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The birth of functional analysis for the Euler equations

Witold Wolibner 
1902-1961 

(Warsaw Polytech. Inst.)

Leon Lichtenstein 1878-1933 
(U. Leipzig: 1922-1933)

T h e f i r s t p r o o f o f 
persistence for some time of 
initial regularity for the 
solutions of the 3D Euler 
equations was given by 
Lichtenstein (1927) using 
tools introduced by Hölder. 
This effort was continued 
by Witold Wolibner, Ernst 
Hölder, who proved all-time 
regularity for 2D in 1933 
and many others.

Lichtenstein assumed that the initial vorticity satisfies an “H-
condition”, i.e. is Hölder continuous. For  space-periodic solutions 
to the 3D Euler equations, Lichtenstein’s key estimate reads:

|!|↵ := max
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Such solutions are said here to have “limited” regularity.
Blow up



A very smooth ride in a rough sea

The limited-regularity solutions of Lichtenstein and his followers have a       
regularity in space (their first derivatives are Hölder continuous).  In Eulerian 
coordinates, their temporal regularity is also not better than       .  The Lagrangian 
structure, i.e. the trajectories of fluid particles, is however much smoother.  
Chemin (1982) showed that during the interval of regularity they remain indefinitely 
differentiable in time.  
Serfati (1995) and Shnirelman (2012), using the theory of analytic functions on 
complex Banach spaces, showed that the trajectories of fluid particles are actually 
analytic in time. Their proofs are difficult and do not give estimates of the radius of 
convergence of the time-Taylor series for the Lagrangan map. 
Frisch and Zheligovsky (2014), using Cauchy’s formulation proved the following 
Theorem. Consider a space-periodic three-dimensional flow of incompressible fluid 
governed by the Euler equation. Suppose the initial velocity            is in               . 
Then, at sufficiently small times, the position of fluid particles,            , is given by a 
temporal Taylor series whose coefficients can be recursively calculated. The radius 
of convergence is bounded from below by a strictly positive quantity, which is 
inversely proportional to                . 
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Introduce the displacement: ⇠ := x� a
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Solve for ⇠(n) (Helmholtz-Hodge decomposition). Define ⇣n := |r⇠(n)|0,↵.

det (I + rL⇠) = 1 or

Expand (formally) in powers of t: ⇠ =

1X
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tn⇠(n), and determine coe�cients of various powers:

Use the boundedness of ��1rr in Hölder spaces (Korn 1907, Lichtenstein 1925, Stein 1970,...):

3X

k=1

rL
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Elementary proof of analyticity (2)

where ⌧? > 0 is such that the discriminant of the cubic equation

C1⌧? � F + C2F
2 + C3F

3 = 0 vanishes.

This follows from the observation that the polynomial

Introduce the generating function F (t) :=
1X

n=1

tn⇣n

F (t)  C1t|v0|1,↵ + C2F
2(t) + C3F

3(t), t > 0

P (F ) := C3F
3 + C2F

2 � F

Analyticity follows from the boundedness of the generating function.

QED

has a finite local maximum, a finite local minimum and two

positive roots, colliding on increasing t.

F (t) bounded for 0  t|rv0|0,↵ < ⌧?



Analytic continuation; radius of convergence of the 
Lagrangian time-Taylor series as blowup indicator

•

•

•

• The vanishing of the radius of convergence indicates a blowup. 

Typically, the Lagrangian map is analytic but not entire in time: it 
has a finite radius of convergence,     (even in 2D). 

For any                   , one can construct a new time-Taylor series 
for a Lagrangian map, whose radius of convergence is          .

One can iterate this procedure and construct a sequence of 
increasing times                                                  . This can be 
continued as long as              does not vanish.  

R

0 < t < R
R(t)

0 < t1 < t < . . . < tm < . . .
R(tm)



The Cauchy-Lagrangian algorithm built on the Cauchy 
invariants•

•

In 1928 Courant, Friedrichs and Lewy 
showed that numerical  solutions of 
hyperbolic PDE’s by simple finite 
difference  methods are subject to the 
constraint                         .       

In hydrodynamics, this affects Eulerian  
but not Lagrangian algorithms. The use 
of Lagrangian time-Taylor expansions 
allows us to study blowup numerically. 

�t < �x/V

max

Initial Eulerian vorticity

Calculate Lagrangian
time-Taylor coe�cients

at t = tn

Estimate radius
of convergence

and choose time step

Calculate Lagrangian
map tn ! tn+1

Calculate Lagrangian
vorticity at t = tn+1

Transform to Eulerian
vorticity at t = tn+1

Enough
data collected
for extrapo-
lation?

NO

YES



Eulerian - but not Lagrangian - computations suffer from 
loss of smoothness, implying dramatic loss of precision

•
•

In Eulerian coordinates, if v 2 C

k,↵, then @tv 2 C

k�1,↵

In Lagrangian coordinates, if v 2 C

k,↵, then Dtv 2 C

k,↵
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Switching from Eulerian to Lagrangian computations can 
result in speed up of several orders of magnitude

4. Testing the Cauchy–Lagrangian numerical method in two di-

mensions: Comparison with Eulerian simulations
s:testing

In Section
ss:flow-methods
4.1 we describe three Eulerian algorithms that were used for

comparison with the Cauchy–Lagrangian (CL) algorithm. Validation, with
emphasis on accuracy, is discussed in Section

ss:validation
4.2. Efficiency of the CL algo-

rithm is discussed in Section
ss:efficiency
4.3. In Section

ss:tygers
4.4 we discuss spatial truncation

artefacts. All computations presented in this section are in double precision.

