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The phenomenon of gravity wave breaking is described by the Euler equations

vt + v ·rv = �rp/⇢+ g, divv = 0, (2.1)

where the e↵ects of viscosity and surface tension are neglected; comments on capillary
e↵ects will be made later. In the two-dimensional formulation, (x, y) are the horizontal
and vertical coordinates, v = (u, v) is the fluid velocity satisfying the incompressibility
condition, ⇢ is the constant density and g is the vector of gravitational acceleration. We
will consider the potential flow over a flat rigid bottom, which is bounded from above by
a free surface y = F (x, t). A dimensionless formulation of the potential theory equations
(Landau & Lifshitz 1987; Whitham 2011) will be considered with a unit water depth,
density and gravity acceleration. For numerical convenience, we assume that the flow is
periodic in the horizontal direction with period 2⇡, and set the rigid bottom coordinate
at y = �1.

We write the (kinematic and dynamic) boundary conditions at the free surface as

y = F (x, t) : v = Ft + Fxu, p = Patm, (2.2)

where Patm is a constant atmospheric pressure, and the subscripts t, x and y are used in
this section to denote partial derivatives. At the bottom, we have

y = �1 : v = 0. (2.3)

For potential incompressible flow, we can introduce the complex potential � = '+ i ,
which is a holomorphic function of z = x + iy in the fluid domain. The real potential
function '(x, y, t) and the stream function  (x, y, t) are related to the fluid velocities as

u = 'x =  y, v = 'y = � x. (2.4)

Expressing velocities from (2.4) and the pressure from the Bernoulli equation, the
boundary conditions (2.2)–(2.3) can be written as (Landau & Lifshitz 1987; Whitham
2011)

y = F (x, t) : 'y = Ft + Fx'x, 't +
1

2

�
'2
x + '2

y

�
+ gy = 0, (2.5)

y = �1 : 'y = 0. (2.6)

Let z(⇣, t) with ⇣ = ⇠+ i⌘ be a conformal mapping from a horizontal strip �K 6 ⌘ 6 0
onto the fluid domain at time t. Such a mapping provides the free surface parametrization
as x + iy = z(⇠, t), with a real coordinate ⇠. Note that this mapping does not require
that the free surface equations can be resolved with respect to the vertical coordinate,
y = F (x, t), i.e., it can be used when the free boundary has overhanging sections. With
the method of complex analysis (Dyachenko et al. 1996b; Zakharov et al. 2002; Ribeiro
et al. 2017) one can describe the flow in the whole fluid domain in terms of real functions
defined at the free-surface; see the Appendix §6.1. In this description, the equations of
motion reduce to nonlocal di↵erential equations in one spatial dimension ⇠ and time t.
This setting is very convenient for simulating numerically the potential theory equations
taking advantage of properties of harmonic functions in a strip.

The following numerical results illustrate the wave overturning; details of the numerical
method are presented in the Appendix §6.2. Figure 1 shows a familiar overturning wave
profile above a flat rigid bottom at y = �1. Of particular interest at this stage, we
demonstrate the surface compression near the tip of a breaker displayed by numerical
markers. We have chosen the initial profile y = 0.35 cosx and the velocity potential at the
surface ' = (0.35/

p
tanh 1) sinx, motivated by the linear theory. We will use this specific
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Boundary	condiFons	at	rigid	boTom

Boundary	condiFons	at	free	surface
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Numerical	model

Dimensionless	units	(unit	density,	gravity	and	depth).

2π-periodic	boundary	condiFon	in	horizontal	direcFon.	

Conformal	mapping:
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from	a	horizontal	strip																										to	the	fluid	domain.
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Free	surface	parametrizaFon:
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The following numerical results illustrate the wave overturning; details of the numerical
method are presented in the Appendix §6.2. Figure 1 shows a familiar overturning wave
profile above a flat rigid bottom at y = �1. Of particular interest at this stage, we
demonstrate the surface compression near the tip of a breaker displayed by numerical
markers. We have chosen the initial profile y = 0.35 cosx and the velocity potential at the
surface ' = (0.35/

p
tanh 1) sinx, motivated by the linear theory. We will use this specific
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(RÂ⇠)�

⇣
1 + Â⇠
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T
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|ẑ⇠|2
, (6.3)
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|ẑ⇠|2
� |'̂⇠|2 � |R'̂⇠|2

2|ẑ⇠|2
� gŷ, (6.4)

where

|ẑ⇠| = |x̂⇠ + iŷ⇠| = |1 + (1 + iR)A⇠| , (6.5)

with

x̂(⇠, t) = ⇠ + Â(⇠, t), ŷ(⇠, t) = K(t)� 1 + RÂ(⇠, t). (6.6)

The operators R and T are defined as

Rf̂(⇠) =
X

m2Z
i tanh(Km)fmeim⇠, Tf̂(⇠) = �

X

m 6=0

i coth(Km)fmeim⇠, (6.7)

for any periodic function f̂(⇠) =
P

fmeim⇠. Here, the shape of the free surface is obtained
implicitly as x = x̂(⇠, t) and y = ŷ(⇠, t), where ⇠ is the auxiliary variable parametrizing
the surface.
The complex potential �(z, t) in the fluid domain is given implicitly by

� = (⇣̂ + iK)P + S'̂, z = i(K � 1) + ⇣̂ + SÂ, (6.8)

with the operator

Sf̂ =
X

m2Z

fm exp [im(⇣ + iK)]

coshKm
. (6.9)

Here ⇣ = ⇠ + i⌘ with �K 6 ⌘ 6 0, where the free surface corresponds to ⌘ = 0 and
the rigid bottom to ⌘ = �K. The velocity field can be obtained from the derivatives
of the potential using (2.4), and then the pressure is given by the Bernoulli equation,
't+

�
'2
x + '2

y

�
/2+ p/⇢+ gy = const. All quantities used in this paper can be computed

from the velocity and pressure distributions.
When surface tension � is taken into account, one substitutes equation (6.4) by (Dy-

achenko et al. 1996a)
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|ẑ⇠|2
� |'̂⇠|2 � |R'̂⇠|2

2|ẑ⇠|2
� gŷ � �

R
. (6.10)

Here the surface tension is represented by the last term, where the radius of curvature is
given by the standard relation R = (x̂2

⇠ + ŷ2⇠ )
3/2/(x̂⇠ ŷ⇠⇠ � ŷ⇠x̂⇠⇠).

6.2. Initial conditions and numerical scheme

Initial conditions for system (6.2)–(6.4) are obtained as follows. Consider the initial
wave profile given by the function y = yini(x); in our simulations we used yini(x) =
0.35 cosx. Then, initial condition for the function Â(⇠) is obtained as Â(⇠) = Tŷ(⇠), where
ŷ(⇠) is a limiting point of the iterative scheme ŷn+1(⇠) = yini (⇠ + Tŷn(⇠)) (n ! 1); see
(Yu & Howard 2012). Then for the initial function '̂(⇠), we have '̂(⇠) = 'ini(x̂(⇠)) with
x̂(⇠) = ⇠ + Tŷ(⇠), where 'ini(x) is the initial value of the real potential at free surface.

Explosive ripple instability due to incipient wave breaking 13

form (Dyachenko et al. 1996a; Zakharov et al. 2002; Ribeiro et al. 2017)

Kt = � 1

2⇡

Z 2⇡

0

R'̂⇠
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2|ẑ⇠|2
� gŷ � �
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x̂(⇠) = ⇠ + Tŷ(⇠), where 'ini(x) is the initial value of the real potential at free surface.

Explosive ripple instability due to incipient wave breaking 13

form (Dyachenko et al. 1996a; Zakharov et al. 2002; Ribeiro et al. 2017)

Kt = � 1

2⇡

Z 2⇡

0

R'̂⇠
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2|ẑ⇠|2
� gŷ � �
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(RÂ⇠)�

⇣
1 + Â⇠
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⇠ + ŷ2⇠ )
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x̂(⇠) = ⇠ + Tŷ(⇠), where 'ini(x) is the initial value of the real potential at free surface.

Explosive ripple instability due to incipient wave breaking 13

form (Dyachenko et al. 1996a; Zakharov et al. 2002; Ribeiro et al. 2017)

Kt = � 1

2⇡

Z 2⇡

0

R'̂⇠
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implicitly as x = x̂(⇠, t) and y = ŷ(⇠, t), where ⇠ is the auxiliary variable parametrizing
the surface.
The complex potential �(z, t) in the fluid domain is given implicitly by

� = (⇣̂ + iK)P + S'̂, z = i(K � 1) + ⇣̂ + SÂ, (6.8)
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Numerical	simulaFon

IniFal	condiFons	(linear	wave):

Explosive ripple instability due to incipient wave breaking 3

The phenomenon of gravity wave breaking is described by the Euler equations

vt + v ·rv = �rp/⇢+ g, divv = 0, (2.1)

where the e↵ects of viscosity and surface tension are neglected; comments on capillary
e↵ects will be made later. In the two-dimensional formulation, (x, y) are the horizontal
and vertical coordinates, v = (u, v) is the fluid velocity satisfying the incompressibility
condition, ⇢ is the constant density and g is the vector of gravitational acceleration. We
will consider the potential flow over a flat rigid bottom, which is bounded from above by
a free surface y = F (x, t). A dimensionless formulation of the potential theory equations
(Landau & Lifshitz 1987; Whitham 2011) will be considered with a unit water depth,
density and gravity acceleration. For numerical convenience, we assume that the flow is
periodic in the horizontal direction with period 2⇡, and set the rigid bottom coordinate
at y = �1.

We write the (kinematic and dynamic) boundary conditions at the free surface as

y = F (x, t) : v = Ft + Fxu, p = Patm, (2.2)

where Patm is a constant atmospheric pressure, and the subscripts t, x and y are used in
this section to denote partial derivatives. At the bottom, we have

y = �1 : v = 0. (2.3)

For potential incompressible flow, we can introduce the complex potential � = '+ i ,
which is a holomorphic function of z = x + iy in the fluid domain. The real potential
function '(x, y, t) and the stream function  (x, y, t) are related to the fluid velocities as

u = 'x =  y, v = 'y = � x. (2.4)

Expressing velocities from (2.4) and the pressure from the Bernoulli equation, the
boundary conditions (2.2)–(2.3) can be written as (Landau & Lifshitz 1987; Whitham
2011)

y = F (x, t) : 'y = Ft + Fx'x, 't +
1

2

�
'2
x + '2

y

�
+ gy = 0, (2.5)

y = �1 : 'y = 0. (2.6)

Let z(⇣, t) with ⇣ = ⇠+ i⌘ be a conformal mapping from a horizontal strip �K 6 ⌘ 6 0
onto the fluid domain at time t. Such a mapping provides the free surface parametrization
as x + iy = z(⇠, t), with a real coordinate ⇠. Note that this mapping does not require
that the free surface equations can be resolved with respect to the vertical coordinate,
y = F (x, t), i.e., it can be used when the free boundary has overhanging sections. With
the method of complex analysis (Dyachenko et al. 1996b; Zakharov et al. 2002; Ribeiro
et al. 2017) one can describe the flow in the whole fluid domain in terms of real functions
defined at the free-surface; see the Appendix §6.1. In this description, the equations of
motion reduce to nonlocal di↵erential equations in one spatial dimension ⇠ and time t.
This setting is very convenient for simulating numerically the potential theory equations
taking advantage of properties of harmonic functions in a strip.

The following numerical results illustrate the wave overturning; details of the numerical
method are presented in the Appendix §6.2. Figure 1 shows a familiar overturning wave
profile above a flat rigid bottom at y = �1. Of particular interest at this stage, we
demonstrate the surface compression near the tip of a breaker displayed by numerical
markers. We have chosen the initial profile y = 0.35 cosx and the velocity potential at the
surface ' = (0.35/

p
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This setting is very convenient for simulating numerically the potential theory equations
taking advantage of properties of harmonic functions in a strip.

