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2d turbulence 
E(k) ⇠ k�5/3

E(k) ⇠ k�3+�(µ)

µ

@t! + u ·r! = ⌫r2! � µ! + F!

Perlekar et al., PRL (2011); Ray et al., PRL (2011);  
Boffetta et al., ARFM (2012).  Wiki: Linear polymer molecule 

How  polymer additives affect  
forward and inverse cascade?  



2d turbulence: Topological 
structures 

⇤ = (!2 � �2)/4

Expts: Daniel and Rutgers, PRL (2002); 
Simulations: Perlekar and Pandit, NJP (2009). 

How  polymer additives affect 
the topological properties?  



Soap-film experiment-1/4 

goes a sequence of instabilities and becomes turbulent
when V > 20 V. The soap solution was made of a mixture
of four components (5 cc liquid detergent, 80 g ammonium
chloride, 40 cc glycerol, and 400 cc distilled water). Linear
polymers (polyethylene-oxide, Mw ! 8" 106, Rg ’
0:4 !m) of varying concentrations (0<"< 25 ppm)
were used. Within this concentration range, there is no
overlap between polymer coils as evidenced by a small
" dependence of the kinematic viscosity of the soap solu-
tion, which we determined to be # ’ 0:02 cm2=s. To mea-
sure the velocity field ~v# ~x$, the film was seeded with
hollow glass spheres (diam ! 10 !m, $ ! 1:05 g=cm3).
A 12 mJ double-pulsed Nd:YAG laser slaved to a CCD
camera (Redlake, 1016" 1008 pixels) was used to illumi-
nate the soap film. Images (4:5" 4:5 cm2) were acquired
at the center of the soap film at 30 fps, yielding typically
104 vectors per velocity field.

In the following discussion, five different polymer con-
centrations " ! 0; 3; 9; 12; 24 ppm were used and the en-
ergy injection rate "inj ! 201:4 cm2=s3 was kept fixed by
maintaining a constant V across the film. Figure 2 shows a
set of second-order structure functions S2#l$ ! h%v2

l i mea-
sured using different ", where %vl is the longitudinal
velocity difference on scale l. We found that in all cases
there is a well-developed enstrophy range (l < linj) where
S2#l$ / l1:8%0:2. This scaling relation agrees reasonably
well with the theoretical prediction S2#l$ / l2 and persists
down to the smallest scale (&300 !m) resolvable by the
PIV. Aside from small changes in the amplitude, the poly-
mer appears to have no effect on this scaling behavior. For
large scales (l > linj), two classes of behaviors can be
identified: (a) For 0<"< 10 ppm, S2#l$ increases with
l and is reminiscent of an inverse energy cascade. Despite a
large Taylor-microscale Reynolds number Re& ’ 153, the
Kolmogorov-like scaling S2#l$ / l2=3 was not clearly ob-
served due to the limited inertial range. In spite of this
shortcoming, the magnitude of S2#l$ was observed to de-
crease as " was increased. (b) For "> 10 ppm, S2#l$

becomes flat for l > linj, indicating the truncation of energy
transfer to these large scales. The blockage of energy to
large scales can also be seen by the decreasing total kinetic
energy v2

rms=2, which is the asymptotic value of S2#l$ for
l ' linj. Figure 2 shows that v2

rms=2 drops sharply for " (
10 ppm.

The abrupt change of turbulent behavior when " in-
creases is suggestive, indicating that there may be a critical
polymer concentration "C#’ 10 ppm$ for quenching tur-
bulence. The observation prompted us to examine other
signatures that may be used to quantify the effect. One of
the prominent features of 2D turbulence is the coherent
structures, such as vortices and saddle points in the flow. In
a previous study [10], we investigated the distribution of
centers and saddles via the quantity ! ! 1

2 #'2 )!2$,
which is related to the pressure by )r2p ! !. Here !2 !
1
2 #@ivj ) @jvi$ and '2 ! 1

