Slide of the Seminar

Detecting structural complexity by knot polynomials

Prof. Renzo L. Ricca

ERC Advanced Grant (N. 339032) "NewTURB"
(P.I. Prof. Luca Biferale)

Detecting structural complexity

 by knot polynomialsRenzo L. Ricca

Department of Mathematics \& Applications, U. Milano-Bicocca, Italy renzo.ricca@unimib.it

Joint work with XIN LIU (BJUT, China)

Objectives

- Determine relationships between structural complexity of physical knots and energy;
- Quantify energy/helicity transfers in dynamical systems.

- Knot polynomials as new physical invariants to quantify topological complexity;
- Extend and apply new topological techniques
 to study complex systems.

Leonardo da Vinci (Water Studies 1506)

Werlé, ONERA, 1974 (Van Dyke 1982)

Vorticity localization in classical and quantum fluids

Kida et al. (Toki-Kyoto 2002)

Villois et al. (PRE 2016)

$\left.\begin{array}{l}\begin{array}{l}\text { homogeneous } \\ \text { incompressible } \\ \text { inviscid }\end{array}\end{array}\right\}$ fluid in $\mathbb{R}^{3}: \quad u=u(X, t) \quad\left\{\begin{array}{l}\nabla \cdot u=0 \quad \text { in } \mathbb{R}^{3} \\ u=0 \text { as } X \rightarrow \infty\end{array}\right.$

- Vortex line χ : vorticity: $\omega=\nabla \times u$,

$$
\begin{aligned}
& \omega=\varpi_{0} \hat{t}, \quad \varpi_{0}=\text { constant } \\
& \text { circulation: } \Gamma=\oint \omega \cdot \mathrm{d}^{2} \boldsymbol{X}=\text { constant }
\end{aligned}
$$

Vortex tangle: $\mathcal{T}=\bigcup_{i} \chi_{i} \quad i=1, \ldots, N$.

- Kinetic energy: $\quad E(\mathcal{T})=\int_{\Omega} \boldsymbol{u} \cdot(\boldsymbol{X} \times \omega) \mathrm{d}^{3} \boldsymbol{X}$

from Lamb (1932), we have: $\quad E(\mathcal{T}) \approx \frac{\Gamma^{2}}{4 \pi} \sum_{i j} \iint_{\chi_{i} \chi_{j}} \frac{\hat{\boldsymbol{t}}_{i} \cdot \hat{\boldsymbol{t}}_{j}}{\left|\boldsymbol{X}_{i}-\boldsymbol{X}_{j}\right|} \mathrm{d} s_{i} \mathrm{~d} s_{j}$.
- Total length of vortex tangle given by $L(\mathcal{T})=\sum_{i} \int_{\chi_{i}} \hat{\boldsymbol{t}}_{i} \mathrm{~d} s_{i}$.
- Kinetic helicity:

$$
H(\mathcal{T})=\int_{\mathcal{T}} \boldsymbol{u} \cdot \boldsymbol{\omega} \mathrm{d}^{3} \boldsymbol{X}=\Gamma \sum_{i} \int_{\chi_{i}} \boldsymbol{u} \cdot \mathrm{~d} \boldsymbol{l} .
$$

- Topological interpretation of kinetic helicity in terms of linking numbers (Moffatt 1969; Ricca \& Moffatt 1992):

$$
H(\mathcal{T})=\Gamma^{2}\left(\sum_{i} S L_{i}+\sum_{i \neq j} L k_{i j}\right)\left\{\begin{array}{l}
S L_{i}=S L\left(\chi_{i}\right) \text { self-linking number } \\
L k_{i j}=L k\left(\chi_{i}, \chi_{j}\right) \text { linking number }
\end{array}\right.
$$

- Self-linking number (Călugăreanu-White invariant):

Consider the ribbon $\Re\left(\chi_{i}, \chi_{i}^{*}\right)$; then $S L_{i}=\lim _{\varepsilon \rightarrow 0} L k\left(\chi_{i}, \chi_{i}^{*}\right)$, where

$$
S L_{i}=W r\left(\chi_{i}\right)+T w\left(\chi_{i}, \chi_{i}^{*}\right)
$$

writhing number:
 total twist $T w\left(\chi_{i}, \chi_{i}^{*}\right)$ number:

- ABC-flow acting on seed vorticity:

Energy-complexity relation (Barenghi et all, Physica D 2001)

Tackling structural complexity by knot polynomials

- Helicity and linking number limitations:
(i) $\quad H(\mathcal{T})=f\left(S L_{i}, L k_{i j} ; \Gamma\right)$

$$
\begin{equation*}
L k_{i j}=0, \quad \sum_{i \neq j} L k_{i j}=0 . \tag{ii}
\end{equation*}
$$

