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Why are we interested in particles?
Why are we interested in particles?

Cloud formation Pyroclastic flows Planetary formation

Pollutant dispersion Industry Planktons and marine biology
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Inertial Particles

• Density di↵erent from that of the fluid.

• Finite size.

• Friction (Stokes) and other forces should be included.

• Velocity di↵erent from the underlying fluid velocity.

• Inertial particles have dissipative dynamics: Uniform
contraction in phase space.



Types of Particles
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E↵ect of Inertia: Preferential Concentration
Experiments:
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A. M. Wood, et al., Int. J. Multiphase Flow, 31 (2005).
E. Calzavarini, et al., Phys. Rev. Lett., 101 (2008).



Understanding Preferential Concentration

• Spatial distribution of finite-size massive particles is strongly
inhomogeneous (preferential concentration) due to inertia.

• Qualitative understanding based on the idea that vortices act
as centrifuges ejecting particles heavier than the fluid and
trapping lighter ones.

• ⌧p ! 0 : uniform distribution

� ẋi = u(xi , t); r · u = 0; assumption of chaoticity.

• ⌧p ! 1 : uniform distribution

� ⌧f ⌧ ⌧p; ballistic motion.

• Maximum clusterization is achieved for a finite value of ⌧p.

• Small scale particle clusters are characterised by the
correlation dimension D2 : the probability to find two particles
at a distance less than a given r is P<

2 (r) ⇠ r

D2 .



Preferential Concentration: D2
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(Left)The modulus of the pressure gradient, giving the main contribution to fluid acceleration (a). Particle
positions in the same slice are shown for (b) St⌘ =0.16, (c) 0.80 and (d) 3.30.
(Right) The correlation dimension D2 vs St⌘ for di↵erent R�.

J. Bec, et al., Phys. Rev. Lett. 98 (2007).
J. Bec, et al., Phys. Rev. E 87 (2013).



Single particle dynamics

Single, passive, spherical, inertial, particle of radius a, mass mp.
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Stokes Drag Model

Setting:

• small sized particles;

• dilute suspensions;

• passive particles.

Simplifications:

• The Faxen correction a

2r2u ⇡ O(a2u/L) ⌧ 1.

• Du
Dt ⇡ dv

dt

• Buoyancy e↵ects negligible.

Working Equations:

dx

dt

= v;

dv

dt

= �v � u

⌧p
+ �

Du

Dt

.



Stokes Drag Model

Setting:

• small sized particles;

• dilute suspensions;

• passive particles.

Simplifications:

• The Faxen correction a

2r2u ⇡ O(a2u/L) ⌧ 1.

• Du
Dt ⇡ dv

dt

• Buoyancy e↵ects negligible.

Working Equations (for heavy particles):

dx

dt

= v;

dv

dt

= �v � u

⌧p
.



Model for Heavy Particles in Turbulent Flows

• The Fluid
� The fluid velocity u is a solution of the incompressible
Navier–Stokes equation and obtained via pseudo-spectral,
direct numerical simulations.

� Statistically steady, homogeneous, isotropic turbulence is
maintained by a large-scale forcing.

• The Particles
� Particles are much smaller than the Kolmogorov scale, much
heavier than the surrounding fluid, and with a small Reynolds
number associated to their slip velocity.

� Non-dimensionless numbers:
�

Stokes number: St=⌧p/⌧⌘, where ⌧⌘=
p

⌫/".
�

Froude number: Fr=a⌘/g , where a⌘ = "3/4/⌫1/4
.



The Model: Equations

• The Fluid
� The incompressible, forced Navier–Stokes equation:

@tu + (u · r)u = �rp + ⌫r2u + f;

r · u = 0.

� ⌫ is the fluid kinematic viscosity and f a large scale forcing.

• The Particles
� Stokes drag and gravity:

dxp

dt

= vp;

dvp

dt

= � 1

⌧p
[vp � u(xp, t)] + g.

� u(xp, t) is evaluated by linear interpolation.



How Fast do Droplets Collide?