2 #@ivj * @jvi$ characterize the
center and the saddle structures in the flow with the re-
peated indices implying summations. Statistical distribu-
tions of !2 and '2 were measured for different " and their
probability density functions (pdf) are displayed in Fig. 3.
It is shown that for "<"C, P#!2$ and P#'2$ are unaf-
fected by ", but they become significantly narrower for
">"C, indicating that strong centers and saddles are
suppressed. The effect is represented by the inset of
Fig. 2 where h'2i and h!2i vs " are plotted. We noted
that in all cases of different ", the ‘‘topological charges,’’
averaged over space, are not strictly conserved. The dif-
ferences between h'2i and h!2i result from the film being
slightly compressible. Since polymers are mostly de-
formed by saddles, it is instructive to compare the
distribution of the strain rate ' with the Zimm relaxation
time ( ! )R3

g=#kBT$ of the polymer. For our system with
) ’ 0:02 cP and Rg ’ 0:4 !m, we found ( ’ 16 ms or
1=(2 ’ 3:91" 103 s)2, which is delineated as the vertical
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FIG. 2 (color online). The second-order structure function
S2#l$. In increasing order of turbulence intensity, the curves
correspond to " ! 24, 12, 9, 3, and 0 ppm. The inset is the
plot of h'2i (circles) and h!2i (squares) vs ".

FIG. 1. Experimental setup. A voltage difference V ! V* )
V) is applied to the film generating a uniform current density J.
Beneath the film is a set of bar magnets with alternating poles.
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Kolmogorov forcing generates turbulence in soap-films.  

Jun et al., PRL, 96, 024502 (2006)  



Soap-film experiment-2/4 

of turbulence and is where S2!l" levels off (see Fig. 2) [12].
An appreciable amount of energy ( # 30%) is also trans-
ferred to small scales and consumed by molecular viscos-
ity. In the absence of polymer, this partition of energy on
small and large scales is consistent with a previous study
[9]. It is interesting to note that when ! is increased, the
fraction of energy consumed by the fluid viscosity remains
almost constant [see the heights of the dark-hatched area in
Fig. 5(a)] until ! crosses !C, where "" suffers a jump of
#28:7%. The effect is more dramatic for the energy trans-
fer to large scales as indicated by the heights of the light-
hatched area in the same figure. Here one observes that "#
keeps decreasing with ! and drops precipitously at !C.
Such a strong ! dependence is due to the significant
change in vrms when the polymer was introduced into the
flow as seen in Fig. 2. Since "inj is constant, it follows that
more energy is sequestered by polymer’s elastic deforma-
tion, and "p increases markedly around !C as delineated
by the heights of white area in Fig. 5(a).

The above measurement shows that for a given "inj, there
exists a sharp change in the turbulence behavior when !
crosses !C. Is the converse true? To find out, we conducted
an experiment in which ! $ 15 ppm was fixed but "inj was
varied by changing the applied voltage (46< V < 65 V).
For comparison, an independent run was also carried out
with ! $ 0. Figure 5(b) shows that, in the absence of
polymers, the turbulent intensity characterized by the
vrms is a smooth increasing function of V. When the

polymer is present, the situations are somewhat different;
vrms increases initially, levels off, and then increases again.
It forms a plateau for a small range of V between 50 and
55 volts. This measurement suggests that there exist two
thresholds VC1 and VC2 marked by two arrows in the figure.
We believed that the lower threshold VC1 corresponds to
the onset of the turbulent suppression and the higher
threshold VC2 corresponds to the saturation of the elastic
field. However, for the entire range of V, the measured
energy transfer rate (/ h$v3

l i) remains positive, indicating
an inverse energy cascade but with a reduced transfer rate
when the polymer is present.

To summarize, the polymer effects on forced 2D turbu-
lence in freely suspended soap films were investigated
quantitatively using two independent control parameters
! and "inj. The measurement shows that when "inj is fixed,
turbulent suppression has a sharp threshold !C!’ 10 ppm".
However, when ! is fixed, two thresholds can be identified,
but the transitions in this case are much weaker. We found
that turbulent suppression occurs concurrently with the
elimination of strong saddles. Inspection of Fig. 3(a) re-
veals that those saddles that are eliminated have strength
determined precisely by the relation %2 * 1=&2, indicating
that the time criterion is strictly obeyed in the experiment.
Since polymer-turbulence interactions are primarily via
saddles and the weakening of saddles by polymer stretch-
ing has the drastic effect of quenching turbulence, it sug-
gests that this hydrodynamic structure may play a role in
transferring energy from scale to scale. It remains an
intriguing possibility that the same mechanism operates
in 3D as well as in 2D turbulence.

