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2 Outline!

•  Motivation 
•  Reynolds-averaging vs. Filtering 
•  Dune simulations 

!  Methodology 
!  Examples 

−  2D dunes: Boil generation 
−  3D dunes: Streamwise vorticity 
−  Barchan dunes: Unsteady separation 

•  Outlook 



3 Motivation!

•  Interaction of a flow field with a mobile sand bed results 
in bed deformation. 

•  The shape depends on: 
!  Flow properties (Re, Fr, etc.) 
!  Sand type 
!  Amount of sand available 

•  For unidirectional mean flow, high Reynolds numbers 
(rivers) 
⇒ Transverse dunes 



4 Motivation!

•  Interaction of a flow field with a mobile sand bed results 
in bed deformation. 

•  The shape depends on: 
!  Flow properties (Re, Fr, etc.) 
!  Sand type 
!  Amount of sand available 

•  For unidirectional mean flow, high Reynolds numbers 
(rivers) 
⇒ Transverse dunes 

•  Limited sediment supply 
(desert) 
⇒ Barchan dunes 



5 Motivation!

•  In dunes, turbulence affects bed morphology and 
sediment transport. 
!  Flooding 
!  Silting 

•  Field and laboratory experiments can highlight many of 
the important turbulent phenomena. 
!  Mean flow 
!  Instantaneous flow structure 

•  Experiments have limitations: 
!  Control of boundary conditions 
!  Access to full field 
!  Near-wall measurements 

•  Improved numerical models are required to complement 
the experiments. 



6 Turbulence Simulations!

•  Turbulence contains vorticity 
•  Vorticity is concentrated in small regions, in which the 

fluid motion is coherent ⇒ eddies. 

Visualization of the turbulent 
eddies in the boundary layer 
over a flat plate.   

Wu, X. and Moin, P. (2009).  



7 Turbulence Simulations!

•  Turbulence contains vorticity 
•  Vorticity is concentrated in small regions, in which the 

fluid motion is coherent ⇒ eddies. 
•  Large eddies are responsible for mixing (⇒ momentum, 

energy transport). 
•  Small eddies are responsible for viscous dissipation 



8 Simulation methodologies!

•  Turbulent transport is due to the vortical motions 
(eddies). 

•  Solution methodologies: 
!  Full description of all eddies 

⇒ Direct Numerical Simulation (DNS) 

High 
speed 

Low 
speed 



9 Simulation methodologies!

•  Turbulent transport is due to the vortical motions 
(eddies). 

•  Solution methodologies: 
!  Full description of all eddies (DNS) 
!  Statistical description of all eddies  

⇒ Solution of the Reynolds-Averaged Navier-Stokes  
  (RANS)  equations 

High 
speed 

Low 
speed 

⇒ A turbulence model is required to account for the effect  
            of all the eddies 



10 Simulation methodologies!

•  Turbulent transport is due to the vortical motions 
(eddies). 

•  Solution methodologies: 
!  Full description of all eddies (DNS) 
!  Statistical description of all eddies (RANS) 
!  Partial description of the eddies  

⇒ Large-Eddy Simulation (LES) 

High 
speed 

Low 
speed 

⇒ A model is required to account for 
 the effect of the small eddies  



11 Direct Numerical Simulation!

Navier-Stokes 
Equations  

DNS 
Solver 

Vorticity contours, Channel flow, Re=7000 



12 Large-Eddy Simulation!

Navier-Stokes 
Equations  

LES 
Solver 

Vorticity contours, Channel flow, Re=7000 

Spatial 
 filtering             

Over  



13 Unsteady Reynolds-Averaged !
NS Simulation!

Navier-Stokes 
Equations  

URANS 
Solver 

Vorticity contours, Channel flow, Re=7000 

Time  
Averaging 

Over  
               LETOT 



14 Reynolds-Averaged NS Simulation!

Navier-Stokes 
Equations  

RANS 
Solver 

Vorticity contours, Channel flow, Re=7000 

Time  
Averaging 

Over  



15 RANS/URANS vs LES!

•  Reynolds-Averaged Navier-Stokes solutions 
!  Are relatively inexpensive: Cost ∝ Re0.6 

!  Average out the turbulent eddies and model their effect using 
strong empiricism. 

!  Work well in flows close to the calibration cases. 
!  Are less accurate in cases with physical complexities 

−  Mean 3D flow 
−  Unsteady separation and reattachment 
−  Streamline curvature 
−  Favorable pressure gradients 
−  Return to equilibrium after a perturbation is imposed. 
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18 RANS/URANS vs LES!

•  Large-Eddy Simulations 
!  Are expensive: Cost ∝ Re3.6 

!  Average out only the smallest turbulent eddies and model their 
effect using less empiricism  

!  Can be accurate in cases with physical complexities 
−  Mean 3D flow 
−  Unsteady separation and reattachment 
−  Streamline curvature 
−  Favorable pressure gradients 
−  Return to equilibrium after a perturbation is imposed. 

 …if the grid is sufficiently fine 
!  Yield 3D, time-dependent fields 

−  Allow a complete view of the flow. 
 …at laboratory scale 
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•  Motivation 
•  Reynolds-averaging vs. Filtering 
•  Dune simulations 

!  Methodology 
!  Examples 

−  2D dunes: Boil generation 
−  3D dunes: Streamwise vorticity 
−  Barchan dunes: Unsteady separation 

•  Outlook 



20 LES of Flows Over Dunes!

•  Curvilinear code 
!  2nd-order accurate in time and space. 
!  Central differences on all terms 
!  Lagrangian Dynamic subfilter-scale model 

•  The model has been extensively validated in 
engineering and geophysical flows. 