Extreme fluctuations of the relative velocities between
droplets in turbulent airflow

• Experiments (with Ewe-Wei Saw, Gregory P. Bewley, and Eberhard Bodenschatz, Göttingen, Germany)
• Theory and Direct Numerical Simulations (with Jérémie Bec, Nice, France)

Ewe-Wei Saw, Gregory P. Bewley, Eberhard Bodenschatz, Samriddhi Sankar Ray, and Jérémie Bec
Physics of Fluids Letters, 26, 111702 (2014).



Introduction

• In warm clouds, turbulence in the airflow enhances the
collision rate of the water droplets.

• It thus influences the evolution of droplet sizes and the
timescale for rain formation.

• Two mechanisms are at play:
� preferential concentration;
� very large approach velocities explained in terms of the sling

e↵ect and the subsequent formation of caustics.

• Open question regarding the coalescence rate of droplets.
� Collisions that are too violent can cause particle fragmentation.

• Developing an understanding:
� Experiments
� Theory
� Direct Numerical Simulations

G. Falkovich, et al, Nature 419, (2002). E. Balkovsky, et al., Phys. Rev. Lett. 86 (2001).
R. Shaw, Ann. Rev. Fluid Mech. 35 (2003). J. Bec, et al, Phys. Rev. Lett. 98 (2007).
E.-W. Saw, et al., Phys. Rev. Lett. 100 (2008). G. P. Bewley, et al., New J. Phys. 15 (2013).
M. Wilkinson, et al, Phys. Rev. Lett. 97 (2006). G. Falkovich & A. Pumir, J. Atmos. Sci. 64 (2007).



Questions

What is the distribution of relative velocities of colliding
droplets in a turbulent airflow?

Is the linear Stokes drag model valid?

We perform direct numerical simulations and experiments, with matching

parameters, of droplets in a turbulent flow to answer these two questions.

Saw, Bewley, Bodenschatz, Ray, and Bec, Phys. Fluids Lett., 26, 111702, (2014).



Experiment

• Homogeneous and isotropic turbulent flows are generated in a
1 m-diameter acrylic sphere by 32 randomly pulsating jets in a
region of about 10 cm at the center.

• We ran the experiment for R� = 160 (⌘ = 300µm), 170
(⌘ = 230µm), and 190 (⌘ = 180µm).

• Droplets are produced with a spinning disc device that eject
bi-disperse drops with diameters 6.8µm and 19µm.

• The motion of the droplets are measured by an imaging of
their shadows projected by white light sources.

• The three-dimensional positions of the droplets are
determined by stereoscopic Lagrangian Particle Tracking.

G. P. Bewley, et al., New J. Phys. 15 (2013). K. Chang, et al., J. Fluid Mech. 692 (2012).
W. H. Walton & W. C. Prewett, Proc. Phys. Soc. B 62 (1949). N. Ouellette, et al., New J. Phys. 8 (2006).

Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen, Germany



Experiment: Soccer Ball

Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen, Germany



Experiment: Droplet Generator

Liquid Feed 

Droplets 

ω 

Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen, Germany



Direct Numerical Simulations (DNS)

• The Fluid
� The incompressible, forced Navier–Stokes equation:

@u

@t
+ (u · r)u = �rp + ⌫r2u + f;

r · u = 0.

�
Pseudo-spectral parallel solver for the fluid velocity with 512

3

grid points and ⌫ = 1.5⇥ 10

�4
(R� = 180).

• The Particles
� Stokes drag and gravity:

dxp

dt

= vp;

dvp

dt

= � 1

⌧p
[vp � u(xp, t)] + g.

� u(xp, t) is evaluated by linear interpolation.

�
Number of particles Np = 10

8
.



Relative Velocity: PDF
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Probability distribution functions of the longitudinal velocity di↵erences conditioned on di↵erent separations r for
particles with (left) St = 0.05 (StDNS = 0.05, St

experiment

= 0.04) and (right) St = 0.2 (StDNS = 0.24,
St

experiment

= 0.19). The symbols are the experimental data and solid lines are the DNS data. In all panels, for
the experiment (DNS) data, squares (purple) correspond to r = 1 � 1.6⌘, circles (cyan) to r = 3 � 3.6⌘, and
triangles (gold) to r = 5 � 5.6⌘.

