

Established by the European Commission

Slide of the Seminar

Explosive ripple instability due to incipient wave breaking

Prof. Alexei A. Mailybaev

ERC Advanced Grant (N. 339032) "NewTURB" (P.I. Prof. Luca Biferale)

Università degli Studi di Roma Tor Vergata C.F. n. 80213750583 – Partita IVA n. 02133971008 - Via della Ricerca Scientifica, I – 00133 ROMA

Explosive ripple instability due to incipient wave breaking (at Ipanema beach)

Alexei A. Mailybaev and André Nachbin

IMPA

Introduction and Motivation

modeling a breaker in the surf zone

Basic mechanisms underlying wave breaking

Linear approximation:

$$rac{\partial u}{\partial t} + a rac{\partial u}{\partial x} = 0$$

$$\sim$$

Weak nonlinearity (inviscid Burgers equation):

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} + b u \frac{\partial u}{\partial x} = 0$$

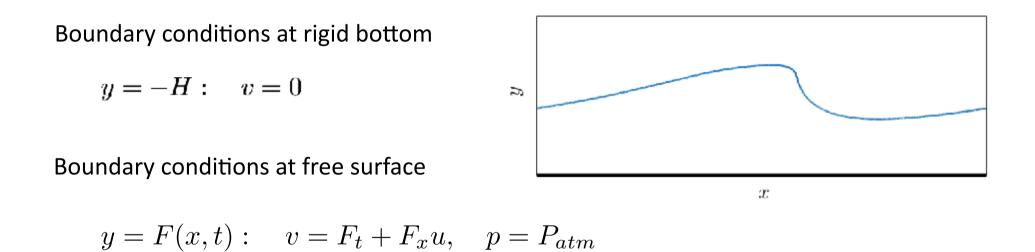
Weak nonlinearity and dispersion (KdV equation):

$$\frac{\partial u}{\partial t} + a \frac{\partial u}{\partial x} + b u \frac{\partial u}{\partial x} + c \frac{\partial^3 u}{\partial x^3} = 0$$
(cnoidal waves)

Full model

Incompressible Euler equations: 2D (x, y) potential ideal flow for water speed $\mathbf{v} = (u, v)$ Typical spatial scales [m] >> viscous and capillary scales [mm]

$$\mathbf{v}_t + \mathbf{v} \cdot \nabla \mathbf{v} = -\nabla p / \rho + \mathbf{g}, \quad \text{div } \mathbf{v} = 0$$



Complex potential

 $\Phi(z)=arphi+i\psi, \hspace{0.3cm} z=x+iy \hspace{0.3cm}$ (holomorphic function) $u=arphi_x=\psi_y, \hspace{0.3cm} v=arphi_y=-\psi_x$

Numerical model

Dimensionless units (unit density, gravity and depth).

 2π -periodic boundary condition in horizontal direction.

Conformal mapping: $z(\zeta, t)$ with $\zeta = \xi + i\eta$

from a horizontal strip $-K \leq \eta \leq 0$ to the fluid domain.

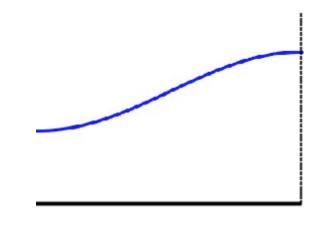
Free surface parametrization: $x + iy = z(\xi, t)$

Using complex analysis equation are reduced to 1D form (Dyachenko et al. 1996a; Zakharov et al. 2002; Ribeiro et al. 2017) :

$$\begin{split} K_t &= -\frac{1}{2\pi} \int_0^{2\pi} \frac{\mathbf{R}\hat{\varphi}_{\xi}}{|\hat{z}_{\xi}|^2} \, d\xi, \\ \hat{A}_t &= \left[\left(\mathbf{R}\hat{A}_{\xi} \right) - \left(1 + \hat{A}_{\xi} \right) \mathbf{T} \right] \frac{\mathbf{R}\hat{\varphi}_{\xi}}{|\hat{z}_{\xi}|^2}, \\ \hat{\varphi}_t &= -\hat{\varphi}_{\xi} \mathbf{T} \frac{\mathbf{R}\hat{\varphi}_{\xi}}{|\hat{z}_{\xi}|^2} - \frac{|\hat{\varphi}_{\xi}|^2 - |\mathbf{R}\hat{\varphi}_{\xi}|^2}{2|\hat{z}_{\xi}|^2} - g\hat{y}, \\ \hat{\varphi}_t &= -\hat{\varphi}_{\xi} \mathbf{T} \frac{\mathbf{R}\hat{\varphi}_{\xi}}{|\hat{z}_{\xi}|^2} - \frac{|\hat{\varphi}_{\xi}|^2 - |\mathbf{R}\hat{\varphi}_{\xi}|^2}{2|\hat{z}_{\xi}|^2} - g\hat{y}, \end{split} \qquad \begin{aligned} \hat{R}\hat{f}(\xi) &= \sum_{m \in \mathbb{Z}} i \tanh(Km) f_m e^{im\xi}, \\ \mathbf{T}\hat{f}(\xi) &= -\sum_{m \neq 0} i \coth(Km) f_m e^{im\xi}, \\ \hat{x}(\xi, t) &= \xi + \hat{A}(\xi, t), \\ \hat{y}(\xi, t) &= K(t) - 1 + \mathbf{R}\hat{A}(\xi, t). \end{split}$$