•  Grids between 6x106 and 41x106 points. 
!  Up to 16,000 CPU-hours per simulation 



21 LES of Flows Over Dunes!

Omidyeganeh & Piomelli 
J of Turbulence (2010) 

Omidyeganeh & Piomelli 
J Fluid Mech. (2013a, 2013b) 

Omidyeganeh, Piomelli,  
Christensen & Best 
J Geophys. Res. (2013) 
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•  Motivation 
•  Reynolds-averaging vs. Filtering 
•  Dune simulations 

!  Methodology 
!  Examples 

−  2D dunes: Boil generation 
−  3D dunes: Streamwise vorticity 
−  Barchan dunes: Unsteady separation 

•  Outlook 



23 Boils!

•  “Boils” are eruptions at the water surface associated 
with large turbulent structures.  

Photographs of vortex–free-surface interactions in the Jamuna River, 
Bangladesh. 
From Best, J. (2005) 



24 Boils!

•  “Boils” are eruptions at the water surface associated 
with large turbulent structures. 

•  Occur infrequently but generate significant Reynolds 
stress 

•  Are responsible for transport of fluid (sediment, 
nutrients, ….) from the bottom to the surface. 

•  Their genesis was unknown: 
!  Three conjectures: 

−  Oscillations of the reattachment line 
−  Turbulent eddies from the stoss side 
−  Eddies in the separated shear layer 

•  Full-field, time dependent information is needed to 
understand their dynamics.  



25 Boil Identification!

•  Boils can be identified in the numerical simulations 

Velocity vectors at 
the water surface. 
2D dunes 



26 Boil Identification!

•  Boils can be identified in the numerical simulations 

Pressure 
fluctuations at the 
water surface. 2D 
dunes 



27 Boil Identification!

•  Boils can be identified in the numerical simulations and 
related too the vortical structures. 

Visualization of a 
horseshoe vortex 
touching the water 
surface. 2D dunes.  

Low-pressure isosurfaces are 
used to visualize the vortex, and 
are coloured by the distance to 
the free surface (0→4). 



28 Boil Identification!

•  Boils can be identified in the numerical simulations and 
related too the vortical structures. 

•  Once the structures are identified, we can consider the 
full field. 

Low-pressure isosurfaces are used to visualize the vortex, and are 
coloured by the distance to the free surface (0→4). 



29 Time History!



30 Quantitative Analysis!

Frequency of horseshoe vortex appearance 
(Low pressure + spanwise vorticity) 



31 Quantitative Analysis!

Power spectra of 
pressure 

Shedding frequency 



32 Conclusions!

•  Performed LES of the flow over 2D dunes at laboratory 
scale 

•  Good agreement with experimental and numerical data 
•  Gortler-like vortices are formed on the stoss side 

(upward slope) 
•  Boils can be identified from velocity vectors, pressure 

and turbulent kinetic energy at the surface. 
!  They are associated with large horseshoe vortices 

−  Upwash between the legs of the vortex 
−  TKE and Reynolds stress are much larger than the average 

(15-40 times) 
−  They are due to the instability of the separated shear layer 
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•  Motivation 
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−  2D dunes: Boil generation 
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34 Motivation!

•  Real world: Dunes are three-dimensional. 
•  Effects of three-dimensionality on flow resistance, 

sediment transport, and turbulence production are not 
well known. 

•  Experiments on three-dimensional dunes lack precise 
measurements of skin friction and form drag, as well as 
spatially-resolved turbulence stresses.  
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Cases A/h λ/h Nx x Ny x Nz Δs+ Δn+ Δz+ 

In-phase 1.0 16.0 512 x 96 x 256 22.0 0.7 18.1 

Staggered 1.0 16.0 640 x 128 x 320 17.6 0.7 14.0 

Setup!

•  Reynolds number: 

•  Two configurations:  in-phase and staggered 
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In-phase Staggered 

Mean streamwise velocity U 

Results!
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In-phase Staggered 

Reynolds shear stress  <u′v′ > 

Results!
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In-phase Staggered 

Reynolds shear stress  <u′v′ > and wall stress τw 

Results!
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In-phase Staggered 

Wall stress τw 

Results!
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In-phase Staggered 

Mean wall pressure and wall streamlines 

Results!

•  Lateral pressure gradient (from node to lobe) 
induces spanwise flow 
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In-phase Staggered 

Mean streamwise vorticity Ωx 

Results!
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In-phase Staggered 

Mean streamwise vorticity Ωx 

Results!
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In-phase Staggered 

Mean streamwise vorticity Ωx 

Results!
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In-phase Staggered 

Mean streamwise vorticity Ωx 

Results!
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In-phase Staggered 

Reynolds shear stress  <u′v′ > and wall stress τw 

Results!
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In-phase Staggered 

Reynolds shear stress  <u′v′ > and wall stress τw 

Results!



47 Results!

Frequency of horseshoe vortex appearance 

Lobe, in-phase 

Lobe, staggered 

Saddle, in-phase 

Saddle, staggered 



48 Conclusions!

•  The three-dimensional bed form induces mean secondary 
flow in the streamwise direction. 
!  Low-momentum fluid close to the bed moves from the saddle 

plane toward the lobe plane, generating a vortex pair. 
!  The secondary flow affects the whole flow depth. 
!  In the staggered configuration, there are two vortex pairs, one 

formed at the lobe and one advected over the saddle from the 
previous dune.  

•  The spatial distribution of the separated-shear layer alters the 
flow across the channel.  
!  The upwash of slow fluid enhances the flow deceleration and 

acceleration in the lobe plane. 
!  Advection displaces the shear layer and the horseshoe vortices 

upwards. 
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