The following numerical results illustrate the wave overturning; details of the numerical
method are presented in the Appendix §6.2. Figure 1 shows a familiar overturning wave
profile above a flat rigid bottom at y = �1. Of particular interest at this stage, we
demonstrate the surface compression near the tip of a breaker displayed by numerical
markers. We have chosen the initial profile y = 0.35 cosx and the velocity potential at the
surface ' = (0.35/

p
tanh 1) sinx, motivated by the linear theory. We will use this specific

RK4	in	Fme,	pseudo-spectral	in	space,	adapFve	spaFal	step	(final	2M	grid),	round-off-level	accuracy.	
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Figure 1. Profile of a breaking wave over a flat bottom y = �1 at three di↵erent times: t = 0, 2.6
and 3.35. Dot markers correspond to material points, which are distributed at equal distances

at initial time; for a better visualization we display only a few markers. The free surface is

strongly compressed at the overhanging tip, as seen by the increasing marker density, while it

gets stretched at the front slope on the right.
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Figure 2. Temporal dependence of the minimum curvature radius R along the free surface;

logarithmic vertical scale.

initial profile for all numerical simulations throughout the paper. We also performed
simulations for di↵erent initial conditions (not reported here) and observed qualitatively
the same results for all aspects discussed in this work.
The curvature of the profile displayed in Fig. 1 increases rapidly at the overhanging

tip. The plot of its minimal curvature radius as a function of time is presented in a
logarithmic vertical scale in Fig. 2, demonstrating the nearly exponential decrease at
later times. Similar solutions were reported in many earlier studies, as for example in
(Baker et al. 1982; Peregrine 1983; Grilli & Svendsen 1990; Baker & Xie 2011). There
exist initial conditions that can be rigorously tracked until a splash singularity (e.g.
intersection of the wave tip with the bottom) occurs in finite time (Castro et al. 2012).
But this strong overturning is not the main goal of our work. Considering the incipient
breaking wave as the large-scale underlying flow, our focus here will be on the study of
much shorter small-amplitude ripples evolving on the surface of such steepening wave
profiles (see Fig. 3).
Small-amplitude ripples are described, as a first approximation, with equations lin-

earized about the time-dependent unperturbed wave solution. Let us introduce a local
(arc length) coordinate s along the surface, which defines the surface spatial coordinates
as x(s, t) and y(s, t). Then it is convenient to consider ripple perturbations in the form of a
slowly modulated wavetrain (Bretherton & Garrett 1968; Peregrine 1976) with frequency
!(s, t), a carrier wavenumber k(s, t) and amplitude a(s, t). The regime of interest is such
that these ripple parameters may vary with position and time, where appreciable changes
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Figure 4. (a) Profiles of the e↵ective gravity g⇤ (in units of g) along the water surface at di↵erent

times; times and selected markers are the same as in Fig. 1. (b) Minimum and maximum of the
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3. Wave action and the adiabatic approximation for ripple evolution

The consistency conditions for second derivatives of phase in (2.7) yield the rela-
tion (Bretherton & Garrett 1968)

@k

@t
+

@!

@s
= 0, (3.1)

which can be written using (2.8) and (2.11) as the conservation law

@k

@t
+

@

@s
[(U + cp)k] = 0. (3.2)

In the adiabatic approximation, i.e., when the temporal and spatial scales of the ripple
are much smaller than the scales of the underlying flow (here the unperturbed wave),
one also has the conservation law (Bretherton & Garrett 1968)

@

@t

E

⌦
+

@

@s


(U + cg)

E

⌦

�
= 0, (3.3)

for the wave action density E/⌦. Here E is the ripple energy, which can be obtained by
considering a linear wave of amplitude a with the e↵ective gravitational acceleration g⇤.
Considering the time-averaged values over an oscillation period and equipartition of the
kinetic and potential energies, the local energy density of the ripple is written as (Landau
& Lifshitz 1987)

E =
1

2
⇢g⇤a

2. (3.4)

Note that the energy of the entire system is conserved, which means that the adiabatic
changes just described reflect the energy exchange between the large-scale motion of the
overturning wave and small-scale ripples on the water surface.

The two conservation laws (3.2) and (3.3) with the expressions (2.9), (2.11) and (3.4)
define the evolution of the local wavenumber k and amplitude a of the ripple. We will now
show that these equations can be solved approximately for the small ripples, when the
ripple wavelength ` = 2⇡/k is considered small compared to the scale of the unperturbed
nonlinear wave. As it follows from (2.11), such an assumption implies that the ripple
phase and group velocities are small compared to the local flow speed,

cp ⌧ U, cg ⌧ U. (3.5)

Min/max	local	intrinsic	gravity

No	Rayleigh-Taylor	
instability	(Wu,	1997)
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that these ripple parameters may vary with position and time, where appreciable changes
are observed after many periods (2⇡/!) and many wavelengths (2⇡/k). Then, in the first
approximation, the underlying flow due to the wave steepening is locally constant with
respect to the ripple, but accelerating in time. The frequency and wavenumber of the
ripple can be derived from the phase function ✓(s, t) by

! = �@✓

@t
, k =

@✓

@s
. (2.7)

If U(s, t) is the velocity at the fluid surface with respect to coordinate s, then as mentioned
in the introduction, one has (Bretherton & Garrett 1968)

! = Uk +⌦, (2.8)

where ⌦(s, t) is the local intrinsic frequency of the modulated Fourier mode in the
Lagrangian reference frame.

Since the deep-water approximation can be used for short wavelengths, the ripple’s
dispersion relation in a first approximation is given by (Landau & Lifshitz 1987, §12)

⌦ =
p
g⇤k. (2.9)

Here g⇤(s, t) is the e↵ective (intrinsic) gravity acting on the ripple in the local reference
frame, as its background flow is moving towards overturning. The e↵ective gravity is
defined as g⇤ = g � a, where a = (Dv/Dt) = �(rp)/⇢ + g is the material acceleration
at the surface, under the Euler equations (2.1). As a result, we have

g⇤ =
rp

⇢
= �g⇤n, (2.10)

where n is the surface normal vector. Recall that the pressure is constant at the free
boundary and, thus, its gradient is orthogonal to the surface. For the numerical results
in Fig. 1, the value of g⇤ along the wave profile at di↵erent times is shown in Fig. 4(a)
with the time dependence of its minimum and maximum presented in Fig. 4(b). At the
final time, g⇤ varies from the minimum g⇤ ⇡ 0.2g at the wave tip to the maximum
g⇤ ⇡ 3g at the foot of the wave. The value of g⇤ remains positive at all times in our
simulation. As proved by Wu (1997), the positivity of g⇤ holds as long as the interface
is non-selfintersecting. Therefore we are in the stable Rayleigh-Taylor regime. The local
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boundary and, thus, its gradient is orthogonal to the surface. For the numerical results
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where ⌦(s, t) is the local intrinsic frequency of the modulated Fourier mode in the
Lagrangian reference frame.

Since the deep-water approximation can be used for short wavelengths, the ripple’s
dispersion relation in a first approximation is given by (Landau & Lifshitz 1987, §12)
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Here g⇤(s, t) is the e↵ective (intrinsic) gravity acting on the ripple in the local reference
frame, as its background flow is moving towards overturning. The e↵ective gravity is
defined as g⇤ = g � a, where a = (Dv/Dt) = �(rp)/⇢ + g is the material acceleration
at the surface, under the Euler equations (2.1). As a result, we have
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where n is the surface normal vector. Recall that the pressure is constant at the free
boundary and, thus, its gradient is orthogonal to the surface. For the numerical results
in Fig. 1, the value of g⇤ along the wave profile at di↵erent times is shown in Fig. 4(a)
with the time dependence of its minimum and maximum presented in Fig. 4(b). At the
final time, g⇤ varies from the minimum g⇤ ⇡ 0.2g at the wave tip to the maximum
g⇤ ⇡ 3g at the foot of the wave. The value of g⇤ remains positive at all times in our
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frame, as its background flow is moving towards overturning. The e↵ective gravity is
defined as g⇤ = g � a, where a = (Dv/Dt) = �(rp)/⇢ + g is the material acceleration
at the surface, under the Euler equations (2.1). As a result, we have
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where n is the surface normal vector. Recall that the pressure is constant at the free
boundary and, thus, its gradient is orthogonal to the surface. For the numerical results
in Fig. 1, the value of g⇤ along the wave profile at di↵erent times is shown in Fig. 4(a)
with the time dependence of its minimum and maximum presented in Fig. 4(b). At the
final time, g⇤ varies from the minimum g⇤ ⇡ 0.2g at the wave tip to the maximum
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FIGURE 2. The plunging breaker when " = 0.5. The profiles are shown in sequence at
t = 3.1, 3.2, . . . , 4.0.

Interval N

0 6 t 6 3.54 2048
3.54 6 t 6 3.8 4096
3.8 6 t 6 4.0 8192

TABLE 1. Spatial resolution in each time range.

and 1t = 0.0002. The plain filter (2.12) with ✏0 = 10�11 is applied whenever a
derivative is needed. The filter (2.14) is applied after each time step, with ⇠0 = ⇡/4
and d = ⇡/40, to x, y and µ to contain the growth of round-off errors. The tolerance
level in (2.19) is set at ✏1 = 10�10. At t = 3.54, the amplitudes of the Fourier spectrum
begin to rise in absolute value above round-off errors near the end of the discrete
Fourier range N/2 = 1024. If the calculation is continued in time, accuracy is lost as
the Fourier spectrum continues to rise in magnitude. Instead, the spatial resolution is
doubled using interpolation based on the Fourier series. Now the spectrum is fully
resolved but continues to rise in absolute value until another re-doubling is necessary.
Table 1 presents the choice of N during each time range. By increasing resolution, the
number of digits of accuracy in the energy is better than 10 throughout the calculation.
The time step remains at 1t = 0.0002.

Quite clearly displayed in figure 2 is the increasing sharpness of the tip of the
plunging breaker. The curvature of the surface is given by

(p) =
xpypp � ypxpp

(x2
p
+ y2

p
)3/2

, (3.1)

and the curvature profile for the surface shown in figure 2 at the last time t = 4.0
is displayed in figure 3 along with the time evolution of the minimum. The results

Many	previous	numerical	studies	show	similar	regular	results:		
(Peregrine	1983;	Grilli	&	Svendsen	1990;	Baker	&	Xie	2011,	etc.)	

Baker	&	Xie	2011
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At every time step the vortex sheet strength g is obtained by
solving, via fixed point iteration, the following discrete inte-
gral equation:
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It has been shown in Ref. 3 that the Neumann series con-
verges globally. As remarked before, Dhf i is evolved in
time by applying Dh to Eq. ~13!.

Finally, the tangential and normal velocities are com-
puted from Wi as follows:
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Here Inth stands for the pseudospectral approximation to in-
tegration with the zeroth mode set to zero.

Following the lines of the proof given in Ref. 6, it can be
shown that this discretization yields a convergent spectral
method for sufficiently smooth solutions.27

B. An efficient time discretization

To achieve an efficient time discretization without the
high-order time-step constraint introduced by the surface ten-
sion, we perform a small-scale decomposition as done by
Hou, Lowengrub, and Shelley20 to separate the terms con-
tributing to the stiffness in the equations of motion.

The dominant small-scale terms are the curvature in the
Bernoulli equation and the derivative of the normal velocity
in the evolution equation for u. It can be shown that20

Ui
N5

1
2s

Hh g i1Rh g i ,

where

Hh f i5
1
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j52N/211
~ j2i !odd
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f j cot
1
2 ~a i2a j!2h ~18!

is a discrete version of the Hilbert transform for periodic
functions and Rh g i is a smoother term. Also, from the inte-
gral equation for g i we have that, to leading order g i
;2 Dhf i . Therefore, the discrete evolution equations can
be written as

du i
dt 5

1
s2
HhSh

2f i
p1Pi , ~19!

df i

dt 5
t

s
Dh u i

p1Qi , ~20!

where Pi and Qi are lower-order terms at small spatial scales
and can be treated explicitly in time. We have also used the
fact that s is constant in a.