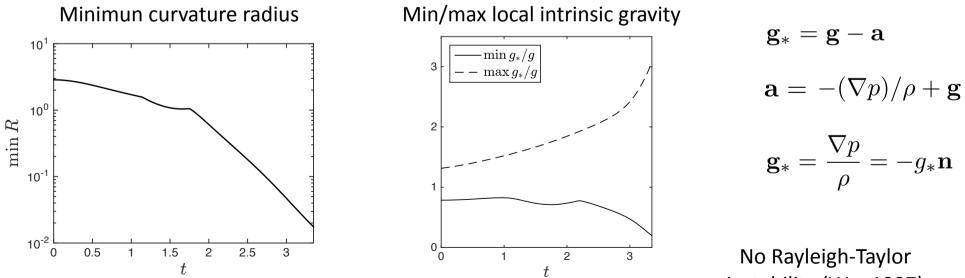
Numerical simulation

£



 $(anh 1) \sin x, \quad y = 0.35 \cos x$

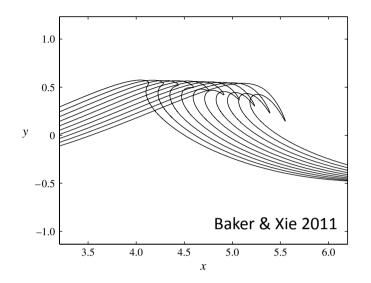
RK4 in time, pseudo-spectral in space, adaptive spatial step (final 2M grid), round-off-level accuracy.

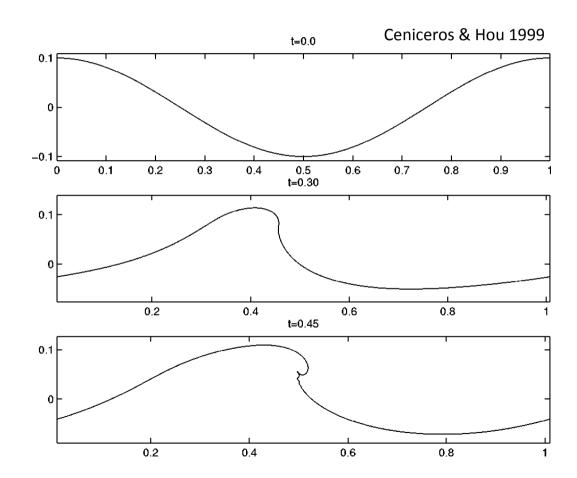


instability (Wu, 1997)

Too regular... (white caps!)

Many previous numerical studies show similar regular results: (Peregrine 1983; Grilli & Svendsen 1990; Baker & Xie 2011, etc.)