Saw, Bewley, Bodenschatz, Ray, and Bec, Phys. Fluids Lett., 26, 111702, (2014).



Relative Velocity: PDF
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Probability distribution functions of the longitudinal velocity di↵erences conditioned on di↵erent separations r for
particles with (left) St = 0.3 and (right) St = 0.5. The symbols are the experimental data and solid lines are the
DNS data. In all panels, for the experiment (DNS) data, squares (purple) correspond to r = 1 � 1.6⌘, circles
(cyan) to r = 3 � 3.6⌘, and triangles (gold) to r = 5 � 5.6⌘. The inset shows the variation with respect to St,
with the separation fixed to r = 1 � 1.6⌘. From the bottom to the top curve, St = 0.05, 0.3, 0.5.

Saw, Bewley, Bodenschatz, Ray, and Bec, Phys. Fluids Lett., 26, 111702, (2014).



Validity of the Stokes Drag Model?

• Quantitatively, we found the di↵erences between experiments
and simulations to be less than about 15% in the core of the
distributions.

• Similarly, we found excellent agreement in the tails of the
distributions, but only for the largest Stokes number
(St = 0.5), the smallest scale (r < 2 ⌘), and for the left side of
the distributions corresponding to approaching particle pairs.

• In other cases, the experimental tails of the PDFs increasingly
deviate from the simulated ones as one moves to higher
relative velocities.

• The discrepancy is larger in the right tails, corresponding to
separating pairs, where in the worst case the experimental
data is about 5 times above the simulated data.

• In the left tails, the discrepancy is less severe, but worsens
with decreasing St, so that the largest discrepancy is a factor
of two.



Possible Causes of Discrepancy

• E↵ects beyond linear Stokes drag maybe at play.
� The history term may play an important role, which, given the
experimental conditions, is the first subdominant correction.

• Measurement uncertainty.
� We characterized the measurement noise and add it to the
DNS data.

� Estimated ", in the experiment by applying the same method
to the DNS data to obtain a 5% agreement.

� We ruled out the possibility of a Reynolds number e↵ect by
comparing DNS data at increasing Reynolds numbers.

� Inaccuracy of ⌫ in the experiment was checked by reprocessing
the experimental data with a modified ⌫ (±30%) with no clear
improvement.

• No clear explanation for the discrepancies.

• The influences of nonlinear forces, hydrodynamic interactions,
and non-universal turbulence statistics merit further study.

M. R. Maxey & J. J. Riley, Physics of Fluids 26, 883 (1983).
A. Daitche & T. Tél, Phys. Rev. Lett. 107, (2011).



Velocities of Colliding Droplets

• There is general agreement in the trends and shapes of the
distributions.

• All the distributions can be approximated by
stretched-exponentials whose concavity increases with
increasing St and decreasing r .

• This is qualitatively consistent with what is known about the
velocity distributions of fluid particles.

• Earlier prediction of compressed exponential distributions for
very large St not observed.

� The distributions we measure are stretched rather than
compressed, and the implication is that the large St limit taken
in the theory does not accurately describe the intermediate St

dynamics studied here.

P. Kailasnath, et al., Phys. Rev. Lett. 68 (1992).
K. Gustavsson, et al., Phys. Rev. Lett. 101 (2008).



Scale-dependence of Relative Velocities

• To understand droplet collision-coalescence in clouds, one
needs to characterize droplet relative velocities at contact.

• Hence it is important to understand how droplet relative
velocities scale with vanishing r .

• Experimental and DNS data collapse at large negative values
of vk when the PDF is rescaled by r

� with � ⇡ 2.1.

• Such collapse indicates that the distribution of approaching

velocities takes the form p(vk | r) ' r

�(St) �(vk) at
su�ciently small separations and large velocities.