With this decomposition, semi-implicit time integration
methods are straightforward and easy to implement. The im-
plicit terms can be inverted fast in Fourier space. Here, we
employ the fourth-order multistep implicit/explicit scheme
developed by Ascher, Ruuth, and Wetton.28

IV. WEAK VISCOUS EFFECTS

In this section we present the modified equations to in-
corporate weak viscous effects into our boundary integral
formulation for water waves. The basic idea from Lundgren
and Mansour25 is the assumption that viscous effects for
free-surface problems are confined to thin weak vortical
boundary layers. The viscous correction can be expressed
completely in terms of the interior potential flow as a modi-
fication to the boundary conditions. Here we only give the
equations. Their derivation can be obtained following Refs.
29 and 25.

The modified evolution equations are

zt*5W1
za*
uzau ~UA2iuN!; uN52

ca

uzau , ~21!

c t52
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uzau Re$zaWa%2
2n
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2n

uzau Re$zaWa%, ~23!

where W is again the complex velocity given by ~1!, c is the
streamfunction, and n is the viscosity coefficient ~nondimen-
sionalized with length scale l and velocity scale ḡ). These
equations are an asymptotic approximation to order O(n3/2)

FIG. 1. Breaking wave profiles for t50.001 at times t50, 0.30, and 0.45.
Here N52048 and Dt5531025.
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Capillary	effects	and	parasiFc	instability:	
(Longuet-Higgins	1995,	Ceniceros	&	Hou	1999,	Dyachenko	&	Newell	2016,	etc.)
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Figure 1. Profile of a breaking wave over a flat bottom y = �1 at three di↵erent times: t = 0, 2.6
and 3.35. Dot markers correspond to material points, which are distributed at equal distances

at initial time; for a better visualization we display only a few markers. The free surface is

strongly compressed at the overhanging tip, as seen by the increasing marker density, while it

gets stretched at the front slope on the right.
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Figure 2. Temporal dependence of the minimum curvature radius R along the free surface;

logarithmic vertical scale.

initial profile for all numerical simulations throughout the paper. We also performed
simulations for di↵erent initial conditions (not reported here) and observed qualitatively
the same results for all aspects discussed in this work.
The curvature of the profile displayed in Fig. 1 increases rapidly at the overhanging

tip. The plot of its minimal curvature radius as a function of time is presented in a
logarithmic vertical scale in Fig. 2, demonstrating the nearly exponential decrease at
later times. Similar solutions were reported in many earlier studies, as for example in
(Baker et al. 1982; Peregrine 1983; Grilli & Svendsen 1990; Baker & Xie 2011). There
exist initial conditions that can be rigorously tracked until a splash singularity (e.g.
intersection of the wave tip with the bottom) occurs in finite time (Castro et al. 2012).
But this strong overturning is not the main goal of our work. Considering the incipient
breaking wave as the large-scale underlying flow, our focus here will be on the study of
much shorter small-amplitude ripples evolving on the surface of such steepening wave
profiles (see Fig. 3).
Small-amplitude ripples are described, as a first approximation, with equations lin-

earized about the time-dependent unperturbed wave solution. Let us introduce a local
(arc length) coordinate s along the surface, which defines the surface spatial coordinates
as x(s, t) and y(s, t). Then it is convenient to consider ripple perturbations in the form of a
slowly modulated wavetrain (Bretherton & Garrett 1968; Peregrine 1976) with frequency
!(s, t), a carrier wavenumber k(s, t) and amplitude a(s, t). The regime of interest is such
that these ripple parameters may vary with position and time, where appreciable changes
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initial profile for all numerical simulations throughout the paper. We also performed
simulations for di↵erent initial conditions (not reported here) and observed qualitatively
the same results for all aspects discussed in this work.
The curvature of the profile displayed in Fig. 1 increases rapidly at the overhanging

tip. The plot of its minimal curvature radius as a function of time is presented in a
logarithmic vertical scale in Fig. 2, demonstrating the nearly exponential decrease at
later times. Similar solutions were reported in many earlier studies, as for example in
(Baker et al. 1982; Peregrine 1983; Grilli & Svendsen 1990; Baker & Xie 2011). There
exist initial conditions that can be rigorously tracked until a splash singularity (e.g.
intersection of the wave tip with the bottom) occurs in finite time (Castro et al. 2012).
But this strong overturning is not the main goal of our work. Considering the incipient
breaking wave as the large-scale underlying flow, our focus here will be on the study of
much shorter small-amplitude ripples evolving on the surface of such steepening wave
profiles (see Fig. 3).
Small-amplitude ripples are described, as a first approximation, with equations lin-

earized about the time-dependent unperturbed wave solution. Let us introduce a local
(arc length) coordinate s along the surface, which defines the surface spatial coordinates
as x(s, t) and y(s, t). Then it is convenient to consider ripple perturbations in the form of a
slowly modulated wavetrain (Bretherton & Garrett 1968; Peregrine 1976) with frequency
!(s, t), a carrier wavenumber k(s, t) and amplitude a(s, t). The regime of interest is such
that these ripple parameters may vary with position and time, where appreciable changes
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initial profile for all numerical simulations throughout the paper. We also performed
simulations for di↵erent initial conditions (not reported here) and observed qualitatively
the same results for all aspects discussed in this work.
The curvature of the profile displayed in Fig. 1 increases rapidly at the overhanging

tip. The plot of its minimal curvature radius as a function of time is presented in a
logarithmic vertical scale in Fig. 2, demonstrating the nearly exponential decrease at
later times. Similar solutions were reported in many earlier studies, as for example in
(Baker et al. 1982; Peregrine 1983; Grilli & Svendsen 1990; Baker & Xie 2011). There
exist initial conditions that can be rigorously tracked until a splash singularity (e.g.
intersection of the wave tip with the bottom) occurs in finite time (Castro et al. 2012).
But this strong overturning is not the main goal of our work. Considering the incipient
breaking wave as the large-scale underlying flow, our focus here will be on the study of
much shorter small-amplitude ripples evolving on the surface of such steepening wave
profiles (see Fig. 3).
Small-amplitude ripples are described, as a first approximation, with equations lin-

earized about the time-dependent unperturbed wave solution. Let us introduce a local
(arc length) coordinate s along the surface, which defines the surface spatial coordinates
as x(s, t) and y(s, t). Then it is convenient to consider ripple perturbations in the form of a
slowly modulated wavetrain (Bretherton & Garrett 1968; Peregrine 1976) with frequency
!(s, t), a carrier wavenumber k(s, t) and amplitude a(s, t). The regime of interest is such
that these ripple parameters may vary with position and time, where appreciable changes

Regime	of	interest:	appreciable	changes	are	observed	aper	many	periods	(2π/ω)	and	wavelengths	(2π/k)		
(small	amplitude,	short	wavelength)
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are observed after many periods (2⇡/!) and many wavelengths (2⇡/k). Then, in the first
approximation, the underlying flow due to the wave steepening is locally constant with
respect to the ripple, but accelerating in time. The frequency and wavenumber of the
ripple can be derived from the phase function ✓(s, t) by

! = �@✓

@t
, k =

@✓

@s
. (2.7)

If U(s, t) is the velocity at the fluid surface with respect to coordinate s, then as mentioned
in the introduction, one has (Bretherton & Garrett 1968)

! = Uk +⌦, (2.8)

where ⌦(s, t) is the local intrinsic frequency of the modulated Fourier mode in the
Lagrangian reference frame.

Since the deep-water approximation can be used for short wavelengths, the ripple’s
dispersion relation in a first approximation is given by (Landau & Lifshitz 1987, §12)

⌦ =
p
g⇤k. (2.9)

Here g⇤(s, t) is the e↵ective (intrinsic) gravity acting on the ripple in the local reference
frame, as its background flow is moving towards overturning. The e↵ective gravity is
defined as g⇤ = g � a, where a = (Dv/Dt) = �(rp)/⇢ + g is the material acceleration
at the surface, under the Euler equations (2.1). As a result, we have

g⇤ =
rp

⇢
= �g⇤n, (2.10)

where n is the surface normal vector. Recall that the pressure is constant at the free
boundary and, thus, its gradient is orthogonal to the surface. For the numerical results
in Fig. 1, the value of g⇤ along the wave profile at di↵erent times is shown in Fig. 4(a)
with the time dependence of its minimum and maximum presented in Fig. 4(b). At the
final time, g⇤ varies from the minimum g⇤ ⇡ 0.2g at the wave tip to the maximum
g⇤ ⇡ 3g at the foot of the wave. The value of g⇤ remains positive at all times in our
simulation. As proved by Wu (1997), the positivity of g⇤ holds as long as the interface
is non-selfintersecting. Therefore we are in the stable Rayleigh-Taylor regime. The local
phase speed cp and group speed cg are defined as

cp =
⌦

k
=

r
g⇤
k
, cg =
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@k
=

1
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r
g⇤
k
, (2.11)

in the Lagrangian reference frame.
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are observed after many periods (2⇡/!) and many wavelengths (2⇡/k). Then, in the first
approximation, the underlying flow due to the wave steepening is locally constant with
respect to the ripple, but accelerating in time. The frequency and wavenumber of the
ripple can be derived from the phase function ✓(s, t) by
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If U(s, t) is the velocity at the fluid surface with respect to coordinate s, then as mentioned
in the introduction, one has (Bretherton & Garrett 1968)

! = Uk +⌦, (2.8)

where ⌦(s, t) is the local intrinsic frequency of the modulated Fourier mode in the
Lagrangian reference frame.

Since the deep-water approximation can be used for short wavelengths, the ripple’s
dispersion relation in a first approximation is given by (Landau & Lifshitz 1987, §12)

⌦ =
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Here g⇤(s, t) is the e↵ective (intrinsic) gravity acting on the ripple in the local reference
frame, as its background flow is moving towards overturning. The e↵ective gravity is
defined as g⇤ = g � a, where a = (Dv/Dt) = �(rp)/⇢ + g is the material acceleration
at the surface, under the Euler equations (2.1). As a result, we have

g⇤ =
rp

⇢
= �g⇤n, (2.10)

where n is the surface normal vector. Recall that the pressure is constant at the free
boundary and, thus, its gradient is orthogonal to the surface. For the numerical results
in Fig. 1, the value of g⇤ along the wave profile at di↵erent times is shown in Fig. 4(a)
with the time dependence of its minimum and maximum presented in Fig. 4(b). At the
final time, g⇤ varies from the minimum g⇤ ⇡ 0.2g at the wave tip to the maximum
g⇤ ⇡ 3g at the foot of the wave. The value of g⇤ remains positive at all times in our
simulation. As proved by Wu (1997), the positivity of g⇤ holds as long as the interface
is non-selfintersecting. Therefore we are in the stable Rayleigh-Taylor regime. The local
phase speed cp and group speed cg are defined as
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are observed after many periods (2⇡/!) and many wavelengths (2⇡/k). Then, in the first
approximation, the underlying flow due to the wave steepening is locally constant with
respect to the ripple, but accelerating in time. The frequency and wavenumber of the
ripple can be derived from the phase function ✓(s, t) by
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If U(s, t) is the velocity at the fluid surface with respect to coordinate s, then as mentioned
in the introduction, one has (Bretherton & Garrett 1968)

! = Uk +⌦, (2.8)

where ⌦(s, t) is the local intrinsic frequency of the modulated Fourier mode in the
Lagrangian reference frame.

