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Objectives

�    Determine relationships between structural
   complexity of physical knots and energy;
�    Quantify energy/helicity transfers in dynamical
   systems.

�     Knot polynomials as new physical invariants 
   to quantify topological complexity;
�     Extend and apply new topological techniques
   to study complex systems. T
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Coherent structures

Leonardo da Vinci
(Water Studies 1506)

Werlé, ONERA, 1974
(Van Dyke 1982)



Kida et al.
(Toki-Kyoto 2002)

Vorticity localization in classical and quantum fluids

Villois et al.
(PRE 2016)



Modeling vortex tangles by filaments
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�  Kinetic energy:

from Lamb (1932), we have: .

�  Total length of vortex tangle given by                                   .                        
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χi

∫
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E(T ) = u ⋅ X ×ω( )
Ω∫ d3X

T  =  ∪ i χ iVortex tangle: i = 1,…, N .

Γcirculation:                    . Γ = ω ⋅d2X  = constant�∫



Kinetic helicity and linking numbers

�  Topological interpretation of kinetic helicity in terms of linking numbers 

   (Moffatt 1969; Ricca & Moffatt 1992):

�  Kinetic helicity:

.

linking number

self-linking number SLi= SL χ i( )

Lkij= Lk χ i, χ j( )
�  Self-linking number (Călugăreanu-White invariant):

Consider the ribbon                  ;  then                                     ,
where 

SLi= lim
ε→0

 Lk χ i, χ i
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Tw χ i, χ i
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Energy-complexity relation: a 15 years-old test case

time

log H
log C⊥

log C

log  Wr⊥

log  Lktot

log L

mature tangle

O(164 s−1)

O(82 s−1)

log EL = L / L0
E = E / E0

�  ABC-flow acting on seed vorticity:



Energy-complexity relation (Barenghi et al., Physica D 2001)



�  HOMFLYPT polynomial                            : 

(P.1)

(P.2)

γ −γ +

P χ( )  = Pχ (a, z)

~ ~ 

γ+ γ −U1

P O( )  = P γ+( )  = P γ−−( )  = 1P.1:

P.2:
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P U2( )  = a− a
−1

z

P O( )  = 1

�  Helicity and linking number limitations:

H (T ) = f SLi,Lkij;Γ( )
Lkij  = 0     Lkiji≠ j∑  = 0

(i) 

,                           .(ii) 

Tackling structural complexity by knot polynomials



HOMFLYPT polynomial from self-linking 

H  = H (χ )

P χ( )  = Pχ (a, z)

χ

,eSL χ( )= e
u⋅d l

χ�∫

with                    and  z = k − k−1

,

,
and                                 

k  = e2ω    ω  = λω Wr

a = eτ      τ  = λτ Tw
hence                    and                   .a = f Tw( ) z = g Wr( )

�  HOMFLYPT variables in terms of writhe and twist: 

f (Tw)[ ]  = g Wr( ) .

�  Theorem (Liu & Ricca, JFM 2015): If      denotes a vortex knot of
   helicity                     , then 

  

   appropriately rescaled, satisfies (with a plausible statistical hypothesis) 
   the skein relations of the HOMFLYPT polynomial                            .

�  Reduction of HOMFLYPT to Jones:

ak2  = eτe4ω  = 1 Wr  = − 4λ Tw      

,

                       .

λω ,λτ{ }∈ 0;1( )

(λ  = λτ λω )



Sketch of proof

 �  derive the Kauffman bracket       polynomial for unoriented knot;
    assume equal probability in state decomposition:

     

 �  orient knot

 �  derive skein relation for z in terms of Wr, considering 

                                                                                                     ;  
  �  note 

 �  derive skein relation for a in terms of twist Tw, considering

⋅

and

.

