer energy to both small and large wavenumbers;

- predominantly to the smallest wavenumber if it has the same sign [Class-I (+, +, +)].
- mixed transfer if smallest wavenumber has the opposite sign [Class-II (+, -, -)].

F-type: When large wavenumbers have opposite sign, smallest one is unstable and could transfer energy only to large wavenumbers, for both Class-III (+, -, +) and Class-IV (-, -, +).

- Energy and helicity are conserved for each individual triad.
- Triads with only u+, i.e. Class-I, lead to reversal of energy cascade.
- Energy spectra in the inverse cascade regime shows a k<sup>-5/3</sup> slope.







## Helicity









#### Recovery of parity invariance





- The  $E^{-}(k)$  becomes higher than  $E^{+}(k)$  in the inertial range with increasing  $\alpha$ .
- Negative modes transfer energy more efficiently.
- Invariance of parity is restored through scaling of E<sup>-</sup>(k) by the factor (1-α)