Since the deep-water approximation can be used for short wavelengths, the ripple’s
dispersion relation in a first approximation is given by (Landau & Lifshitz 1987, §12)

⌦ =
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g⇤k. (2.9)

Here g⇤(s, t) is the e↵ective (intrinsic) gravity acting on the ripple in the local reference
frame, as its background flow is moving towards overturning. The e↵ective gravity is
defined as g⇤ = g � a, where a = (Dv/Dt) = �(rp)/⇢ + g is the material acceleration
at the surface, under the Euler equations (2.1). As a result, we have

g⇤ =
rp

⇢
= �g⇤n, (2.10)

where n is the surface normal vector. Recall that the pressure is constant at the free
boundary and, thus, its gradient is orthogonal to the surface. For the numerical results
in Fig. 1, the value of g⇤ along the wave profile at di↵erent times is shown in Fig. 4(a)
with the time dependence of its minimum and maximum presented in Fig. 4(b). At the
final time, g⇤ varies from the minimum g⇤ ⇡ 0.2g at the wave tip to the maximum
g⇤ ⇡ 3g at the foot of the wave. The value of g⇤ remains positive at all times in our
simulation. As proved by Wu (1997), the positivity of g⇤ holds as long as the interface
is non-selfintersecting. Therefore we are in the stable Rayleigh-Taylor regime. The local
phase speed cp and group speed cg are defined as
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are observed after many periods (2⇡/!) and many wavelengths (2⇡/k). Then, in the first
approximation, the underlying flow due to the wave steepening is locally constant with
respect to the ripple, but accelerating in time. The frequency and wavenumber of the
ripple can be derived from the phase function ✓(s, t) by
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If U(s, t) is the velocity at the fluid surface with respect to coordinate s, then as mentioned
in the introduction, one has (Bretherton & Garrett 1968)

! = Uk +⌦, (2.8)

where ⌦(s, t) is the local intrinsic frequency of the modulated Fourier mode in the
Lagrangian reference frame.

Since the deep-water approximation can be used for short wavelengths, the ripple’s
dispersion relation in a first approximation is given by (Landau & Lifshitz 1987, §12)

⌦ =
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g⇤k. (2.9)

Here g⇤(s, t) is the e↵ective (intrinsic) gravity acting on the ripple in the local reference
frame, as its background flow is moving towards overturning. The e↵ective gravity is
defined as g⇤ = g � a, where a = (Dv/Dt) = �(rp)/⇢ + g is the material acceleration
at the surface, under the Euler equations (2.1). As a result, we have

g⇤ =
rp

⇢
= �g⇤n, (2.10)

where n is the surface normal vector. Recall that the pressure is constant at the free
boundary and, thus, its gradient is orthogonal to the surface. For the numerical results
in Fig. 1, the value of g⇤ along the wave profile at di↵erent times is shown in Fig. 4(a)
with the time dependence of its minimum and maximum presented in Fig. 4(b). At the
final time, g⇤ varies from the minimum g⇤ ⇡ 0.2g at the wave tip to the maximum
g⇤ ⇡ 3g at the foot of the wave. The value of g⇤ remains positive at all times in our
simulation. As proved by Wu (1997), the positivity of g⇤ holds as long as the interface
is non-selfintersecting. Therefore we are in the stable Rayleigh-Taylor regime. The local
phase speed cp and group speed cg are defined as
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are observed after many periods (2⇡/!) and many wavelengths (2⇡/k). Then, in the first
approximation, the underlying flow due to the wave steepening is locally constant with
respect to the ripple, but accelerating in time. The frequency and wavenumber of the
ripple can be derived from the phase function ✓(s, t) by
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If U(s, t) is the velocity at the fluid surface with respect to coordinate s, then as mentioned
in the introduction, one has (Bretherton & Garrett 1968)

! = Uk +⌦, (2.8)

where ⌦(s, t) is the local intrinsic frequency of the modulated Fourier mode in the
Lagrangian reference frame.

Since the deep-water approximation can be used for short wavelengths, the ripple’s
dispersion relation in a first approximation is given by (Landau & Lifshitz 1987, §12)

⌦ =
p
g⇤k. (2.9)

Here g⇤(s, t) is the e↵ective (intrinsic) gravity acting on the ripple in the local reference
frame, as its background flow is moving towards overturning. The e↵ective gravity is
defined as g⇤ = g � a, where a = (Dv/Dt) = �(rp)/⇢ + g is the material acceleration
at the surface, under the Euler equations (2.1). As a result, we have

g⇤ =
rp

⇢
= �g⇤n, (2.10)

where n is the surface normal vector. Recall that the pressure is constant at the free
boundary and, thus, its gradient is orthogonal to the surface. For the numerical results
in Fig. 1, the value of g⇤ along the wave profile at di↵erent times is shown in Fig. 4(a)
with the time dependence of its minimum and maximum presented in Fig. 4(b). At the
final time, g⇤ varies from the minimum g⇤ ⇡ 0.2g at the wave tip to the maximum
g⇤ ⇡ 3g at the foot of the wave. The value of g⇤ remains positive at all times in our
simulation. As proved by Wu (1997), the positivity of g⇤ holds as long as the interface
is non-selfintersecting. Therefore we are in the stable Rayleigh-Taylor regime. The local
phase speed cp and group speed cg are defined as
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in the Lagrangian reference frame.
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3. Wave action and the adiabatic approximation for ripple evolution

The consistency conditions for second derivatives of phase in (2.7) yield the rela-
tion (Bretherton & Garrett 1968)

@k

@t
+

@!

@s
= 0, (3.1)

which can be written using (2.8) and (2.11) as the conservation law

@k

@t
+

@

@s
[(U + cp)k] = 0. (3.2)

In the adiabatic approximation, i.e., when the temporal and spatial scales of the ripple
are much smaller than the scales of the underlying flow (here the unperturbed wave),
one also has the conservation law (Bretherton & Garrett 1968)

@

@t

E

⌦
+

@

@s


(U + cg)

E

⌦

�
= 0, (3.3)

for the wave action density E/⌦. Here E is the ripple energy, which can be obtained by
considering a linear wave of amplitude a with the e↵ective gravitational acceleration g⇤.
Considering the time-averaged values over an oscillation period and equipartition of the
kinetic and potential energies, the local energy density of the ripple is written as (Landau
& Lifshitz 1987)

E =
1

2
⇢g⇤a

2. (3.4)

Note that the energy of the entire system is conserved, which means that the adiabatic
changes just described reflect the energy exchange between the large-scale motion of the
overturning wave and small-scale ripples on the water surface.

The two conservation laws (3.2) and (3.3) with the expressions (2.9), (2.11) and (3.4)
define the evolution of the local wavenumber k and amplitude a of the ripple. We will now
show that these equations can be solved approximately for the small ripples, when the
ripple wavelength ` = 2⇡/k is considered small compared to the scale of the unperturbed
nonlinear wave. As it follows from (2.11), such an assumption implies that the ripple
phase and group velocities are small compared to the local flow speed,

cp ⌧ U, cg ⌧ U. (3.5)

Use	the	Doppler-shiped	frequency	and		
expression	for	the	phase	speed:
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3. Wave action and the adiabatic approximation for ripple evolution

The consistency conditions for second derivatives of phase in (2.7) yield the rela-
tion (Bretherton & Garrett 1968)

@k

@t
+

@!

@s
= 0, (3.1)

which can be written using (2.8) and (2.11) as the conservation law

@k

@t
+

@

@s
[(U + cp)k] = 0. (3.2)

In the adiabatic approximation, i.e., when the temporal and spatial scales of the ripple
are much smaller than the scales of the underlying flow (here the unperturbed wave),
one also has the conservation law (Bretherton & Garrett 1968)
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⌦
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(U + cg)

E

⌦

�
= 0, (3.3)

for the wave action density E/⌦. Here E is the ripple energy, which can be obtained by
considering a linear wave of amplitude a with the e↵ective gravitational acceleration g⇤.
Considering the time-averaged values over an oscillation period and equipartition of the
kinetic and potential energies, the local energy density of the ripple is written as (Landau
& Lifshitz 1987)

E =
1

2
⇢g⇤a

2. (3.4)

Note that the energy of the entire system is conserved, which means that the adiabatic
changes just described reflect the energy exchange between the large-scale motion of the
overturning wave and small-scale ripples on the water surface.

The two conservation laws (3.2) and (3.3) with the expressions (2.9), (2.11) and (3.4)
define the evolution of the local wavenumber k and amplitude a of the ripple. We will now
show that these equations can be solved approximately for the small ripples, when the
ripple wavelength ` = 2⇡/k is considered small compared to the scale of the unperturbed
nonlinear wave. As it follows from (2.11), such an assumption implies that the ripple
phase and group velocities are small compared to the local flow speed,

cp ⌧ U, cg ⌧ U. (3.5)

Second	conserva)on	law:

(Bretherton	&	GarreT	1968)	
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3. Wave action and the adiabatic approximation for ripple evolution

The consistency conditions for second derivatives of phase in (2.7) yield the rela-
tion (Bretherton & Garrett 1968)

@k
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@s
= 0, (3.1)

which can be written using (2.8) and (2.11) as the conservation law
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@
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[(U + cp)k] = 0. (3.2)

In the adiabatic approximation, i.e., when the temporal and spatial scales of the ripple
are much smaller than the scales of the underlying flow (here the unperturbed wave),
one also has the conservation law (Bretherton & Garrett 1968)
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(U + cg)

E

⌦

�
= 0, (3.3)

for the wave action density E/⌦. Here E is the ripple energy, which can be obtained by
considering a linear wave of amplitude a with the e↵ective gravitational acceleration g⇤.
Considering the time-averaged values over an oscillation period and equipartition of the
kinetic and potential energies, the local energy density of the ripple is written as (Landau
& Lifshitz 1987)

E =
1

2
⇢g⇤a

2. (3.4)

Note that the energy of the entire system is conserved, which means that the adiabatic
changes just described reflect the energy exchange between the large-scale motion of the
overturning wave and small-scale ripples on the water surface.

The two conservation laws (3.2) and (3.3) with the expressions (2.9), (2.11) and (3.4)
define the evolution of the local wavenumber k and amplitude a of the ripple. We will now
show that these equations can be solved approximately for the small ripples, when the
ripple wavelength ` = 2⇡/k is considered small compared to the scale of the unperturbed
nonlinear wave. As it follows from (2.11), such an assumption implies that the ripple
phase and group velocities are small compared to the local flow speed,

cp ⌧ U, cg ⌧ U. (3.5)

is	the	wave	acFon	density	
(energy	density/intrinsic	frequency)
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3. Wave action and the adiabatic approximation for ripple evolution

The consistency conditions for second derivatives of phase in (2.7) yield the rela-
tion (Bretherton & Garrett 1968)
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which can be written using (2.8) and (2.11) as the conservation law
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In the adiabatic approximation, i.e., when the temporal and spatial scales of the ripple
are much smaller than the scales of the underlying flow (here the unperturbed wave),
one also has the conservation law (Bretherton & Garrett 1968)
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for the wave action density E/⌦. Here E is the ripple energy, which can be obtained by
considering a linear wave of amplitude a with the e↵ective gravitational acceleration g⇤.
Considering the time-averaged values over an oscillation period and equipartition of the
kinetic and potential energies, the local energy density of the ripple is written as (Landau
& Lifshitz 1987)

E =
1

2
⇢g⇤a

2. (3.4)

Note that the energy of the entire system is conserved, which means that the adiabatic
changes just described reflect the energy exchange between the large-scale motion of the
overturning wave and small-scale ripples on the water surface.