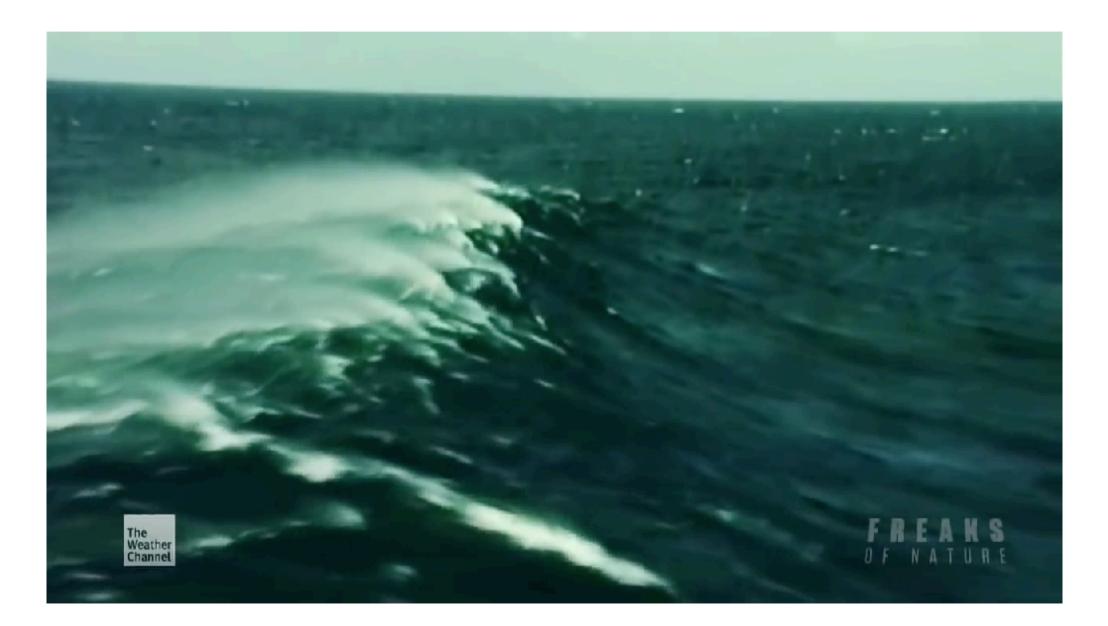




Capillary effects and parasitic instability:

(Longuet-Higgins 1995, Ceniceros & Hou 1999, Dyachenko & Newell 2016, etc.)

Overturn of a wave seems unnecessary for a white cap



Problem formulation

modeling of small ripples riding on the surface of a steepening breaking wave

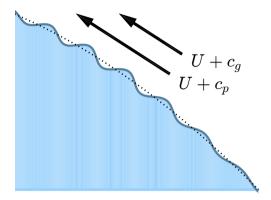
Ripples dynamics

Surface length coord

Wavetrain ripples:

freque waver ampli

Regime of interest: app (small amplitude, short wavelength)



ods
$$(2\pi/\omega)$$
 and wavelengths $(2\pi/k)$

Intrinsic frequency:
$$arOmega=\sqrt{g_*k}$$
 (deep-water approximation)
Intrinsic gravity: ${f g}_*={f g}-{D{f v}\over Dt}={
abla p\over
ho}=-g_*{f n}$

Phase and group speed (in the Lagrangian reference frame):

$$c_p = \frac{\Omega}{k} = \sqrt{\frac{g_*}{k}}, \quad c_g = \frac{\partial \Omega}{\partial k} = \frac{1}{2}\sqrt{\frac{g_*}{k}}$$

in Lagrangian frame

Doppler shift for the frequency: $\omega = Uk + \Omega$ (U is the medium's local speed)

on a free surface

Second conservation law:

 E/Ω is the wave action density (energy density/intrinsic frequency)

heta(s,t) is a ripple phase function

Consistency condition for second derivatives:

$$\frac{\partial k}{\partial t} + \frac{\partial \omega}{\partial s} = 0$$

Use the Doppler-shifted frequency and expression for the phase speed:

$$\frac{\partial k}{\partial t} + \frac{\partial}{\partial s} \left[(U + c_p) k \right] = 0$$

The next equation is valid asymptotically in the adiabatic limit, i.e., for slow variations of the underlying flow

$$\frac{\partial}{\partial t}\frac{E}{\Omega} + \frac{\partial}{\partial s}\left[(U+c_g)\frac{E}{\Omega}\right] = 0$$

(Bretherton & Garrett 1968)

Consider a **Hamiltonian system** with one degree of freedom (a linear oscillator). Let parameters change slowly in time. Then the adiabatic invariant is conserved:

 E/Ω = oscillator energy divided by its frequency

Example:

for a pendulum with slowly changing length, the energy changes proportionally to frequency.

Euler equations is a Hamiltonian system. Ripple is a linear oscillator.

$$\frac{\partial k}{\partial t} + \frac{\partial}{\partial s} \left[(U + c_p) k \right] = 0$$

number of oscillators

$$\frac{\partial}{\partial t}\frac{E}{\varOmega} + \frac{\partial}{\partial s}\left[(U+c_g)\frac{E}{\varOmega}\right] = 0$$

adiabatic invariant

Adiabatic Lagrangian invariants

$$\frac{\partial k}{\partial t} + \frac{\partial}{\partial s} \left[(U + c_p) k \right] = 0 \qquad \qquad \frac{\partial}{\partial t} \frac{E}{\Omega} + \frac{\partial}{\partial s} \left[(U + c_g) \frac{E}{\Omega} \right] = 0$$

For short wavelength ripples: $c_p \ll U$, $c_g \ll U$, $c_g = \frac{\Omega}{k} = \sqrt{\frac{g_*}{k}}$, $c_g = \frac{\partial \Omega}{\partial k} = \frac{1}{2}\sqrt{\frac{g_*}{k}}$.