- HOMFLYPT polynomial $P(\chi)=P_{\chi}(a, z)$:
$\int($ P.1) $\quad P(\mathrm{O})=1$
(P.2) $\left.\quad a P\left(Y_{+}\right)-a^{-1} P\left(\lambda^{\prime}\right)=z P()_{=}\right)$

P.1:

$$
P(\mathrm{O})=P\left(\gamma_{+}\right)=P\left(\gamma_{-}\right)=1
$$

P.2:

$P\left(\boldsymbol{U}_{2}\right)=\frac{a-a^{-1}}{z}$

- Theorem (Liu \& Ricca, JFM 2015): If χ denotes a vortex knot of helicity $H=H(\chi)$, then

$$
e^{S L(\chi)}=e^{\oint_{\chi} \boldsymbol{u} \cdot \mathrm{d} \boldsymbol{l}}
$$

appropriately rescaled, satisfies (with a plausible statistical hypothesis) the skein relations of the HOMFLYPT polynomial $P(\chi)=P_{\chi}(a, z)$.

- HOMFLYPT variables in terms of writhe and twist:

$$
a P(<)-a^{-1} P(八)=z P()() \quad \square \quad[f(T w)]=g(W r)
$$

with $z=k-k^{-1}$ and

$$
\left\{\begin{array}{ll}
k=e^{2 \omega}, & \omega=\lambda_{\omega}\langle W r\rangle \\
a=e^{\tau}, & \tau=\lambda_{\tau}\langle T w\rangle
\end{array} \quad \text { and } \quad\left\{\lambda_{\omega}, \lambda_{\tau}\right\} \in(0 ; 1)\right.
$$

hence $a=f(T w)$ and $z=g(W r)$.

- Reduction of HOMFLYPT to Jones:

$$
a k^{2}=e^{\tau} e^{4 \omega}=1 \quad \square \quad W r=-4 \lambda T w \quad\left(\lambda=\lambda_{\tau} / \lambda_{\omega}\right)
$$

Sketch of proof

- derive the Kauffman bracket $\langle\cdot\rangle$ polynomial for unoriented knot; assume equal probability in state decomposition:

L_{+}

- orient knot
- derive skein relation for z in terms of Wr, considering

$$
\alpha\langle M\rangle-\alpha^{-1}\langle\lambda\rangle=\left(\alpha^{2}-\alpha^{-2}\right)\langle \rangle(\rangle \text { and } R()()=\alpha^{w}\langle \rangle(\rangle
$$

- note

$$
\langle\mid \sqcup \bigcirc\rangle=f(\alpha)\langle\mid\rangle \Rightarrow \overrightarrow{\rightarrow \quad \rightarrow} \oplus(\varpi) \Rightarrow \Rightarrow \square=
$$

- derive skein relation for a in terms of twist Tw, considering

$$
R(\stackrel{4}{\bigcirc})=a R(\uparrow)
$$

Quantifying topological complexity

In general we shall have $P(\chi)=f(\chi, \Gamma)$.

- Homogeneous superfluid tangle: $\Gamma=1$ and

$$
\left\{\begin{array} { l l }
{ k = e ^ { 2 \omega } , } & { \omega = \lambda _ { \omega } \langle W r \rangle } \\
{ a = e ^ { \tau } , } & { \tau = \lambda _ { \tau } \langle T w \rangle }
\end{array} \quad \text { with } \quad \begin{array} { l }
{ \langle W r \rangle = \langle T w \rangle = 1 / 2 } \\
{ \lambda _ { \omega } = \lambda _ { \tau } = 1 / 2 }
\end{array} \quad \square \quad \left\{\begin{array}{l}
z=e^{1 / 2}-e^{-1 / 2} \\
a=e^{1 / 4}
\end{array}\right.\right.
$$

Knot type	HOMFLYPT polynomial	Numerical value
\boldsymbol{U}_{N}	$\delta^{N-1}=\left[\left(a-a^{-1}\right) z^{-1}\right]^{N-1}$	0.48^{N-1}
\boldsymbol{H}_{+}	$a^{-1} z+\left(a^{-1}-a^{-3}\right) z^{-1}$	1.10
\boldsymbol{H}_{-}	$-a z-\left(a-a^{3}\right) z^{-1}$	-0.54
\boldsymbol{T}^{L}	$2 a^{2}+a^{2} z^{2}-a^{4}$	2.36
\boldsymbol{T}^{R}	$2 a^{-2}+a^{-2} z^{2}-a^{-4}$	1.51
\boldsymbol{F}^{8}	$a^{-2}-1-z^{2}+a^{2}$	0.17
\boldsymbol{W}	$-a^{-1} z^{-1}-a^{-1} z+a z^{-1}+2 a z+a z^{3}-a^{3} z$	1.59

Vortex trefoil cascade process in water (Kleckner \& Irvine 2013)

Vortex link cascade in BECs (Zuccher \& Ricca, IUTAM 2016)

\square
$T(2,1)$

$$
T(2,2)
$$

$\underset{T(2,0)}{\infty}$

Ideal torus knots \& links cascade
Consider the cascade process:

Assumptions:

- all torus knots $T(2,2 n+1)$ and links $T(2,2 n)$ are standardly embedded on a mathematical torus in closed braid form;
- all torus knots and links form an ordered set $\{T(2, n)\}$ of elements listed according to their decreasing value of topological complexity given by $c_{\text {min }}=n$;
- any topological transition between two contiguous elements of $\{T(2, n)\}$ is determined by a single, orientation-preserving reconnection event.