The two conservation laws (3.2) and (3.3) with the expressions (2.9), (2.11) and (3.4)
define the evolution of the local wavenumber k and amplitude a of the ripple. We will now
show that these equations can be solved approximately for the small ripples, when the
ripple wavelength ` = 2⇡/k is considered small compared to the scale of the unperturbed
nonlinear wave. As it follows from (2.11), such an assumption implies that the ripple
phase and group velocities are small compared to the local flow speed,

cp ⌧ U, cg ⌧ U. (3.5)

The	next	equaFon	is	valid	asymptoFcally		
in	the	adiabaFc	limit,	i.e.,	for	slow		
variaFons	of	the	underlying	flow



ExplanaFon

Consider	a	Hamiltonian	system	with	one	degree	of	freedom	(a	linear	oscillator).	
Let	parameters	change	slowly	in	Fme.	Then	the	adiabaFc	invariant	is	conserved:	

																																																=			oscillator	energy	divided	by	its	frequency
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3. Wave action and the adiabatic approximation for ripple evolution

The consistency conditions for second derivatives of phase in (2.7) yield the rela-
tion (Bretherton & Garrett 1968)
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which can be written using (2.8) and (2.11) as the conservation law
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In the adiabatic approximation, i.e., when the temporal and spatial scales of the ripple
are much smaller than the scales of the underlying flow (here the unperturbed wave),
one also has the conservation law (Bretherton & Garrett 1968)
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for the wave action density E/⌦. Here E is the ripple energy, which can be obtained by
considering a linear wave of amplitude a with the e↵ective gravitational acceleration g⇤.
Considering the time-averaged values over an oscillation period and equipartition of the
kinetic and potential energies, the local energy density of the ripple is written as (Landau
& Lifshitz 1987)

E =
1

2
⇢g⇤a

2. (3.4)

Note that the energy of the entire system is conserved, which means that the adiabatic
changes just described reflect the energy exchange between the large-scale motion of the
overturning wave and small-scale ripples on the water surface.

The two conservation laws (3.2) and (3.3) with the expressions (2.9), (2.11) and (3.4)
define the evolution of the local wavenumber k and amplitude a of the ripple. We will now
show that these equations can be solved approximately for the small ripples, when the
ripple wavelength ` = 2⇡/k is considered small compared to the scale of the unperturbed
nonlinear wave. As it follows from (2.11), such an assumption implies that the ripple
phase and group velocities are small compared to the local flow speed,

cp ⌧ U, cg ⌧ U. (3.5)

Example:		

for	a	pendulum	with	slowly	changing	length,	
the	energy	changes	proporFonally	to	frequency.
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& Lifshitz 1987)

E =
1

2
⇢g⇤a

2. (3.4)

Note that the energy of the entire system is conserved, which means that the adiabatic
changes just described reflect the energy exchange between the large-scale motion of the
overturning wave and small-scale ripples on the water surface.

The two conservation laws (3.2) and (3.3) with the expressions (2.9), (2.11) and (3.4)
define the evolution of the local wavenumber k and amplitude a of the ripple. We will now
show that these equations can be solved approximately for the small ripples, when the
ripple wavelength ` = 2⇡/k is considered small compared to the scale of the unperturbed
nonlinear wave. As it follows from (2.11), such an assumption implies that the ripple
phase and group velocities are small compared to the local flow speed,
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3. Wave action and the adiabatic approximation for ripple evolution

The consistency conditions for second derivatives of phase in (2.7) yield the rela-
tion (Bretherton & Garrett 1968)
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which can be written using (2.8) and (2.11) as the conservation law
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In the adiabatic approximation, i.e., when the temporal and spatial scales of the ripple
are much smaller than the scales of the underlying flow (here the unperturbed wave),
one also has the conservation law (Bretherton & Garrett 1968)
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for the wave action density E/⌦. Here E is the ripple energy, which can be obtained by
considering a linear wave of amplitude a with the e↵ective gravitational acceleration g⇤.
Considering the time-averaged values over an oscillation period and equipartition of the
kinetic and potential energies, the local energy density of the ripple is written as (Landau
& Lifshitz 1987)

E =
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2. (3.4)

Note that the energy of the entire system is conserved, which means that the adiabatic
changes just described reflect the energy exchange between the large-scale motion of the
overturning wave and small-scale ripples on the water surface.

The two conservation laws (3.2) and (3.3) with the expressions (2.9), (2.11) and (3.4)
define the evolution of the local wavenumber k and amplitude a of the ripple. We will now
show that these equations can be solved approximately for the small ripples, when the
ripple wavelength ` = 2⇡/k is considered small compared to the scale of the unperturbed
nonlinear wave. As it follows from (2.11), such an assumption implies that the ripple
phase and group velocities are small compared to the local flow speed,

cp ⌧ U, cg ⌧ U. (3.5)

number	of	oscillators

adiaba)c	invariant

Euler	equaFons	is		
a	Hamiltonian	system.	
Ripple	is	a	linear	oscillator.



AdiabaFc	Lagrangian	invariants
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3. Wave action and the adiabatic approximation for ripple evolution

The consistency conditions for second derivatives of phase in (2.7) yield the rela-
tion (Bretherton & Garrett 1968)
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In the adiabatic approximation, i.e., when the temporal and spatial scales of the ripple
are much smaller than the scales of the underlying flow (here the unperturbed wave),
one also has the conservation law (Bretherton & Garrett 1968)
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for the wave action density E/⌦. Here E is the ripple energy, which can be obtained by
considering a linear wave of amplitude a with the e↵ective gravitational acceleration g⇤.
Considering the time-averaged values over an oscillation period and equipartition of the
kinetic and potential energies, the local energy density of the ripple is written as (Landau
& Lifshitz 1987)

E =
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2. (3.4)

Note that the energy of the entire system is conserved, which means that the adiabatic
changes just described reflect the energy exchange between the large-scale motion of the
overturning wave and small-scale ripples on the water surface.

The two conservation laws (3.2) and (3.3) with the expressions (2.9), (2.11) and (3.4)
define the evolution of the local wavenumber k and amplitude a of the ripple. We will now
show that these equations can be solved approximately for the small ripples, when the
ripple wavelength ` = 2⇡/k is considered small compared to the scale of the unperturbed
nonlinear wave. As it follows from (2.11), such an assumption implies that the ripple
phase and group velocities are small compared to the local flow speed,

cp ⌧ U, cg ⌧ U. (3.5)
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3. Wave action and the adiabatic approximation for ripple evolution

The consistency conditions for second derivatives of phase in (2.7) yield the rela-
tion (Bretherton & Garrett 1968)
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= 0, (3.1)

which can be written using (2.8) and (2.11) as the conservation law
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+

@

@s
[(U + cp)k] = 0. (3.2)

In the adiabatic approximation, i.e., when the temporal and spatial scales of the ripple
are much smaller than the scales of the underlying flow (here the unperturbed wave),
one also has the conservation law (Bretherton & Garrett 1968)
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= 0, (3.3)

for the wave action density E/⌦. Here E is the ripple energy, which can be obtained by
considering a linear wave of amplitude a with the e↵ective gravitational acceleration g⇤.
Considering the time-averaged values over an oscillation period and equipartition of the
kinetic and potential energies, the local energy density of the ripple is written as (Landau
& Lifshitz 1987)

E =
1

2
⇢g⇤a

2. (3.4)

Note that the energy of the entire system is conserved, which means that the adiabatic
changes just described reflect the energy exchange between the large-scale motion of the
overturning wave and small-scale ripples on the water surface.

The two conservation laws (3.2) and (3.3) with the expressions (2.9), (2.11) and (3.4)
define the evolution of the local wavenumber k and amplitude a of the ripple. We will now
show that these equations can be solved approximately for the small ripples, when the
ripple wavelength ` = 2⇡/k is considered small compared to the scale of the unperturbed
nonlinear wave. As it follows from (2.11), such an assumption implies that the ripple
phase and group velocities are small compared to the local flow speed,

cp ⌧ U, cg ⌧ U. (3.5)

For	short	wavelength	ripples:
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3. Wave action and the adiabatic approximation for ripple evolution

The consistency conditions for second derivatives of phase in (2.7) yield the rela-
tion (Bretherton & Garrett 1968)
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which can be written using (2.8) and (2.11) as the conservation law
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In the adiabatic approximation, i.e., when the temporal and spatial scales of the ripple
are much smaller than the scales of the underlying flow (here the unperturbed wave),
one also has the conservation law (Bretherton & Garrett 1968)
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for the wave action density E/⌦. Here E is the ripple energy, which can be obtained by
considering a linear wave of amplitude a with the e↵ective gravitational acceleration g⇤.
Considering the time-averaged values over an oscillation period and equipartition of the
kinetic and potential energies, the local energy density of the ripple is written as (Landau
& Lifshitz 1987)

E =
1
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⇢g⇤a

2. (3.4)

Note that the energy of the entire system is conserved, which means that the adiabatic
changes just described reflect the energy exchange between the large-scale motion of the
overturning wave and small-scale ripples on the water surface.

The two conservation laws (3.2) and (3.3) with the expressions (2.9), (2.11) and (3.4)
define the evolution of the local wavenumber k and amplitude a of the ripple. We will now
show that these equations can be solved approximately for the small ripples, when the
ripple wavelength ` = 2⇡/k is considered small compared to the scale of the unperturbed
nonlinear wave. As it follows from (2.11), such an assumption implies that the ripple
phase and group velocities are small compared to the local flow speed,

cp ⌧ U, cg ⌧ U. (3.5)

In	the	first	approximaFon:

Explosive ripple instability due to incipient wave breaking 7

Hence, equations (3.2) and (3.3) in a first approximation reduce to the form

@k

@t
+

@

@s
(Uk) = 0,

@

@t

✓
E

⌦

◆
+

@

@s

✓
U

E

⌦

◆
= 0. (3.6)

Recall that U(s, t) in these equations is the local flow speed on the surface of unperturbed
steepening wave; for the linearized formulation, it is not a↵ected by a small-amplitude
ripple motion.
Both equations in (3.6) have the form of the continuity equation

@�

@t
+

@

@s
(U�) = 0. (3.7)

Consider

t = 0 : �(x) ⌘ 1 (3.8)

to represent an initial uniform marker (material tracer) distribution along the free surface;
see Fig. 1. In this case the (marker density) function �(s, t) describes the stretching (for
� < 1) and compression (for � > 1) of these material markers along the free surface in
time. By using (3.6) and (3.7), one can check that

D

Dt

✓
k

�

◆
= 0,

D

Dt

✓
E

�⌦

◆
= 0, (3.9)

where the D/Dt = @/@t+U@/@s is the material derivative. In other words, the following
quantities

k

�
= const,

E

�⌦
= const, (3.10)

are invariant along Lagrangian trajectories at the fluid surface. These two quantities,
which refer to the local ripple properties, represent approximate (adiabatic) Lagrangian
invariants on the free surface. Nonlinear e↵ects of compression are now built-in to
expressions (3.10).
The first relation in (3.10) implies that the ripple wavelength ` = 2⇡/k changes

proportionally to 1/�, i.e.,

`

`0
=

1

�
, (3.11)

where the zero subscript denotes the initial length value at t = 0; recall that �0 = 1
due to (3.8). This formula captures the physical feature that the ripple travels along
the Lagrangian trajectory, while stretching or compressing according to the material
marker’s dynamics. For interpreting the second relation in (3.10), recall that E/⌦ was
defined as the wave-action density per unit surface length. Therefore, E/(�⌦) is the
conserved Lagrangian wave-action density, corresponding to the unit surface length at
the initial time.
The conserved wave action in (3.10) will capture the explosive instability. It can be

written using the dispersion relation (2.9) for the intrinsic frequency and the energy
density expression (3.4) as

E

�⌦
=

⇢g⇤a2

2�
p
g⇤k

=
⇢`1/20

23/2⇡1/2

g1/2⇤ a2

�3/2
, (3.12)

where in the last equality we used (3.11) to express k = 2⇡/` = 2⇡�/`0. Since the first
factor in the last expression of (3.12) is constant, the conservation property (3.10) yields

Marker	density	funcFon:
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where the D/Dt = @/@t+U@/@s is the material derivative. In other words, the following
quantities

k

�
= const,

E

�⌦
= const, (3.10)

are invariant along Lagrangian trajectories at the fluid surface. These two quantities,
which refer to the local ripple properties, represent approximate (adiabatic) Lagrangian
invariants on the free surface. Nonlinear e↵ects of compression are now built-in to
expressions (3.10).
The first relation in (3.10) implies that the ripple wavelength ` = 2⇡/k changes

proportionally to 1/�, i.e.,
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�
, (3.11)

where the zero subscript denotes the initial length value at t = 0; recall that �0 = 1
due to (3.8). This formula captures the physical feature that the ripple travels along
the Lagrangian trajectory, while stretching or compressing according to the material
marker’s dynamics. For interpreting the second relation in (3.10), recall that E/⌦ was
defined as the wave-action density per unit surface length. Therefore, E/(�⌦) is the
conserved Lagrangian wave-action density, corresponding to the unit surface length at
the initial time.
The conserved wave action in (3.10) will capture the explosive instability. It can be

written using the dispersion relation (2.9) for the intrinsic frequency and the energy
density expression (3.4) as
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where in the last equality we used (3.11) to express k = 2⇡/` = 2⇡�/`0. Since the first
factor in the last expression of (3.12) is constant, the conservation property (3.10) yields
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Recall that U(s, t) in these equations is the local flow speed on the surface of unperturbed
steepening wave; for the linearized formulation, it is not a↵ected by a small-amplitude
ripple motion.
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Figure 3. Small ripple (solid blue line) traveling on top of the unperturbed wave profile (dotted

line). Motion of the ripple is approximately described by the sum of the unperturbed flow speed

U and the relative group/phase speeds.

are observed after many periods (2⇡/!) and many wavelengths (2⇡/k). Then, in the first
approximation, the underlying flow due to the wave steepening is locally constant with
respect to the ripple, but accelerating in time. The frequency and wavenumber of the
ripple can be derived from the phase function ✓(s, t) by

! = �@✓

@t
, k =

@✓

@s
. (2.7)

If U(s, t) is the velocity at the fluid surface with respect to coordinate s, then as mentioned
in the introduction, one has (Bretherton & Garrett 1968)

! = Uk +⌦, (2.8)

where ⌦(s, t) is the local intrinsic frequency of the modulated Fourier mode in the
Lagrangian reference frame.