We acknowledge helpful discussion with Dr. B.
Eckhardt. This work is supported by the NSF under
Grant No. DMR-0242284.
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FIG. 5 (color online). (a) The energy budget vs !. (b) vrms vs
V for ! $ 0 (circles) and for ! $ 15 ppm (squares).
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Soap-film experiment-3/4 

goes a sequence of instabilities and becomes turbulent
when V > 20 V. The soap solution was made of a mixture
of four components (5 cc liquid detergent, 80 g ammonium
chloride, 40 cc glycerol, and 400 cc distilled water). Linear
polymers (polyethylene-oxide, Mw ! 8" 106, Rg ’
0:4 !m) of varying concentrations (0<"< 25 ppm)
were used. Within this concentration range, there is no
overlap between polymer coils as evidenced by a small
" dependence of the kinematic viscosity of the soap solu-
tion, which we determined to be # ’ 0:02 cm2=s. To mea-
sure the velocity field ~v# ~x$, the film was seeded with
hollow glass spheres (diam ! 10 !m, $ ! 1:05 g=cm3).
A 12 mJ double-pulsed Nd:YAG laser slaved to a CCD
camera (Redlake, 1016" 1008 pixels) was used to illumi-
nate the soap film. Images (4:5" 4:5 cm2) were acquired
at the center of the soap film at 30 fps, yielding typically
104 vectors per velocity field.

In the following discussion, five different polymer con-
centrations " ! 0; 3; 9; 12; 24 ppm were used and the en-
ergy injection rate "inj ! 201:4 cm2=s3 was kept fixed by
maintaining a constant V across the film. Figure 2 shows a
set of second-order structure functions S2#l$ ! h%v2

l i mea-
sured using different ", where %vl is the longitudinal
velocity difference on scale l. We found that in all cases
there is a well-developed enstrophy range (l < linj) where
S2#l$ / l1:8%0:2. This scaling relation agrees reasonably
well with the theoretical prediction S2#l$ / l2 and persists
down to the smallest scale (&300 !m) resolvable by the
PIV. Aside from small changes in the amplitude, the poly-
mer appears to have no effect on this scaling behavior. For
large scales (l > linj), two classes of behaviors can be
identified: (a) For 0<"< 10 ppm, S2#l$ increases with
l and is reminiscent of an inverse energy cascade. Despite a
large Taylor-microscale Reynolds number Re& ’ 153, the
Kolmogorov-like scaling S2#l$ / l2=3 was not clearly ob-
served due to the limited inertial range. In spite of this
shortcoming, the magnitude of S2#l$ was observed to de-
crease as " was increased. (b) For "> 10 ppm, S2#l$

becomes flat for l > linj, indicating the truncation of energy
transfer to these large scales. The blockage of energy to
large scales can also be seen by the decreasing total kinetic
energy v2

rms=2, which is the asymptotic value of S2#l$ for
l ' linj. Figure 2 shows that v2

rms=2 drops sharply for " (
10 ppm.

The abrupt change of turbulent behavior when " in-
creases is suggestive, indicating that there may be a critical
polymer concentration "C#’ 10 ppm$ for quenching tur-
bulence. The observation prompted us to examine other
signatures that may be used to quantify the effect. One of
the prominent features of 2D turbulence is the coherent
structures, such as vortices and saddle points in the flow. In
a previous study [10], we investigated the distribution of
centers and saddles via the quantity ! ! 1

2 #'2 )!2$,
which is related to the pressure by )r2p ! !. Here !2 !
1
2 #@ivj ) @jvi$ and '2 ! 1

2 #@ivj * @jvi$ characterize the
center and the saddle structures in the flow with the re-
peated indices implying summations. Statistical distribu-
tions of !2 and '2 were measured for different " and their
probability density functions (pdf) are displayed in Fig. 3.
It is shown that for "<"C, P#!2$ and P#'2$ are unaf-
fected by ", but they become significantly narrower for
">"C, indicating that strong centers and saddles are
suppressed. The effect is represented by the inset of
Fig. 2 where h'2i and h!2i vs " are plotted. We noted
that in all cases of different ", the ‘‘topological charges,’’
averaged over space, are not strictly conserved. The dif-
ferences between h'2i and h!2i result from the film being
slightly compressible. Since polymers are mostly de-
formed by saddles, it is instructive to compare the
distribution of the strain rate ' with the Zimm relaxation
time ( ! )R3

g=#kBT$ of the polymer. For our system with
) ’ 0:02 cP and Rg ’ 0:4 !m, we found ( ’ 16 ms or
1=(2 ’ 3:91" 103 s)2, which is delineated as the vertical
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FIG. 2 (color online). The second-order structure function
S2#l$. In increasing order of turbulence intensity, the curves
correspond to " ! 24, 12, 9, 3, and 0 ppm. The inset is the
plot of h'2i (circles) and h!2i (squares) vs ".