• This behavior is expected to extend down to separations of
the order of the particle size and hence should describe the
distribution of violent impact velocities between particles.



Relative Velocity: Rescaled PDF
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Rescaled probability distributions of the longitudinal velocity di↵erence conditioned on di↵erent separations r for
both the experimental (symbols) and DNS (solid lines) data for (left) St = 0.5 with � = 2.1 and (right) St = 0.3,
with � = 2.2. Green corresponds to r = 1 � 1.6⌘, blue to r = 3 � 3.6⌘, and red to r = 5 � 5.6⌘. Inset (left):

r -scaling of the distribution bulk; collapse is attained by r ⇥ p(vk|r) and (1/r) ⇥ vk/u⌘ . Inset (right): plots of

ln[Pr (vk/u⌘ < 5 |r)] (denoted as lnP�5) versus ln(r/⌘) for di↵erent St from the experiment. Unambiguous
values of � could not be obtained at such low St.

Saw, Bewley, Bodenschatz, Ray, and Bec, Phys. Fluids Lett., 26, 111702, (2014).



Reconstructing Particle Tracks

Reconstructing tracks of individual particles.



Conclusions

• We evaluated the accuracy of the Stokes drag model by
comparing results from DNS with experimental measurements.

• For relative velocities, the DNS matched all qualitative trends
of the experiments.

• Quantitative agreements for inertia-dominated regimes.

• Discrepancies found in some regimes.
• No trivial explanations for such discrepancies.

� Corrections to the Stokes drag model.
� Hydrodynamic interactions between particles.
� Small-scale, non-universality of the turbulence.

• For inertial particles, at dissipative scales of turbulence:

p(vk | r) ' r

�(St) �(vk).



How Fast do Droplets Settle Under Gravity?

Gravity-driven enhancement of heavy particle clustering in
turbulent flow

• Direct Numerical Simulations
• Theory: Asymptotic Expansion

Jérémie Bec, Holger Homann, and Samriddhi Sankar Ray.
Physical Review Letters 112, 184501 (2014)



Introduction

• Many industrial, atmospheric, and astrophysical phenomena
involves the interactions between small solid particles
suspended in a turbulent carrier flow.

• Two main e↵ects:
� a viscous drag on the particles (dominant for small particles);
� external forces, such as gravity, on the particles (dominant for

large particles).

• Standard modelling treats these two limits separately and
often fails at the interface.

� Example: the rate at which rain is triggered in warm clouds.

• An improvement might be to combine the e↵ects of
turbulence and gravity.

G. Falkovich, et al, Nature 419, (2002).
W. Grabowski & L.-P. Wang, Annu. Rev. Fluid Mech. 45, (2013).



Introduction

• In turbulent flows, there is an increase of the terminal velocity
of heavy particles.

• This phenomenon is mostly understood on qualitative grounds
and has been quantified only in model flows.

• Very little is known on the e↵ect of gravitational settling on
two-particle statistics.

• Fundamental theoretical and numerical studies of the
clustering of particle pairs and of the enhancement of
collisions due to inertia usually neglect gravity.

M. Maxey, J. Fluid Mech. 174, (1987). M. Wilkinson, et al, Phys. Rev. Lett. 97, (2006).
L.-P. Wang & M. Maxey, J. Fluid Mech. 256, 27 (1993). O. Ayala, et al, New J. Phys. 10, (2008).
E. Balkovsky, et al, Phys. Rev. Lett. 86, (2001). J. Bec, et al, Phys. Rev. Lett. 98, (2007).
J. Davila & J. Hunt, J. Fluid Mech. 440, (2001). J. Bec, et al, Fluid Mech. 646, (2010).



Question

What is the interplay between turbulence, gravity, and
particle sizes?

Important for fluid dynamics and non-equilibrium statistical physics.

Bec, Homann, and Ray, Phys. Rev. Lett. 112, 184501 (2014).



Our Approach

• We combine direct numerical simulations with theoretical
results based on standard asymptotic analysis.