Since the deep-water approximation can be used for short wavelengths, the ripple’s
dispersion relation in a first approximation is given by (Landau & Lifshitz 1987, §12)

⌦ =
p
g⇤k. (2.9)

Here g⇤(s, t) is the e↵ective (intrinsic) gravity acting on the ripple in the local reference
frame, as its background flow is moving towards overturning. The e↵ective gravity is
defined as g⇤ = g � a, where a = (Dv/Dt) = �(rp)/⇢ + g is the material acceleration
at the surface, under the Euler equations (2.1). As a result, we have

g⇤ =
rp

⇢
= �g⇤n, (2.10)

where n is the surface normal vector. Recall that the pressure is constant at the free
boundary and, thus, its gradient is orthogonal to the surface. For the numerical results
in Fig. 1, the value of g⇤ along the wave profile at di↵erent times is shown in Fig. 4(a)
with the time dependence of its minimum and maximum presented in Fig. 4(b). At the
final time, g⇤ varies from the minimum g⇤ ⇡ 0.2g at the wave tip to the maximum
g⇤ ⇡ 3g at the foot of the wave. The value of g⇤ remains positive at all times in our
simulation. As proved by Wu (1997), the positivity of g⇤ holds as long as the interface
is non-selfintersecting. Therefore we are in the stable Rayleigh-Taylor regime. The local
phase speed cp and group speed cg are defined as

cp =
⌦

k
=

r
g⇤
k
, cg =

@⌦

@k
=

1

2

r
g⇤
k
, (2.11)

in the Lagrangian reference frame.
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are invariant along Lagrangian trajectories at the fluid surface. These two quantities,
which refer to the local ripple properties, represent approximate (adiabatic) Lagrangian
invariants on the free surface. Nonlinear e↵ects of compression are now built-in to
expressions (3.10).
The first relation in (3.10) implies that the ripple wavelength ` = 2⇡/k changes

proportionally to 1/�, i.e.,
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=
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, (3.11)

where the zero subscript denotes the initial length value at t = 0; recall that �0 = 1
due to (3.8). This formula captures the physical feature that the ripple travels along
the Lagrangian trajectory, while stretching or compressing according to the material
marker’s dynamics. For interpreting the second relation in (3.10), recall that E/⌦ was
defined as the wave-action density per unit surface length. Therefore, E/(�⌦) is the
conserved Lagrangian wave-action density, corresponding to the unit surface length at
the initial time.
The conserved wave action in (3.10) will capture the explosive instability. It can be

written using the dispersion relation (2.9) for the intrinsic frequency and the energy
density expression (3.4) as
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where in the last equality we used (3.11) to express k = 2⇡/` = 2⇡�/`0. Since the first
factor in the last expression of (3.12) is constant, the conservation property (3.10) yields
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e↵ective gravity at the water surface as functions of time.

3. Wave action and the adiabatic approximation for ripple evolution

The consistency conditions for second derivatives of phase in (2.7) yield the rela-
tion (Bretherton & Garrett 1968)

@k

@t
+

@!

@s
= 0, (3.1)

which can be written using (2.8) and (2.11) as the conservation law

@k

@t
+

@

@s
[(U + cp)k] = 0. (3.2)

In the adiabatic approximation, i.e., when the temporal and spatial scales of the ripple
are much smaller than the scales of the underlying flow (here the unperturbed wave),
one also has the conservation law (Bretherton & Garrett 1968)
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@t

E

⌦
+

@

@s


(U + cg)

E

⌦

�
= 0, (3.3)

for the wave action density E/⌦. Here E is the ripple energy, which can be obtained by
considering a linear wave of amplitude a with the e↵ective gravitational acceleration g⇤.
Considering the time-averaged values over an oscillation period and equipartition of the
kinetic and potential energies, the local energy density of the ripple is written as (Landau
& Lifshitz 1987)

E =
1

2
⇢g⇤a

2. (3.4)

Note that the energy of the entire system is conserved, which means that the adiabatic
changes just described reflect the energy exchange between the large-scale motion of the
overturning wave and small-scale ripples on the water surface.

The two conservation laws (3.2) and (3.3) with the expressions (2.9), (2.11) and (3.4)
define the evolution of the local wavenumber k and amplitude a of the ripple. We will now
show that these equations can be solved approximately for the small ripples, when the
ripple wavelength ` = 2⇡/k is considered small compared to the scale of the unperturbed
nonlinear wave. As it follows from (2.11), such an assumption implies that the ripple
phase and group velocities are small compared to the local flow speed,

cp ⌧ U, cg ⌧ U. (3.5)
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line). Motion of the ripple is approximately described by the sum of the unperturbed flow speed

U and the relative group/phase speeds.

are observed after many periods (2⇡/!) and many wavelengths (2⇡/k). Then, in the first
approximation, the underlying flow due to the wave steepening is locally constant with
respect to the ripple, but accelerating in time. The frequency and wavenumber of the
ripple can be derived from the phase function ✓(s, t) by
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If U(s, t) is the velocity at the fluid surface with respect to coordinate s, then as mentioned
in the introduction, one has (Bretherton & Garrett 1968)
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where ⌦(s, t) is the local intrinsic frequency of the modulated Fourier mode in the
Lagrangian reference frame.

Since the deep-water approximation can be used for short wavelengths, the ripple’s
dispersion relation in a first approximation is given by (Landau & Lifshitz 1987, §12)

⌦ =
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g⇤k. (2.9)

Here g⇤(s, t) is the e↵ective (intrinsic) gravity acting on the ripple in the local reference
frame, as its background flow is moving towards overturning. The e↵ective gravity is
defined as g⇤ = g � a, where a = (Dv/Dt) = �(rp)/⇢ + g is the material acceleration
at the surface, under the Euler equations (2.1). As a result, we have

g⇤ =
rp

⇢
= �g⇤n, (2.10)

where n is the surface normal vector. Recall that the pressure is constant at the free
boundary and, thus, its gradient is orthogonal to the surface. For the numerical results
in Fig. 1, the value of g⇤ along the wave profile at di↵erent times is shown in Fig. 4(a)
with the time dependence of its minimum and maximum presented in Fig. 4(b). At the
final time, g⇤ varies from the minimum g⇤ ⇡ 0.2g at the wave tip to the maximum
g⇤ ⇡ 3g at the foot of the wave. The value of g⇤ remains positive at all times in our
simulation. As proved by Wu (1997), the positivity of g⇤ holds as long as the interface
is non-selfintersecting. Therefore we are in the stable Rayleigh-Taylor regime. The local
phase speed cp and group speed cg are defined as
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in the Lagrangian reference frame.
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g1/2⇤ a2

�3/2
= const. (3.13)

Evaluating the constant from the initial time, one obtains

a

a0
=

✓
�3g⇤0
g⇤

◆1/4

, (3.14)

where a0 and g⇤0 are, respectively, the values of a and g⇤ at t = 0. Combining expressions
(3.11) and (3.14), we express the ripple steepness (the ratio of height to wavelength) as

S =
2a

`
=

2�a

`0
(3.15)

with our final formula

S

S0
=

✓
�7g⇤0
g⇤

◆1/4

, (3.16)

where S0 = 2a0/`0.
Recall that all relations (3.10)–(3.16) are deduced along Lagrangian trajectories at the

water surface. As will be shown numerically, it is remarkable that these rather simple
formulas encompass the full action of the changing large-scale wave profile on the passive
small-scale ripple with several nontrivial implications. First, the ripple steepness is fully
controlled by the surface compression ratio � and the local e↵ective gravity g⇤. Due to the
rather large exponent of the term �7/4 in (3.16), the marker density function has a strong
e↵ect. Going back to Section 2, note that the compression ratio strongly varies within
a wave during the breaking process; see, e.g., two Lagrangian points very close to the
wave tip in Fig. 1. Second, expression (3.16) does not depend on the ripple wavelength,
predicting that all ripples steepen at the same rate. In particular, this justifies the use
of formula (3.16) for a ripple in the form of a general short wave-length modulated
perturbation on top of the original wave profile.

4. Numerical results

In simulations, we consider the ripples in the form of short Gaussian wave packets.
According to relations (3.5), such wave packets follow approximately the Lagrangian fluid
trajectories at the surface. Expression (3.16) for the ripple steepness depends only on the
unperturbed solution in Fig. 1 and, thus, can be evaluated at every point of the wave
profile. The profiles of the e↵ective gravity g⇤ were already shown in Fig. 4. Numerically
computed profiles of the surface marker density � are presented in Fig. 5, demonstrating
the strong compression (large �) at the wave tip, and some stretching (� < 1) at the
wave foot. Together, these results provide the change in ripple steepness along the wave
profile, which is depicted in a logarithmic color-scale in Fig. 6. Here one observes an
explosive growth of ripple steepness by almost 50 times near the overhanging wave tip (red
color). At the foot of the wave the steepness decreases (blue color) depleting the surface
roughness. Note that our results are obtained within the two-dimensional model. The
third dimension is not crucial for the dynamics of short-wave ripples, since their speeds in
the direction transversal to the wave can be neglected due to relations (3.5). The steepness
increases super-exponentially in time as shown in Fig. 7(a). Such explosive behavior
distinguishes the present adiabatic steepening mechanism from common instabilities
featuring an exponential growth.

For verification of our theory, we added small ripples in the form of Gaussian wave

Lagrangian	invariants:

Ripple	steepness:
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According to relations (3.5), such wave packets follow approximately the Lagrangian fluid
trajectories at the surface. Expression (3.16) for the ripple steepness depends only on the
unperturbed solution in Fig. 1 and, thus, can be evaluated at every point of the wave
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wave foot. Together, these results provide the change in ripple steepness along the wave
profile, which is depicted in a logarithmic color-scale in Fig. 6. Here one observes an
explosive growth of ripple steepness by almost 50 times near the overhanging wave tip (red
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roughness. Note that our results are obtained within the two-dimensional model. The
third dimension is not crucial for the dynamics of short-wave ripples, since their speeds in
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increases super-exponentially in time as shown in Fig. 7(a). Such explosive behavior
distinguishes the present adiabatic steepening mechanism from common instabilities
featuring an exponential growth.
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Figure 5. Profile of the surface marker density � vs. the corresponding horizontal coordinate

x at di↵erent times. For t = 3.35 the graph is multi-valued due to the overhanging wave profile;

see Fig. 1.