FIG. 1. Experimental setup. A voltage difference V ! V* )
V) is applied to the film generating a uniform current density J.
Beneath the film is a set of bar magnets with alternating poles.
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Soap-film experiment-4/4 

line in Fig. 3(a). A simple calculation shows that for !<
!C, !38% of saddle points satisfy the time criterion
("#> 1), and this fraction drops to !29% for !>!C.
We also noted that the vertical line coincides approxi-
mately with the point where the two groups of pdfs cross
each other. The significance of this observation is dis-
cussed in the summary. A weakened saddle distribution
must be accompanied by a weakened vorticity distribution
since h"2i! h!2i. This is clearly delineated by Fig. 3(b).

To quantitatively assess the fraction of injected energy
"inj that is ultimately transferred to the polymer’s degrees
of freedom and how this fraction changes with !, we
measured the overall energy budget of the system. The
EM cell is well suited for this task since the full velocity
field can be measured using the PIV, allowing various
energy rates to be calculated. To start with, we used the
Kármán-Howarth relation:

@
@t

huiu0ji "
@
@rs

huiu0su0j # uiusu0ji#
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$ huiF0
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where & is the air drag coefficient and the prime and
unprimed quantities correspond to locations ~x$ ~r and ~x,
respectively. Because of the steady-state condition, the
left-hand side (lhs) vanishes. For the inertial range, the
viscosity term may also be ignored. Since the Lorentz force
is in the x direction, the above equation can be further
simplified if only the y component is evaluated. This yields

@
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All the terms in this equation can be evaluated from the
measured velocity field. In particular, the pressure field can
be solved based on the equation r2p% ~x& " #!% ~x& using a
Fourier method. Figure 4(a) shows the lhs (Lyy, circles) and
the right-hand side (rhs) (Ryy, lines) of Eq. (2) for ! " 0. It
is found that in the absence of polymer, the two sides are
matched if & " 0:7 s#1. In contrast, if the same calculation
is carried out for ! " 12 ppm as in Fig. 4(b), there is a
significant discrepancy between the lhs and the rhs of
Eq. (2). Such discrepancy is expected because the
polymer-fluid interaction is not included in the equation.

In the single-point limit ( ~r ! 0), Eq. (2) gives the energy
balance [11]:

"inj " "% $ "& $ "p; (3)

where the energy injection rate "inj " huxFxi (see Fig. 1)
and the energy dissipation rates due to fluid viscosity "% "
%h"2i and due to air friction "& " &hv2i are all standard
definitions and can be evaluated. The rate of energy uptake
by the polymer "p is included and will be found by
measurements. In the experiment, "inj was kept constant,
whereas "% and "& were measured by varying !. Figure 5
summarizes the result: for ! " 0, "% ’ 57:3 cm2=s3 and
"& ’ 144:1 cm2=s3, yielding "inj ’ 201:4 cm2=s3. The fact
that "& > "% is consistent with the physical picture that the
injected energy is predominantly transferred to large scales
l > l0. Here l0 ’ %"inj=&3&1=3=8 ’ 3 cm is the outer scale
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FIG. 4 (color online). Comparison between the lhs (Lyy,
circles) and the rhs (Ryy, lines) of Eq. (2) for ! " 0 (a) and
for ! " 12 ppm (b). The air friction coefficient & ’ 0:7 s#1 is
used in both cases.
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Modeling polymer solutions 

@u↵
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FENE-P Model 

Oldroyd-B Model 

L2 ! 1
f(r) ! 1

C

Assumption: Smooth flow 
around polymer. 



Earlier studies: Simulations 
Homogeneous isotropic turbulence, 2563 DNS 

Eq. (4), we multiply Eq. (1) by u, add to it the trace of
Eq. (2) times !"=#, and average over space and time.
Since in two dimensions kinetic energy flows towards
large scales, it is mainly drained by friction, and viscous
dissipation is vanishingly small in the limit of very large
Reynolds numbers [16]. Neglecting $ and observing that
in the Newtonian case (! ! 0) the balance (4) yields F !
%hjuj2iN , we obtain

hjuj2i ! hjuj2iN " 2!"
%#2

#htr!i" tr 1$: (5)

As a consequence of incompressibility and chaoticity of
the flow, it can be shown from Eq. (2) that tr! % tr 1, and
we finally have hjuj2i & hjuj2iN , in agreement with nu-
merical results. This simple energy balance argument can
be generalized to nonlinear elastic models. As viscosity
tends to zero, the average polymer elongation increases so

as to compensate for the factor " in Eq. (5), resulting in a
finite effect also in the infinite Re limit. Since energy is
essentially dissipated by linear friction, the depletion of
hjuj2i entails immediately the reduction of energy dissi-
pation. The main difference between two-dimensional
‘‘friction reduction’’ and three-dimensional drag reduc-
tion resides in the length scales involved in the energy
drain—large scales in 2D vs small scales in 3D.