• We make a systematic study of the dynamical and statistical
properties of particles as a function of

� the level of turbulence of the carrier flow (Reynolds number);
� the inertia of the particles (Stokes number);
� the ratio between the turbulent accelerations and gravity
(Froude number).



The Model

• The Fluid
� The fluid velocity u is a solution of the incompressible
Navier–Stokes equation and obtained via pseudo-spectral,
direct numerical simulations.

� Statistically steady, homogeneous, isotropic turbulence is
maintained by a large-scale forcing.

• The Particles
� Particles are much smaller than the Kolmogorov scale, much
heavier than the surrounding fluid, and with a small Reynolds
number associated to their slip velocity.

� Non-dimensionless numbers:
�

Stokes number: St=⌧p/⌧⌘, where ⌧⌘=
p

⌫/".
�

Froude number: Fr=a⌘/g , where a⌘ = "3/4/⌫1/4
.

� We use 10 di↵erent Stokes numbers and 5 di↵erent values of
the Froude number



The Model: Equations

• The Fluid
� The incompressible, forced Navier–Stokes equation:

@tu + (u · r)u = �rp + ⌫r2u + f;

r · u = 0.

� ⌫ is the fluid kinematic viscosity and f a large scale forcing.

• The Particles
� Stokes drag and gravity:

dxp

dt

= vp;

dvp

dt

= � 1

⌧p
[vp � u(xp, t)] + g.

� u(xp, t) is evaluated by linear interpolation.



Simulation: Details

Re� u
rms

�t ⌘ ⌧⌘ L TL N3 Np

460 0.189 0.0012 1.45 ⇥ 10�3 0.083 1.85 9.9 20483 10 ⇥ 108

290 0.185 0.003 2.81 ⇥ 10�3 0.131 1.85 9.9 10243 1.28 ⇥ 108

127 0.144 0.02 1.12 ⇥ 10�2 0.45 2.11 14.6 2563 0.08 ⇥ 108



Particle Distribution: E↵ect of Gravity

Snapshot of the vorticity modulus (Left; yellow = low values, green = high values) and of the particle positions for
R� = 130, St = 1 and three di↵erent values of the Froude number in a slice of thickness 10⌘, width 130⌘, and
height 520⌘. The vertical arrow indicates gravity.

Bec, Homann, and Ray, Phys. Rev. Lett. 112, 184501 (2014).



Settling Velocity: Qualitative Understanding

• Define : The average settling velocity Vg = �hVp · êzi.
• Statistical stationarity =) Vg = ⌧pg � huz(Xp, t)i.
• Define : The relative increase in settling velocity:

�V = (Vg � ⌧pg)/(⌧pg) = �huz(Xp, t)i/(⌧pg)
•
If settling particles in a turbulent flow sample regions where
the vertical fluid velocity is aligned with gravity, we expect an
enhancement of the average settling velocity.

M. Maxey, J. Fluid Mech. 174, (1987).
L.-P. Wang & M. Maxey, J. Fluid Mech. 256, 27 (1993).
K. Gustavsson, et al., Phys. Rev. Lett. 112, 214501 (2014).



Settling Velocity: Qualitative Understanding

• Define : The average settling velocity Vg = �hVp · êzi.
• Statistical stationarity =) Vg = ⌧pg � huz(Xp, t)i.
• Define : The relative increase in settling velocity:

�V = (Vg � ⌧pg)/(⌧pg) = �huz(Xp, t)i/(⌧pg)
� What is its dependence on the particle Stokes number and for
di↵erent values of Fr and R�?

•
If settling particles in a turbulent flow sample regions where
the vertical fluid velocity is aligned with gravity, we expect an
enhancement of the average settling velocity.

� Is there a way to see this preferential sampling from the
equations of motion?

M. Maxey, J. Fluid Mech. 174, (1987).
L.-P. Wang & M. Maxey, J. Fluid Mech. 256, 27 (1993).
K. Gustavsson, et al., Phys. Rev. Lett. 112, 214501 (2014).



Settling Velocity
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Bec, Homann, and Ray, Phys. Rev. Lett. 112, 184501 (2014).