Figure 6. Color (in log scale) shows the change of ripple steepness, S(t)/S0, at di↵erent points

of the wave profile. The steepness decreases at the wave foot (blue) and then increases by almost

two orders of magnitude at the wave tip (red). Black curves on a surface show the wave profiles

at times t = 0, 0.5, 1, . . . , 3 and the final time 3.35. Dashed red curves indicate the trajectories

of small ripples (centers of Gaussian wave packets) located initially at (I) x = 2, (II) x = 2.9
and (III) x = 3.8; the simulation in case III was stopped at t = 2.575. The insets present the

shape and steepness of these ripples at initial time (circle at the bottom) and at di↵erent later

times (circles at the top), shown with the subtracted background profile and magnified vertical

scale 100:1.

packets with steepness S ⇡ 0.02 and wavenumber k = 128 located at di↵erent parts of the
initial nonlinear wave profile and repeated our numerical simulations; see the Appendix
§6.3 for numerical aspects of creating such perturbed initial conditions. Trajectories of
these packets, computed as centers of their envelopes, are shown in Fig. 6 by red dotted
lines. Their shapes at di↵erent times are displayed in the insets, where the background
profile was subtracted and the vertical scale was magnified with the ratio 100:1. One can
see that the ripple steepness increases as a combination of two factors: the decrease of
ripple wavelength and the increase of its amplitude. Recall that such ripples are small
perturbations, which do not a↵ect considerably the overturning wave profile.
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3. Wave action and the adiabatic approximation for ripple evolution

The consistency conditions for second derivatives of phase in (2.7) yield the rela-
tion (Bretherton & Garrett 1968)
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@t
+
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@s
= 0, (3.1)

which can be written using (2.8) and (2.11) as the conservation law

@k

@t
+

@

@s
[(U + cp)k] = 0. (3.2)

In the adiabatic approximation, i.e., when the temporal and spatial scales of the ripple
are much smaller than the scales of the underlying flow (here the unperturbed wave),
one also has the conservation law (Bretherton & Garrett 1968)
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⌦
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(U + cg)

E

⌦

�
= 0, (3.3)

for the wave action density E/⌦. Here E is the ripple energy, which can be obtained by
considering a linear wave of amplitude a with the e↵ective gravitational acceleration g⇤.
Considering the time-averaged values over an oscillation period and equipartition of the
kinetic and potential energies, the local energy density of the ripple is written as (Landau
& Lifshitz 1987)

E =
1

2
⇢g⇤a

2. (3.4)

Note that the energy of the entire system is conserved, which means that the adiabatic
changes just described reflect the energy exchange between the large-scale motion of the
overturning wave and small-scale ripples on the water surface.

The two conservation laws (3.2) and (3.3) with the expressions (2.9), (2.11) and (3.4)
define the evolution of the local wavenumber k and amplitude a of the ripple. We will now
show that these equations can be solved approximately for the small ripples, when the
ripple wavelength ` = 2⇡/k is considered small compared to the scale of the unperturbed
nonlinear wave. As it follows from (2.11), such an assumption implies that the ripple
phase and group velocities are small compared to the local flow speed,

cp ⌧ U, cg ⌧ U. (3.5)
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Figure 7. (a) Increase of ripple steepness (maximum value within a wave), demonstrating

a super-exponential growth at later times; vertical log-scale. The ripple steepness increases

about 50 times. (b) Change of steepness with time for three di↵erent Gaussian ripples, see also

Fig. 6. Adiabatic theoretical prediction is compared with numerical simulations. The dashed

line corresponds to the simulation of a ripple with a twice larger wavelength.

Fig. 7(b) demonstrates an excellent agreement between the numerical steepness mea-
sured at the center of each packet and the theoretical (adiabatic) prediction (3.16). In
case III of Fig. 7(b), we observe both the decrease of steepness (depleting the surface
roughness) at early times followed by its sudden increase by more than one order of
magnitude. We also performed the simulation for the Gaussian packet with a twice
larger wavelength in the case III; see the dashed black line in Fig. 7(b). This confirmed the
independence on wavelength for the ripple evolution predicted theoretically by Eq. (3.16).
It is instructive to provide the reader with an example of the corresponding dimensional

variables for our simulations: one can take the water depth to be 5m, the wave height
reaching 3m and the initial ripples having a wavelength of 0.25m. Such values are typical
for ocean waves and, by their orders of magnitude, one can expect that surface tension
does not play a significant role at the initial stage of ripple steepening.

Due to the rapidly increasing steepness, small ripples can reach a strongly nonlinear
regime, which should typically happen in the yellow-to-red region around the wave tip in
Fig. 6. Considering as an example the case III, we observe in Fig. 8(a) that singularities
(sharp angles) are about to form at the ripple crests when the steepness gets close to
S ⇡ 0.18. At these points, the curvature radius is decreasing at least exponentially with
time; see Fig. 8(b). Therefore surface tension becomes important when the curvature
gets large. In our simulations, according to Fig. 8, this can be expected around the time
t ⇡ 2.6, i.e., prior to overturning in Fig. 1.

In Fig. 9 we present numerical results for our model, now taking surface tension into
account. In this case, the dynamical (stress balance) condition for the pressure at free-
surface yields

p = Patm + �/R, (4.1)

where � is the surface tension coe�cient and R is the curvature radius of the free surface.
The simulation producing Fig. 9 was performed with the dimensionless value � = 6⇥10�6,
which corresponds to a realistic value of surface tension for breaking waves of moderate
height; see the Appendix §6.1 for details of the numerical method.

The resulting magnified profile in Fig. 9(b) reveals the secondary “ripple breaking”
when the curvature at the ripple crests becomes large, followed by the generation of the
so-called “parasitic” capillary waves (Ceniceros & Hou 1999). Such capillary waves are
known to form near the crests of nonlinear gravity waves in a resonant manner (Longuet-
Higgins 1995), and could be a mechanism of whitecapping (Dyachenko & Newell 2016).

Super-exponen)al	growth		
of	ripple	steepness

S
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g1/2⇤ a2

�3/2
= const. (3.13)

Evaluating the constant from the initial time, one obtains

a

a0
=

✓
�3g⇤0
g⇤

◆1/4

, (3.14)

where a0 and g⇤0 are, respectively, the values of a and g⇤ at t = 0. Combining expressions
(3.11) and (3.14), we express the ripple steepness (the ratio of height to wavelength) as

S =
2a

`
=

2�a

`0
(3.15)

with our final formula

S

S0
=

✓
�7g⇤0
g⇤

◆1/4

, (3.16)

where S0 = 2a0/`0.
Recall that all relations (3.10)–(3.16) are deduced along Lagrangian trajectories at the

water surface. As will be shown numerically, it is remarkable that these rather simple
formulas encompass the full action of the changing large-scale wave profile on the passive
small-scale ripple with several nontrivial implications. First, the ripple steepness is fully
controlled by the surface compression ratio � and the local e↵ective gravity g⇤. Due to the
rather large exponent of the term �7/4 in (3.16), the marker density function has a strong
e↵ect. Going back to Section 2, note that the compression ratio strongly varies within
a wave during the breaking process; see, e.g., two Lagrangian points very close to the
wave tip in Fig. 1. Second, expression (3.16) does not depend on the ripple wavelength,
predicting that all ripples steepen at the same rate. In particular, this justifies the use
of formula (3.16) for a ripple in the form of a general short wave-length modulated
perturbation on top of the original wave profile.

4. Numerical results

In simulations, we consider the ripples in the form of short Gaussian wave packets.
According to relations (3.5), such wave packets follow approximately the Lagrangian fluid
trajectories at the surface. Expression (3.16) for the ripple steepness depends only on the
unperturbed solution in Fig. 1 and, thus, can be evaluated at every point of the wave
profile. The profiles of the e↵ective gravity g⇤ were already shown in Fig. 4. Numerically
computed profiles of the surface marker density � are presented in Fig. 5, demonstrating
the strong compression (large �) at the wave tip, and some stretching (� < 1) at the
wave foot. Together, these results provide the change in ripple steepness along the wave
profile, which is depicted in a logarithmic color-scale in Fig. 6. Here one observes an
explosive growth of ripple steepness by almost 50 times near the overhanging wave tip (red
color). At the foot of the wave the steepness decreases (blue color) depleting the surface
roughness. Note that our results are obtained within the two-dimensional model. The
third dimension is not crucial for the dynamics of short-wave ripples, since their speeds in
the direction transversal to the wave can be neglected due to relations (3.5). The steepness
increases super-exponentially in time as shown in Fig. 7(a). Such explosive behavior
distinguishes the present adiabatic steepening mechanism from common instabilities
featuring an exponential growth.

For verification of our theory, we added small ripples in the form of Gaussian wave
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Figure 7. (a) Increase of ripple steepness (maximum value within a wave), demonstrating

a super-exponential growth at later times; vertical log-scale. The ripple steepness increases

about 50 times. (b) Change of steepness with time for three di↵erent Gaussian ripples, see also

Fig. 6. Adiabatic theoretical prediction is compared with numerical simulations. The dashed

line corresponds to the simulation of a ripple with a twice larger wavelength.

Fig. 7(b) demonstrates an excellent agreement between the numerical steepness mea-
sured at the center of each packet and the theoretical (adiabatic) prediction (3.16). In
case III of Fig. 7(b), we observe both the decrease of steepness (depleting the surface
roughness) at early times followed by its sudden increase by more than one order of
magnitude. We also performed the simulation for the Gaussian packet with a twice
larger wavelength in the case III; see the dashed black line in Fig. 7(b). This confirmed the
independence on wavelength for the ripple evolution predicted theoretically by Eq. (3.16).
It is instructive to provide the reader with an example of the corresponding dimensional

variables for our simulations: one can take the water depth to be 5m, the wave height
reaching 3m and the initial ripples having a wavelength of 0.25m. Such values are typical
for ocean waves and, by their orders of magnitude, one can expect that surface tension
does not play a significant role at the initial stage of ripple steepening.

Due to the rapidly increasing steepness, small ripples can reach a strongly nonlinear
regime, which should typically happen in the yellow-to-red region around the wave tip in
Fig. 6. Considering as an example the case III, we observe in Fig. 8(a) that singularities
(sharp angles) are about to form at the ripple crests when the steepness gets close to
S ⇡ 0.18. At these points, the curvature radius is decreasing at least exponentially with
time; see Fig. 8(b). Therefore surface tension becomes important when the curvature
gets large. In our simulations, according to Fig. 8, this can be expected around the time
t ⇡ 2.6, i.e., prior to overturning in Fig. 1.

In Fig. 9 we present numerical results for our model, now taking surface tension into
account. In this case, the dynamical (stress balance) condition for the pressure at free-
surface yields

p = Patm + �/R, (4.1)

where � is the surface tension coe�cient and R is the curvature radius of the free surface.
The simulation producing Fig. 9 was performed with the dimensionless value � = 6⇥10�6,
which corresponds to a realistic value of surface tension for breaking waves of moderate
height; see the Appendix §6.1 for details of the numerical method.

The resulting magnified profile in Fig. 9(b) reveals the secondary “ripple breaking”
when the curvature at the ripple crests becomes large, followed by the generation of the
so-called “parasitic” capillary waves (Ceniceros & Hou 1999). Such capillary waves are
known to form near the crests of nonlinear gravity waves in a resonant manner (Longuet-
Higgins 1995), and could be a mechanism of whitecapping (Dyachenko & Newell 2016).