The effect of polymer additives cannot be merely rep-
resented by a rescaling of velocity fluctuations by a given
factor. In Fig. 4, we show the probability distribution of a
velocity component, ux. The choice of the x direction is
immaterial by virtue of statistical isotropy. In the
Newtonian case, the distribution is remarkably close to
the sub-Gaussian density N exp#"cjuxj3$ stemming from
the balance between forcing and nonlinear terms in the
Navier-Stokes equation, in agreement with the prediction
by Falkovich and Lebedev [23]. On the contrary, the
distribution in the viscoelastic case is markedly super-
Gaussian, with approximately exponential tails. This
strong intermittency in the velocity dynamics is due to
the alternation of quiescent low-velocity phases ruled by
polymer feedback and bursting events where inertial non-
linearities take over.

Dilute polymers also alter significantly the distribution
of finite-time Lyapunov exponents P#&; t$. In Fig. 5, the
Cramér rate function S#&$ / t"1 lnP#&; t$ is shown for
the Newtonian and for the viscoelastic case. Since in
the former situation the Lyapunov exponent 'N is greater
than 1=#, were the polymers passive all moments of
elongation would grow exponentially fast. However, the
feedback can damp stretching so effectively that after
polymer addition ' lies below 1=#. This implies a strong
reduction of Lagrangian chaos and a decreased mixing
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FIG. 4. Intermittency of velocity fluctuations induced by
polymer additives. The probability density function P#ux$ of
the velocity component ux for the Newtonian (solid line) and
for the viscoelastic case with strong feedback (dashed line).
Same parameters as in Fig. 2. Also shown is the distribution
!#2=3$33=2 exp#"cjuxj3$=#4(c$ with c ! 2:1' 10"3 (dotted
line).

FIG. 2. Snapshots of the vorticity field r' u in the
Newtonian (left) and in the viscoelastic case with strong feed-
back (right). Notice the suppression of large-scale structures in
the latter case. The fields are obtained by a fully dealiased
pseudospectral simulation of Eqs. (1) and (2) at resolution 2562.
The viscosity is " ! 1:5' 10"3, ! ! 0:2, the relaxation time is
# ! 4, and the energy input is F ! 3:5. As customary, an
artificial stress-diffusivity term is added to Eq. (2) to prevent
numerical instabilities [21]. The corresponding Schmidt num-
ber is Sc ! 0:25.
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Pure fluid  

Fluid + polymers   

P (u
x

) ⇠ exp(�c|u|3)

Wi = �⌧ < 1

Oldroyd-B model 

Passive polymers 
Wi = �⌧ > 1

Unbounded growth in polymer  
extension. No steady state. 

1.  Presence of  back-reaction 
dramatically alters the 
steady state.  

2.  Steady state for polymer 
extension. 

3.  No coil-stretch transition! 

Active polymers 

Boffetta, Celani, and Mussachio, PRL, 034501 (2003) 



Earlier studies: Simulations 
Homogeneous isotropic turbulence, 2563 DNS 

Wi = �⌧ < 1

Oldroyd-B model 

Passive polymers 
Wi = �⌧ > 1

Unbounded growth in polymer  
extension. No steady state. 

Active polymers 

S. Mussachio, PhD Thesis 
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Question raised in thesis (2003): 
What happens in a well-resolved 
forward and inverse cascade? 

✏V = ✏N � µ
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Results 

Our simulations: 
 
1.  DNS of  Navier-Stokes + FENE-P equations. 
2.  Kolmogorov forcing to generate flows similar to experiments by 

rescaling forcing amplitude. 
3.  Maintain constant energy injection rate. 
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Energy spectrum: Small wave-
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Energy spectrum: Small wave-
vectors   
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1.  Suppression of  small k modes 
2.  Energy suppressed at intermediate 

wave-vectors 
3.  Enhancement of  energy at large wave-

vectors (Similar to 3D, see Perlekar et 
al., PRE (2010), PRL (2006) 

Energy spectrum: Suppression 
of  small k   
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Polymer extension vs vorticity   



Conclusions   
1.  Energy spectra is strongly modified in presence of  

polymers.  
 

2.  For small concentrations, the distributions of  saddles and 
centers is not  dramatically modified by polymers. 

3.  Regions of  polymer extensions are strongly correlated with 
the extensional region 