4.1. Choice of flows and of numerical methodsss:flow-methods
For the reason explained in Section

ss:init
3.2, all our tests of the CL method

have been done using 2D flows with analytic initial data having non-trivial
dynamics in both Eulerian and Lagrangian coordinates. Two different flows,
called the target flows, were used as initial condition. First, there is a very
simple deterministic flow, here called the “4-mode” flow with the initial con-
dition

ω(init) = cos x+ cos y + 0.6 cos 2x+ 0.2 cos 3x (20) 4mode

Second, we have taken a particular realization of a random initial condition,
with 2π-periodicity in x1 and x2, here called “random” initial condition

takesh
[45],

used in Section II.C of
tyger
[37], where the time evolution of the latter flow is

presented in detail. The characterization of the random flow is best done in
the Fourier space consisting of couples of signed integers k ≡ (k1, k2). It is
here decomposed for convenience into shells corresponding to a K ≤ |k| <
K +1, where K is an integer. Each such shell has N(K) Fourier modes. For
k in the Kth shell, the Fourier coefficients ω̂k of the initial vorticity are taken
all with the same modulus 2K7/2 exp(−K2/4)/N(K) and with phases that
are uniformly and independently distributed in the interval [0, 2π[, except
that opposite wave vectors are given opposite phases to preserve Hermitian
symmetry.

For solving the 2D Euler equation, we have used four different programs:
the CL algorithm with the Taylor series truncated to order S, described in
Section

s:CLalgorithm
3 (denoted CLS) and three algorithms using Eulerian coordinates,

namely the Runge-Kutta algorithms of order two and four (denoted RK2
and RK4, respectively) and the Eulerian time-Taylor expansion algorithm
truncated to order S (denoted ETS). The CL algorithms used here are CL8,
CL16 and CL24 with time steps, chosen as explained in Section

ss:optimal
3.5. The

accuracy in (
estet0
18) is set to ε = 10−12. Fig.

steps
4 shows the evolution of the time

steps for the target flows. In principle they are allowed to vary in time but,
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t = 0 t = 1 t = 2

t = 3 t = 4 t = 4.1

Figure 8: Isolines of the Laplacian of the vorticity (step 1 for t = 0; 2 for t = 1; 10 for
t = 2; 60 for t = 3; 500 for t = 4 and 4.1) at various times. CL code computations for the
4-mode initial condition. Resolution: 10242 harmonics. figisol

rough measure of the distance to complex-space singularities. So, here, we
have two competing types of singularities, with eventually the one furthest
from the real domain catching up with the one which was closer. Such a phe-
nomenon, naturally leads to interference patterns in the vorticity spectrum.
It it likely that this explains the rippling seen in Fig.

specs
6 at t = 4.

We now show that the results of the CL code agrees with those obtained
by traditional methods for both of the target flows within the time inter-
vals where spatial truncations effect are negligibly small. Table

tb5
2 shows the

vorticity discrepancies between various codes (maximum over space of the
difference of the vorticity calculated with two different codes) for the two
target flows at different spatial resolutions and different output times. We
also performed energy and enstrophy consrvation tests, which are shown in
Tables

tb3
3 and

tb4
4, respectively, to which we shall come back in Section

ss:tygers
4.4 about

spatial truncation effects. The main result is that the vorticity discrepancies
between the CL results and those obtained by the standard Eulerian RK4

25

δ δ

t t(a) (b)

Figure 5: Radius δ(t) of the analyticity cylinder for the 4-mode initial condition (a) and
the random initial condition (b). CL method. Resolution: 81922 harmonics. fdel

Eω(K) Eω(K)

K K

t = 3.5 t = 4

Figure 6: Spectra of the vorticity for the 4-mode initial condition at several times, as
labeled. CL method. Resolution: 81922 harmonics. specs

with the highest resolution feasible in reasonable CPU time, namely 81922

modes. (Had we used an Eulerian method, this would not have resulted
in a reasonable CPU time; see the discussion of compared efficiencies in
Section

ss:efficiency
4.3).

The measured δ(t) for the two target flows are shown in Fig.
fdel
5. Each point

on these graphs is obtained by processing the vorticity spectrum Eω(K) at
the corresponding time, using the fitting technique of

a:conver
Appendix B. Examples

of vorticity spectra are shown in Fig.
specs
6.

It is seen from Fig.
fdel
5 that, at the largest times shown for both flows, δ

is about 10−2. Since kmax = 8192/3 ≈ 2731, the resulting relative truncation
error is about e−δkmax ≈ 2−12. We also note that for the lowest resolution used
in our simulations, namely 10242, the 4-mode flow achieves comparably small
truncation errors only up to t = 2. If, however, we just request a level of
truncation error of about 10−4, which is not visually detectable on contours of
the vorticity and of its Laplacian, we can extend the computations to about
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Distance �(t) to the real domain of the

nearest complex-space singularity

Resolution: 8192

2
harmonics

Speed up CL20/RK4 : 120

Isolines of the Laplacian of vorticity