EvoluFon	of	the	steepness	evaluated		
at	the	center	of	the	Gaussian	ripple
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g1/2⇤ a2

�3/2
= const. (3.13)

Evaluating the constant from the initial time, one obtains

a

a0
=

✓
�3g⇤0
g⇤

◆1/4

, (3.14)

where a0 and g⇤0 are, respectively, the values of a and g⇤ at t = 0. Combining expressions
(3.11) and (3.14), we express the ripple steepness (the ratio of height to wavelength) as

S =
2a

`
=

2�a

`0
(3.15)

with our final formula

S

S0
=

✓
�7g⇤0
g⇤

◆1/4

, (3.16)

where S0 = 2a0/`0.
Recall that all relations (3.10)–(3.16) are deduced along Lagrangian trajectories at the

water surface. As will be shown numerically, it is remarkable that these rather simple
formulas encompass the full action of the changing large-scale wave profile on the passive
small-scale ripple with several nontrivial implications. First, the ripple steepness is fully
controlled by the surface compression ratio � and the local e↵ective gravity g⇤. Due to the
rather large exponent of the term �7/4 in (3.16), the marker density function has a strong
e↵ect. Going back to Section 2, note that the compression ratio strongly varies within
a wave during the breaking process; see, e.g., two Lagrangian points very close to the
wave tip in Fig. 1. Second, expression (3.16) does not depend on the ripple wavelength,
predicting that all ripples steepen at the same rate. In particular, this justifies the use
of formula (3.16) for a ripple in the form of a general short wave-length modulated
perturbation on top of the original wave profile.

4. Numerical results

In simulations, we consider the ripples in the form of short Gaussian wave packets.
According to relations (3.5), such wave packets follow approximately the Lagrangian fluid
trajectories at the surface. Expression (3.16) for the ripple steepness depends only on the
unperturbed solution in Fig. 1 and, thus, can be evaluated at every point of the wave
profile. The profiles of the e↵ective gravity g⇤ were already shown in Fig. 4. Numerically
computed profiles of the surface marker density � are presented in Fig. 5, demonstrating
the strong compression (large �) at the wave tip, and some stretching (� < 1) at the
wave foot. Together, these results provide the change in ripple steepness along the wave
profile, which is depicted in a logarithmic color-scale in Fig. 6. Here one observes an
explosive growth of ripple steepness by almost 50 times near the overhanging wave tip (red
color). At the foot of the wave the steepness decreases (blue color) depleting the surface
roughness. Note that our results are obtained within the two-dimensional model. The
third dimension is not crucial for the dynamics of short-wave ripples, since their speeds in
the direction transversal to the wave can be neglected due to relations (3.5). The steepness
increases super-exponentially in time as shown in Fig. 7(a). Such explosive behavior
distinguishes the present adiabatic steepening mechanism from common instabilities
featuring an exponential growth.

For verification of our theory, we added small ripples in the form of Gaussian wave



What	is	next?

Strongly	nonlinear	regime	(formaFon	of	angles	at	ripple’s	crests)

Capillary	effects:

Explosive ripple instability due to incipient wave breaking 11

x
3.54 3.55 3.56 3.57

y

0.31

0.32

0.33

(a)

t
2 2.5

m
in

R

10-3

10-2

10-1
(b)

Figure 8. (a) Onset of angle formation at ripple crests. Shown is a segment of the wave profile

at late time t = 2.575 in case III; see Fig. 6. (b) Time dependence of curvature radius at ripple
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Figure 9. Ripple shape at late time t = 2.85 for the simulation with the dimensionless surface

tension coe�cient � = 6⇥ 10
�6

. The initial wave packet corresponds to the case III, where we

increased four times the ripple wavelength to improve numerical resolution. Figure (b) represents

the magnified region of the ripple shown with the small red square on left panel. The arrow

indicates the direction of the (small) group speed of the ripple relative to the fluid. One can see

the formation of parasitic capillary waves developing in front of the ripple crests.

5. Conclusions

We developed the asymptotic theory describing the coupling of large-scale wave break-
ers to small-scale surface ripples traveling on its surface. This theory is constructed using
the analogy with wavetrains propagating on a free surface of water that are influenced by
large-scale currents. However, in contrast to the latter case where the wavetrain behavior
is governed by the intrinsic frequency through the approximate conservation of the wave
action (Bretherton & Garrett 1968; Peregrine 1976), in our case two distinct quantities
are important: the intrinsic frequency and the nonlinear intrinsic gravity. Both these
quantities are introduced in the local Lagrangian reference frame at each point of the
free surface. They define the wave action as an adiabatic Lagrangian invariant for the
potential ideal flow.
Unlike the common hydrodynamic instabilities, this mechanism predicts super-

exponential growth of ripple steepness in time, resulting from simultaneous decrease of
wavelength and increase of amplitude, with excellent quantitative agreement between
the developed theory and numerical simulations. When taking capillary e↵ects into
account, our simulations anticipate the small-scale “ripple breaking” along the water
surface revealing the increasing complexity of the subsequent nonlinear process. The
proposed theory is asymptotic and requires further development both for its rigorous

stress	balance	at	free	surface
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Figure 7. (a) Increase of ripple steepness (maximum value within a wave), demonstrating

a super-exponential growth at later times; vertical log-scale. The ripple steepness increases

about 50 times. (b) Change of steepness with time for three di↵erent Gaussian ripples, see also

Fig. 6. Adiabatic theoretical prediction is compared with numerical simulations. The dashed

line corresponds to the simulation of a ripple with a twice larger wavelength.

Fig. 7(b) demonstrates an excellent agreement between the numerical steepness mea-
sured at the center of each packet and the theoretical (adiabatic) prediction (3.16). In
case III of Fig. 7(b), we observe both the decrease of steepness (depleting the surface
roughness) at early times followed by its sudden increase by more than one order of
magnitude. We also performed the simulation for the Gaussian packet with a twice
larger wavelength in the case III; see the dashed black line in Fig. 7(b). This confirmed the
independence on wavelength for the ripple evolution predicted theoretically by Eq. (3.16).
It is instructive to provide the reader with an example of the corresponding dimensional

variables for our simulations: one can take the water depth to be 5m, the wave height
reaching 3m and the initial ripples having a wavelength of 0.25m. Such values are typical
for ocean waves and, by their orders of magnitude, one can expect that surface tension
does not play a significant role at the initial stage of ripple steepening.

Due to the rapidly increasing steepness, small ripples can reach a strongly nonlinear
regime, which should typically happen in the yellow-to-red region around the wave tip in
Fig. 6. Considering as an example the case III, we observe in Fig. 8(a) that singularities
(sharp angles) are about to form at the ripple crests when the steepness gets close to
S ⇡ 0.18. At these points, the curvature radius is decreasing at least exponentially with
time; see Fig. 8(b). Therefore surface tension becomes important when the curvature
gets large. In our simulations, according to Fig. 8, this can be expected around the time
t ⇡ 2.6, i.e., prior to overturning in Fig. 1.

In Fig. 9 we present numerical results for our model, now taking surface tension into
account. In this case, the dynamical (stress balance) condition for the pressure at free-
surface yields

p = Patm + �/R, (4.1)

where � is the surface tension coe�cient and R is the curvature radius of the free surface.
The simulation producing Fig. 9 was performed with the dimensionless value � = 6⇥10�6,
which corresponds to a realistic value of surface tension for breaking waves of moderate
height; see the Appendix §6.1 for details of the numerical method.

The resulting magnified profile in Fig. 9(b) reveals the secondary “ripple breaking”
when the curvature at the ripple crests becomes large, followed by the generation of the
so-called “parasitic” capillary waves (Ceniceros & Hou 1999). Such capillary waves are
known to form near the crests of nonlinear gravity waves in a resonant manner (Longuet-
Higgins 1995), and could be a mechanism of whitecapping (Dyachenko & Newell 2016).
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Figure 9. Ripple shape at late time t = 2.85 for the simulation with the dimensionless surface
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. The initial wave packet corresponds to the case III, where we

increased four times the ripple wavelength to improve numerical resolution. Figure (b) represents

the magnified region of the ripple shown with the small red square on left panel. The arrow

indicates the direction of the (small) group speed of the ripple relative to the fluid. One can see

the formation of parasitic capillary waves developing in front of the ripple crests.

5. Conclusions

We developed the asymptotic theory describing the coupling of large-scale wave break-
ers to small-scale surface ripples traveling on its surface. This theory is constructed using
the analogy with wavetrains propagating on a free surface of water that are influenced by
large-scale currents. However, in contrast to the latter case where the wavetrain behavior
is governed by the intrinsic frequency through the approximate conservation of the wave
action (Bretherton & Garrett 1968; Peregrine 1976), in our case two distinct quantities
are important: the intrinsic frequency and the nonlinear intrinsic gravity. Both these
quantities are introduced in the local Lagrangian reference frame at each point of the
free surface. They define the wave action as an adiabatic Lagrangian invariant for the
potential ideal flow.
Unlike the common hydrodynamic instabilities, this mechanism predicts super-

exponential growth of ripple steepness in time, resulting from simultaneous decrease of
wavelength and increase of amplitude, with excellent quantitative agreement between
the developed theory and numerical simulations. When taking capillary e↵ects into
account, our simulations anticipate the small-scale “ripple breaking” along the water
surface revealing the increasing complexity of the subsequent nonlinear process. The
proposed theory is asymptotic and requires further development both for its rigorous

onset	of	parasi)c	instability



(depends	only	on	the	marker	density	and	effecFve	gravity)

Conclusions
Ripples	steepness	on	the	slope	of	a	breaking	wave	is	governed	by	a	simple	formula:
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g1/2⇤ a2
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= const. (3.13)

Evaluating the constant from the initial time, one obtains

a
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=
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�3g⇤0
g⇤

◆1/4

, (3.14)

where a0 and g⇤0 are, respectively, the values of a and g⇤ at t = 0. Combining expressions
(3.11) and (3.14), we express the ripple steepness (the ratio of height to wavelength) as

S =
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(3.15)

with our final formula
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=
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where S0 = 2a0/`0.
Recall that all relations (3.10)–(3.16) are deduced along Lagrangian trajectories at the

water surface. As will be shown numerically, it is remarkable that these rather simple
formulas encompass the full action of the changing large-scale wave profile on the passive
small-scale ripple with several nontrivial implications. First, the ripple steepness is fully
controlled by the surface compression ratio � and the local e↵ective gravity g⇤. Due to the
rather large exponent of the term �7/4 in (3.16), the marker density function has a strong
e↵ect. Going back to Section 2, note that the compression ratio strongly varies within
a wave during the breaking process; see, e.g., two Lagrangian points very close to the
wave tip in Fig. 1. Second, expression (3.16) does not depend on the ripple wavelength,
predicting that all ripples steepen at the same rate. In particular, this justifies the use
of formula (3.16) for a ripple in the form of a general short wave-length modulated
perturbation on top of the original wave profile.

4. Numerical results

In simulations, we consider the ripples in the form of short Gaussian wave packets.
According to relations (3.5), such wave packets follow approximately the Lagrangian fluid
trajectories at the surface. Expression (3.16) for the ripple steepness depends only on the
unperturbed solution in Fig. 1 and, thus, can be evaluated at every point of the wave
profile. The profiles of the e↵ective gravity g⇤ were already shown in Fig. 4. Numerically
computed profiles of the surface marker density � are presented in Fig. 5, demonstrating
the strong compression (large �) at the wave tip, and some stretching (� < 1) at the
wave foot. Together, these results provide the change in ripple steepness along the wave
profile, which is depicted in a logarithmic color-scale in Fig. 6. Here one observes an
explosive growth of ripple steepness by almost 50 times near the overhanging wave tip (red
color). At the foot of the wave the steepness decreases (blue color) depleting the surface
roughness. Note that our results are obtained within the two-dimensional model. The
third dimension is not crucial for the dynamics of short-wave ripples, since their speeds in
the direction transversal to the wave can be neglected due to relations (3.5). The steepness
increases super-exponentially in time as shown in Fig. 7(a). Such explosive behavior
distinguishes the present adiabatic steepening mechanism from common instabilities
featuring an exponential growth.

For verification of our theory, we added small ripples in the form of Gaussian wave

The	theory	is	in	good	agreement	with	numerical	simulaFons.		
It	predicts	the	super-exponenFal	increase	of	ripple	steepness	near	the	wave	Fp.

We	observed	numerically	a	start	of	the	secondary	“ripple	breaking”		
generaFng	the	parasiFc	capillary	instability.	

Ripple	instability	may	by	an	integral	part	of	the	mulF-scale	wave	breaking	phenomenon.
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