In the first approximation:

$$\frac{\partial k}{\partial t} + \frac{\partial}{\partial s}(Uk) = 0, \quad \frac{\partial}{\partial t}\left(\frac{E}{\Omega}\right) + \frac{\partial}{\partial s}\left(U\frac{E}{\Omega}\right) = 0.$$

Marker density function:

$$\frac{\partial \sigma}{\partial t} + \frac{\partial}{\partial s}(U\sigma) = 0$$
 $t = 0: \quad \sigma(x) \equiv 1$

$$\frac{D}{Dt}\left(\frac{k}{\sigma}\right) = 0, \quad \frac{D}{Dt}\left(\frac{E}{\sigma\Omega}\right) = 0 \qquad \Longrightarrow \qquad \frac{k}{\sigma} = const, \quad \frac{E}{\sigma\Omega} = const$$

 $\frac{D}{Dt} = \frac{\partial}{\partial t} + U \frac{\partial}{\partial s}$ adiabatic Lagrangian invariants (conserved along material trajectories on a surface)

Power-law for the change of ripple steepness

Lagrangian invariants:

$$\frac{k}{\sigma} = const, \quad \frac{E}{\sigma \Omega} = const$$

$$E = \frac{1}{2}\rho g_* a^2$$
 (mean oscillation energy)
 $\Omega = \sqrt{g_* k}$ (intrinsic frequency)

Ripple amplitude:

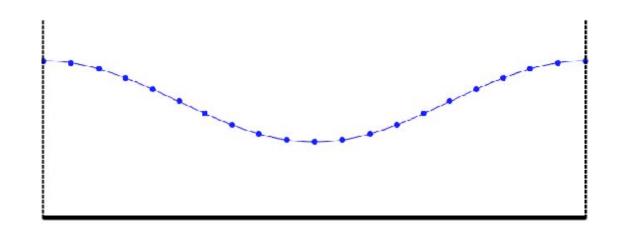
$$\frac{a}{a_0} = \left(\frac{\sigma^3 g_{*0}}{g_*}\right)^{1/4}$$

Ripple steepness:

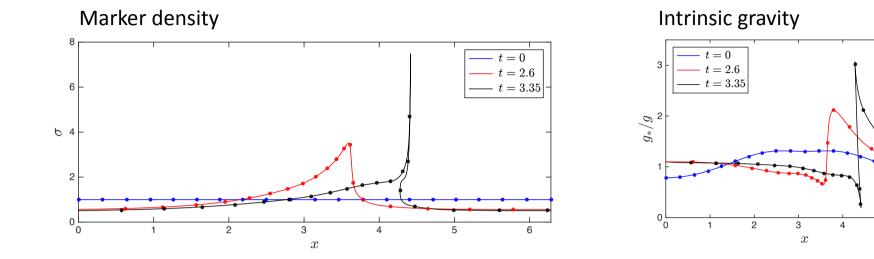
$$S = \frac{2a}{\ell} = \frac{ak}{\pi} \quad \Rightarrow \quad \left[\frac{S}{S_0} = \left(\frac{\sigma^7 g_{*0}}{g_*} \right)^{1/4} \right]$$

Ripple steepness is fully determined by the marker density (surface compression) and effective gravity.

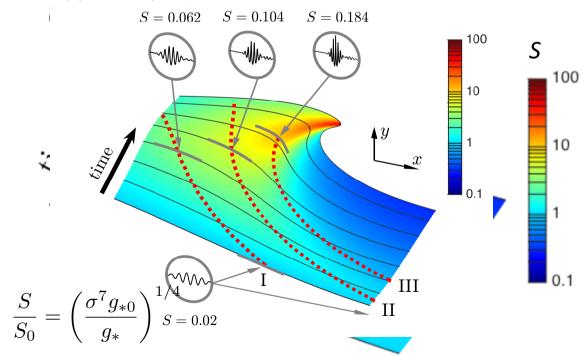
Evolution of markers (material points):