Torus knots cascade detected by HOMFLYPT

- Theorem (Liu \& Ricca, Sci Rep 2016): HOMFLYPT computation of
$P_{T(2, n)}$ generates, for decreasing n, a monotonically decreasing sequence of numerical values given by

$$
P_{T(2,3+q)}=A_{q}(\tau, \omega) P_{T(2,3)}+B_{q}(\tau, \omega) P_{T(2,2)} \quad(q \in \mathbb{N})
$$

where $A_{q}(\tau, \omega)$ and $B_{q}(\tau, \omega)$ are known functions of τ and ω, with initial conditions $P_{T(2,3)}$ and $P_{T(2,2)}$.

Sketch of proof.
Apply (P.2) to

to obtain

$$
P_{T(2, n+2)}=a^{-1} z P_{T(2, n+1)}+a^{-2} P_{T(2, n)}
$$

Recursively, we have

$$
P_{T(2, n+2)}-\alpha P_{T(2, n+1)}=\beta^{n-1}\left[P_{T(2,3)}-\alpha P_{T(2,2)}\right], \quad n \geq 2
$$

and after some algebra

$$
P_{T(2, n)}=\left(\frac{\beta^{n-2}-\alpha^{n-2}}{\beta-\alpha}\right) P_{T(2,3)}-\left(\alpha \beta \frac{\beta^{n-3}-\alpha^{n-3}}{\beta-\alpha}\right) P_{T(2,2)}, \quad n \geq 4
$$

Hence, by setting $k=e^{2 \omega}$ and $a=e^{\tau}$, we have:

$$
P_{T(2,3+q)}=A_{q}(\tau, \omega) P_{T(2,3)}+B_{q}(\tau, \omega) P_{T(2,2)} \quad(q \in \mathbb{N})
$$

with

$$
A_{q}(\tau, \omega)=\frac{e^{2(1+q) \omega}-(-1)^{1+q} e^{-2(1+q) \omega}}{e^{q \tau}\left(e^{2 \omega}+e^{-2 \omega}\right)}, \quad B_{q}(\tau, \omega)=\frac{e^{2 q \omega}-(-1)^{q} e^{-2 q \omega}}{e^{(1+q) \tau}\left(e^{2 \omega}+e^{-2 \omega}\right)}
$$

and

$$
P_{T(2,3)}=2 a^{-2}+a^{-2} z^{2}-a^{-4}, \quad P_{T(2,2)}=a^{-1} z+\left(a^{-1}-a^{-3}\right) z^{-1}
$$

Since for mirror knot $P(\chi) \rightarrow P(\tilde{\chi})$ by changing

$$
a \rightarrow a^{-1}(\tau \rightarrow-\tau), \quad z \rightarrow-z \quad(\omega \rightarrow-\omega)
$$

then

$$
P\{T(2, n)\}_{+}=P\{T(2, n)\}_{-}=P_{T(2, n)}
$$

Vortex trefoil cascade process in water (Kleckner \& Irvine 2013)
$P=1.50$

$$
t=1
$$

Vortex link cascade in BECs (Zuccher \& Ricca, IUTAM 2016)

HOMFLYPT quantifies topological complexity

- Jones polynomial: $a=k^{-2} \quad\left(a=e, k=e^{-1 / 2}\right)$;

$$
V_{T(2, n)}=\frac{e^{-\frac{3}{2} n+4}+(-1)^{n-1} e^{-\frac{1}{2} n+2}}{e^{\frac{1}{2}}+e^{-\frac{1}{2}}} V_{T(2,3)}+\frac{e^{-\frac{1}{2}(3 n-7)}+(-1)^{n-2} e^{-\frac{1}{2}(n-1)}}{e^{\frac{1}{2}}+e^{-\frac{1}{2}}} V_{T(2,2)} .
$$

