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Time-analyticity of Lagrangian particle
trajectories in ideal fluid flow
soverned by the Euler equations

Uriel Frisch
Laboratoire Joseph-Louis Lagrange
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Part II: Using Cauchy’s invariants to prove

time-analyticity of Lagrangian trajectories
arXiv:1212.4333 and 1312.6320 [math.AP] (with V. Zheligovsky and O. Podvigina)

Perspectives: Lagrangian-Eulerian numerical simulations
of blowup for 3D Euler



The birth of functional analysis for the Euler equatlons
The first proof of s el ey
persistence for some time of | N
initial regularity for the & . e gmi) SN
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Lichtenstein (1927) using B88. Do .
tools introduced by Holder. S P
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by Witold Wolibner, Ernst [ =l
.. .. £ Holder, who proved all-time
W Wttree regularity for 2D in 1933
Witold Wolibner and many others. Leon Lichtenstein 1878-1933

1902-1961 (U. Leipzig: 1922-1933)
(Warsaw Polytech. Inst.)

Lichtenstein assumed that the initial vorticity satisfies an “H-
condition”, 1.e. 1s Holder continuous. For space-periodic solutions
to the 3D Euler equations, Lichtenstein’s key estimate reads:
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Such solutions are said here to have “limited” regularity.

Blow up



A very smooth ride in a rough sea

The limited-regularity solutions of Lichtenstein and his followers have a ¢+
regularity in space (their first derivatives are Holder continuous). In Eulerian
coordinates, their temporal regularity is also not better thanC"*. The Lagrangian
structure, 1.€. the trajectories of fluid particles, is however much smoother.

Chemin (1982) showed that during the interval of regularity they remain indefinitely
differentiable in time.

Serfat1 (1995) and Shnirelman (2012), using the theory of analytic functions on
complex Banach spaces, showed that the trajectories of fluid particles are actually
analytic in time. Their proofs are difficult and do not give estimates of the radius of
convergence of the time-Taylor series for the Lagrangan map.

Frisch and Zheligovsky (2014), using Cauchy’s formulation proved the following
Theorem. Consider a space-periodic three-dimensional flow of incompressible fluid
governed by the Euler equation. Suppose the initial velocity wvo(a)is in C1*(T?)
Then, at sufficiently small times, the position of fluid particles, x(a,t), 1s given by a
temporal Taylor series whose coefficients can be recursively calculated. The radius
of convergence 1s bounded from below by a strictly positive quantity, which 1s
inversely proportional to | Vvolo.a.
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Introduce the displacement: & :=x — a () -1
P X €+ VG x VG = wy
det (IT+V€)=1 or Vl.g4-= {(VL £ tr(VLg)Q} + det(VZ€) =0

Expand (formally) in powers of t: & = Z t"¢™  and determine coefficients of various powers
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Solve for €™ (Helmholtz-Hodge decomposition). Define ¢, := |VE&"™)]g 4.
Use the boundedness of A~'VV in Holder spaces (Korn 1907, Lichtenstein 1925, Stein 1970,...):

o < CiVolrad +C2 D) GG+ Cs Y (Gl n=12,... C1>0, O3>0, C3>0
r+s=n r+s+o=n



Elementary proof of analyticity (2)
Introduce the generating function F'(t) := Z t"Cn
n=1
F(t) < Cit|voli,a + C2F?(t) + C3F3(t), t>0

F'(t) bounded for 0 < t|Vvglp.a < T«

where 7, > 0 is such that the discriminant of the cubic equation
Ci1, — F + CyF? + C3sF? =0 vanishes.

This follows from the observation that the polynomial
P(F) = 03F3—|—02F2 — F
has a finite local maximum, a finite local minimum and two

positive roots, colliding on increasing t.

Analyticity follows from the boundedness of the generating function.

QED



Analytic continuation; radius of convergence of the
Lagrangian time-Taylor series as blowup indicator

® Typically, the Lagrangian map is analytic but not entire in time: it
has a finite radius of convergence, 12 (even in 2D).

® Forany 0 < ¢ < R, one can construct a new time-Taylor series
for a Lagrangian map, whose radius of convergence 1s R(t).

® One can iterate this procedure and construct a sequence of
increasing times 0 <t; <t<...<t,, <.... Thiscanbe
continued as long as R(t,,) does not vanish.

® The vanishing of the radius of convergence indicates a blowup.



The Cauchy-Lagrangian algorithm built on the Cauchy

~_Invariants
® In 1928 Courant, Friedrichs and Lewy (Iniial Bulerian vorticty )
showed that numerical solutions of i
. . . alculate Lagrangian
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Eulerian - but not Lagrangian - computations suffer from
oss of smoothness, implying dramatic loss of precision

® In Eulerian coordinates, if v € C*%, then 0,v € C*¥~ 1@

® In Lagrangian coordinates, if v € C*®, then D,v € C*®
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D: double, Q: quadruple precision. Resolution: 5122, 1024” D: double, Q: quadruple precision. Resolution: 512% 1024°



Switching from Eulerian to Lagrangian computations can
result in speed up of several orders of magnitude
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Isolines of the Laplacian of vorticity 0 W 2 5 4 5
Resolution: 8192% harmonics

Speed up CL20/RK4 : 120