Ripple steepness amplification



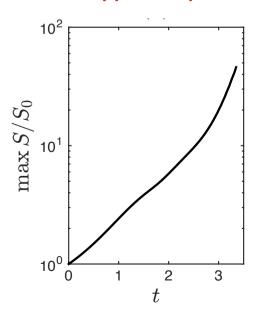
Ripple steepness



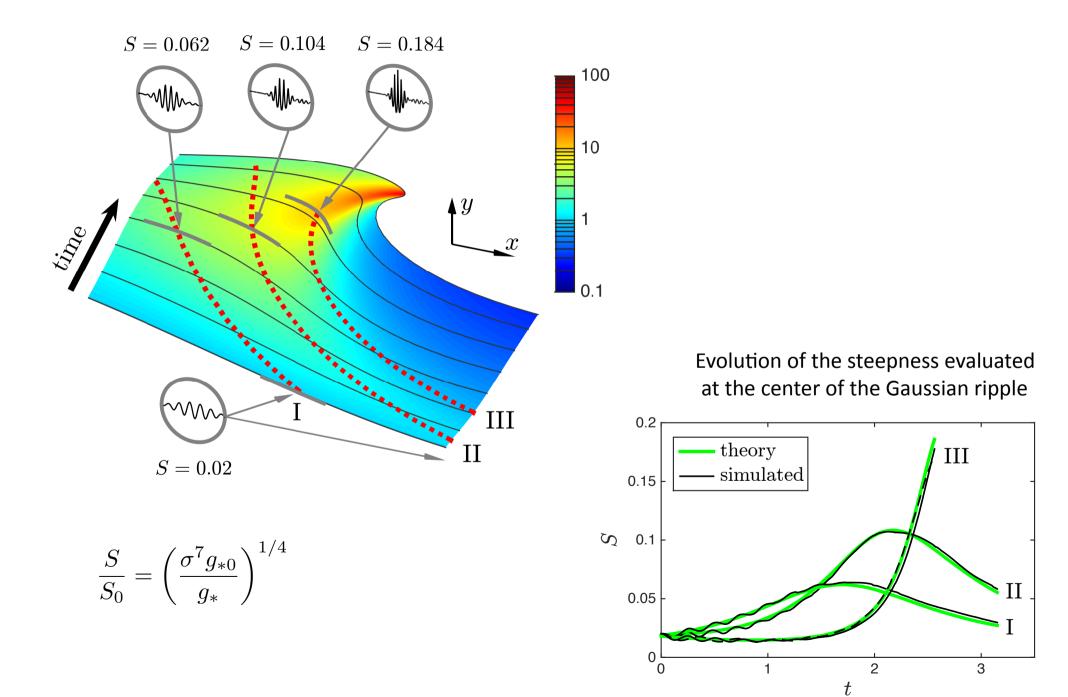
Super-exponential growth of ripple steepness

5

6

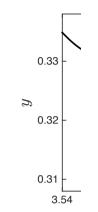


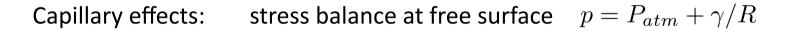
Gaussian ripples (theory vs. simulation)

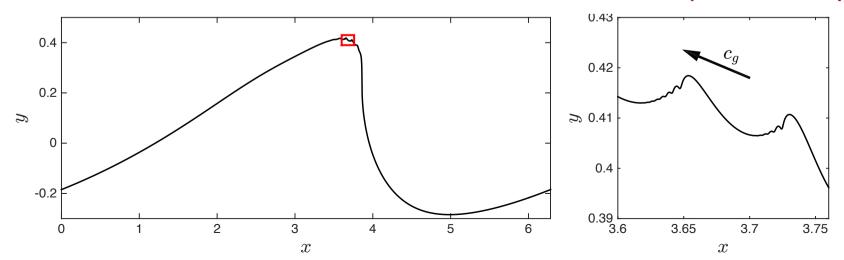


What is next?

Strongly nonlii







onset of parasitic instability

Conclusions

Ripples steepness on the slope of a breaking wave is governed by a simple formula:

$$\frac{S}{S_0} = \left(\frac{\sigma^7 g_{*0}}{g_*}\right)^{1/4}$$

(depends only on the marker density and effective gravity)

The theory is in good agreement with numerical simulations. It predicts the super-exponential increase of ripple steepness near the wave tip.

We observed numerically a start of the secondary "ripple breaking" generating the parasitic capillary instability.

Ripple instability may by an integral part of the multi-scale wave breaking phenomenon.

Thank you!

alexei.impa.br