- Alexander-Conway polynomial: $a=1 \quad\left(a=1, k=e^{-1 / 2}\right)$;

$$
\Delta_{T(2, n)}=\frac{e^{-\frac{n-2}{2}}+(-1)^{n-1} e^{\frac{n-2}{2}}}{e^{\frac{1}{2}}+e^{-\frac{1}{2}}} \Delta_{T(2,3)}+\frac{e^{-\frac{n-3}{2}}+(-1)^{n-2} e^{\frac{n-3}{2}}}{e^{\frac{1}{2}}+e^{-\frac{1}{2}}} \Delta_{T(2,2)}
$$

Cascade of oppositely oriented components (negative crossings)

- Lemma (Ricca \& Liu, FDR 2017): Let us consider the ordered set of oppositely oriented torus links $\left\{T_{o}(2,2 n)\right\}$ (n integer, $n \geq 1$). The HOMFLYPT polynomial $P_{T_{o}(2,2 n)}$ is given by

$$
P_{T_{o}(2,2 n)}=\frac{a^{2}-1}{a z} a^{2 n}+\frac{1-a^{2 n}}{a^{2}-1} a z
$$

Sketch of proof.
Apply (P.2) to

to obtain
that is

$$
a P_{T_{o}(2,2 n)}-a^{-1} P_{T_{o}(2,2 n+2)}=z
$$

$$
P_{T_{o}(2,2 n+2)}=a^{2} P_{T_{o}(2,2 n)}-a z
$$

By applying the same relation recursively, we have

$$
\begin{gathered}
a^{2} P_{T_{o}(2,2 n)}=a^{4} P_{T_{o}(2,2(n-1))}-a^{3} z, \\
a^{4} P_{T_{o}(2,2(n-1))}=a^{6} P_{T_{o}(2,2(n-2))}-a^{5} z, \\
\vdots \\
a^{2(n-1)+2} P_{T_{o}(2,2)}=a^{2(n-1)+4} P_{T_{o}(2,0)}-a^{2(n-1)+3} z,
\end{gathered}
$$

and by recursive substitution, we obtain

$$
\begin{aligned}
P_{T_{o}(2,2 n+2)} & =a^{2(n-1)+4} P_{T_{o}(2,0)}-a z\left(1+a^{2}+a^{4}+\cdots+a^{2 n}\right) \\
& =a^{2 n+2} P_{T_{o}(2,0)}-a z \frac{1-a^{2(n+1)}}{1-a^{2}} \quad(n \geq 1)
\end{aligned}
$$

Since $P_{T_{o}(2,0)}$ is the polynomial of the disjoint union of two unlinked unknots, given by
we have the statement:

$$
P_{T_{o}(2,0)}=\frac{a-a^{-1}}{z}=\delta
$$

$$
P_{T_{o}(2,2 n)}=\frac{a^{2}-1}{a z} a^{2 n}+\frac{1-a^{2 n}}{a^{2}-1} a z
$$

Table of numerical values: comparative analysis

Numerical values for torus knots and co-oriented torus links $(W r=T w=1 / 2)$																
	$T(2,10)$	$T(2,9)$	$T(2,8)$	$T(2,7)$	$T(2,6)$	$T(2,5)$	$T(2,4)$	$T(2,3)$	$T(2,2)$	$T(2,1)$	$T(2,0)$					
HOMFLYPT: $a=e^{1 / 4}, k=e^{1 / 2}$	8.52	6.64	5.17	4.03	3.13	2.44	1.89	1.50	1.11	1	0.48					
Jones: $\tau=e^{-1}$	-0.01	0.02	-0.03	0.05	-0.09	0.15	-0.25	0.40	-0.69	1	-2.26					
Alexander-Conway: $t=e^{-1}$	-65.81	39.92	-24.20	14.70	-8.88	5.44	-3.22	2.08	-1.04	1	-					

$$
\left\{T_{o}(2, n)\right\}: \cdots \quad \infty \rightarrow \infty
$$

Numerical values for oppositely oriented torus links $(W r=T w=-1 / 2)$															
	$T_{o}(2,10)$	-	$T_{o}(2,8)$	-	$T_{o}(2,6)$	-	$T_{o}(2,4)$	-	$T_{o}(2,2)$	-	$T_{o}(2,0)$				
HOMFLYPT: $a=e^{-1 / 4}, k=e^{-1 / 2}$	1.93		1.85		1.71		1.48		1.11		0.48				
Jones: $\tau=e$	-0.44		-0.45		-0.45		-0.48		-0.69		-2.25				
Alexander-Conway: $t=e^{1 / 2}$	0		0		0		0		0		-				

Conclusions and outlook

- Adapted HOMFLYPT is the best quantifier of cascade processes:
- P_{K} provides monotonic behavior consistently;
- numerical values more robust and reliable markers for diagnostics;
- $P_{T(2,2 n)} / c_{\min } \approx 0.5, \quad(0 \leq n \leq 6)$ (except for the unknot).
- Same cascade in recombinant DNA plasmids (Shimokawa et al., 2013):

- Optimal path to cascade?