Settling Velocity: Preferential Sampling

Small Stokes Asymptotics

• Why is there an enhancement?
� To leading order, the particles advected by an e↵ective velocity
field:

v = u + ⌧pg � ⌧p [@tu + (u + ⌧p g) · ru] .

� Focus on the (x , y) plane.
� By using isotropy and incompressibility, we obtain:

huzr? · v?i = ⌧ 2
pg

⌦
(@zuz)

2
↵

> 0.



Settling Velocity: Preferential Sampling

Small Stokes Asymptotics

• Why is there an enhancement?
� To leading order, the particles advected by an e↵ective
compressible velocity field:

v = u + ⌧pg � ⌧p [@tu + (u + ⌧p g) · ru] .

� Focus on the (x , y) plane.
� By using isotropy and incompressibility, we obtain:

huzr? · v?i = ⌧ 2
pg

⌦
(@zuz)

2
↵

> 0.

�
Particles preferentially cluster (negative divergence), on

average, in the (x , y) plane, at points where the fluid velocity

is vertically downwards (uz <0).

L.-P. Wang & M. Maxey, J. Fluid Mech. 256, 27 (1993).
K. Gustavsson, et al., Phys. Rev. Lett. 112, 214501 (2014).



Settling Velocity: Quantitative Understanding
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2
↵ / St

Assumptions & Algorithm:

• Relate Vg to huzr? · v?i.
• Hence huz (Xp

, t)i / ⌧⌘huzr? · v?i.

G. Falkovich, et al, Nature 419, (2002).

�V / R

3/4
� Fr

5/2
St

�2

Valid:

• St � R
1/2
� Fr and Fr ⌧ R

1/2
� .

I. Fouxon & P. Horvai, Phys. Rev. Lett. 100, (2008).



Small-scale, Two-particle Statistics

• Describe the evolution of pair separations in terms of ru.

•
Vg � u⌘: the particles travel ⌘ in a time shorter than ⌧⌘.

• Rescale time by ⌧⌘(Vg/u⌘) and space by ⌘:

d2R

ds2
' � 1

S̃


dR

ds
� R · �(s)

�
,

where � is a Gaussian tensorial noise with co-variance
h�ij(s)�k`(s 0)i = (⌫/")h@iuj@ku`i�(s � s

0).

• The e↵ective Stokes number S̃ = St (u⌘/Vg ).

•
Vg � u⌘: small-scale two-particle statistics depend only on S̃ .

• When �V ⌧ 1, S̃ ' Fr ; the statistics become independent of
St when St � Fr .



Observable

D2 : The Correlation Dimension

• An important observable measuring particle clustering is the
correlation dimension D2 of their spatial distribution.

• It is given by P2(r) / r

D2 for r ⌧ ⌘, where P2(r) is the
probability that two particles are within a distance r .

K. Gustavsson, et al., Phys. Rev. Lett. 112, 214501 (2014).



D2 : Correlation Dimension

0 1 2 3 4 5 6
2

2.2

2.4

2.6

2.8

3

St

D 2

 

 

Fr = 1
Fr = 2

Fr = 0.3

Fr = 0.05

Fr = 0.01

Correlation dimension D2 of the particle distribution as a function of the Stokes number for R� = 460 and various
Froude numbers as labeled. Smaller Reynolds numbers (not shown here) display a similar behavior.

Bec, Homann, and Ray, Phys. Rev. Lett. 112, 184501 (2014).



D2 : What it tells us

• Gravity acts in a non-uniform manner.

• It tends to enhance concentration (decrease D2) when both
the Stokes and the Froude numbers have moderate values.

• When Fr ⌧ 1, clustering is decreased for St . 1 and
increased for St & 1.

• For all finite Fr , one observes that D2 saturates to a finite
value when St ! 1.

• For Vg � u⌘, the fractal dimension D2 is a function of the
e↵ective Stokes number S̃ only, which for St � Fr becomes
independent of St.

• In this asymptotics, the correlation dimension depends solely
on Fr .

• The limiting value of D2 is a non-monotonic function of Fr .



Implication
• The increase in clustering observed for order-unity values of
St and Fr means that settling can significantly impact the
timescales of interaction between particles.

• When interested for instance in the collisions, estimations of
the geometrical rate involve the probability density that two
particles are at a distance r = 2a equal to the sum of their
radii and thus scales as (2a)D2�1.

• However, this quantity alone is not enough as the collision
rate involves also the typical velocity at which particles
approach each other.

• Indeed, for same-size particles, it is given by setting r = 2a in
the approaching rate.

(r) = � hw ✓(�w) �(|R| � r)i ,

where w=d|R|/dt is the longitudinal velocity di↵erence
between particles, ✓ the Heaviside function, and h·i the
average over all particle separations R.



Observable
The Approaching Rate

• (r)=� hw ✓(�w)| |R|= ri (dP2/dr), where w=d|R|/dt is
the longitudinal velocity di↵erence between particles, ✓ the
Heaviside function, and h·i the average over all particle
separations R

• This last quantity behaves also as a power of r for r ⌧ ⌘ with
an exponent ⇠1 given by the first-order structure function of
particle velocities.

• This implies that (r) ⇠ r

� with � = ⇠1 + D2 � 1.
• The dependence of � upon St, which encompasses particle
clustering and velocity di↵erences statistics, determines how
the collision rate depends on the particles size and inertia.

K. Gustavsson, et al., Phys. Rev. Lett. 112, 214501 (2014).



Approaching Rates
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Bec, Homann, and Ray, Phys. Rev. Lett. 112, 184501 (2014).



Understanding Approaching Rates

• (r) ⇠ r

� with � = ⇠1 + D2 � 1.

• For Fr = 1, ⇠1 = 1 at small St (tracers) and ⇠1 = 0 for
St ! 1 (scale-independent velocity di↵erences).

• When Fr decreases, the e↵ective Stokes number decreases, so
that particles get closer to tracers of the e↵ective flow and
⇠1 ! 1.

M. Wilkinson, et al., Phys. Rev. Lett. 97, 048501 (2006).
J. Bec, et al, J. Fluid Mech. 646, 527 (2010).
J. Bec, et al, Phys. Fluids 17, 073301 (2005).



Approaching Rates: Competing Mechanisms

• The two mechanisms determining the rate at which particles
collide, namely preferential concentration and large velocity
di↵erences, are thus a↵ected in a competing manner by
gravity.

• The enhancement of particle clustering takes over the
decrease of velocity di↵erences when St . Fr .

• Hence, �(Fr) < �(1) for St . Fr , indicating that the
collision rates between same-size particles are larger in the
presence of gravity.

• These corrections are responsible for an important increase of
the geometrical collision rate.

� Example: In the settings of a highly-turbulent cloud, namely
Fr = 0.3 and St = 0.4, the collision rate doubles when the
e↵ect of gravity is included.



Conclusions

• Heavy particles suspended in a turbulent flow settle faster
than in a still fluid.

• This e↵ect stems from a preferential sampling of the regions
where the fluid flows downward and is quantified as a function
of the level of turbulence, of particle inertia, and of the ratio
between gravity and turbulent accelerations.

• By using analytical methods and detailed numerical
simulations, settling is shown to induce an e↵ective horizontal
two-dimensional dynamics that increases clustering and reduce
relative velocities between particles.

• These two competing e↵ects can either increase or decrease
the geometrical collision rates between same-size particles and
are crucial for realistic modeling of coalescing particles.



Open Questions

• The functional form of the velocity di↵erence PDF depends
on the value of the Stokes number:

� Extending arguments for synthetic flows and in the large St

limit to moderate values of the Stokes numbers in real flows
for which the contribution of inertial-range and
dissipative-scale statistics cannot be neglected.

• The role of intermittency of turbulent velocity statistics and
non-trivial Reynolds number dependencies of particle relative
velocity and collision statistics.

• Coalescences.

• Modelling collision kernels.
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