L+



Quantifying topological complexity

In general we shall have                           .P χ( )  = f χ,Γ( )
�  Homogeneous superfluid tangle:            and                                           Γ = 1

 …                                            …                                               …           

with
z = e1/2 − e−1/2

a = e1/4

,

,

k  = e2ω    ω  = λω Wr

a = eτ      τ  = λτ Tw λω = λτ = 1 2

Wr  = Tw  = 1 2



Vortex trefoil cascade process in water (Kleckner & Irvine 2013)

t = 1 t = 2

t = 4t = 3

T (2,3)

…
T (2,1) T (2,0)

T (2,2)



t = 1 t = 2

t = 4t = 3

T (2,0)

T (2,2) T (2,1)

T (3,0)

Vortex link cascade in BECs (Zuccher & Ricca, IUTAM 2016)

…



Ideal torus knots & links cascade

Consider the cascade process: 

... →  T (2, 2n+1) →  T (2,n) →  ... →  T (2, 0):                                                                          .

�    all torus knots T (2, 2n+1) and links T (2, 2n) are standardly embedded
   on a mathematical torus in closed braid form; 
�    all torus knots and links form an ordered set              of elements 
   listed according to their decreasing value of topological complexity 
   given by cmin= n ;
�    any topological transition between two contiguous elements of   
   is determined by a single, orientation-preserving reconnection event. 

T (2,n){ }

T (2,n){ }

Assumptions:

(i)

(ii)

T (2,n){ }



Torus knots cascade detected by HOMFLYPT

�  Theorem (Liu & Ricca, Sci Rep 2016): HOMFLYPT computation of 

   PT(2,n) generates, for decreasing n, a monotonically decreasing sequence

   of numerical values given by

,

where               and               are known functions of  τ and ω , with 

initial conditions PT(2,3) and PT(2,2) .
Bq τ,ω( )

to obtain 
.

Aq τ,ω( )

Apply (P.2) to 

Sketch of proof.



Recursively, we have

,

and after some algebra

.

,

with 

.

and 
,                                                 .

Since for mirror knot                         by changing                  P χ( )→ P �χ( )
a→ a−1  (τ→−τ )       z→−z  (ω→−ω),                                   ,

P T (2,n){ }+ = P T (2,n){ }− = PT (2,n)
then

,

Hence, by setting  k = e2ω and  a = eτ , we have: 

,

.



Vortex trefoil cascade process in water (Kleckner & Irvine 2013)

t = 1 t = 2

t = 4t = 3

T (2,3)

…
T (2,1) T (2,0)

T (2,2)

P = 0.48P = 1

P = 1.50 P = 1.11



t = 1 t = 2

t = 4t = 3

T (2,0)

T (2,2) T (2,1)

T (3,0)

Vortex link cascade in BECs (Zuccher & Ricca, IUTAM 2016)

…

P = 1P = 1.11

P = 0.48 P = 0.23



�  Jones polynomial:                                          ;a = k −2    (a = e,   k  = e−1/2 )

�  Alexander-Conway polynomial:                                         ;a = 1    (a = 1,   k  = e−1/2 )

.

.

HOMFLYPT quantifies topological complexity

a = e1/4 ,   k  = e1/2

Torus knots



Apply (P.2) to 

Sketch of proof.

to obtain 

Cascade of oppositely oriented components (negative crossings)

.

�  Lemma (Ricca & Liu, FDR 2017): Let us consider the ordered set of 
oppositely oriented torus links                    (    integer,            ). The 
HOMFLYPT polynomial                is given by 

…



that is 

By applying the same relation recursively, we have 

and by recursive substitution, we obtain  

Since             is the polynomial of the disjoint union of two unlinked 
unknots, given by 

we have the statement: 

,

,

,

,

,

.

.

.



Table of numerical values: comparative analysis 

…



�  Same cascade in recombinant DNA plasmids (Shimokawa et al., 2013):

Conclusions and outlook

�  Optimal path to cascade?  

T (2, 5)

�  Adapted HOMFLYPT is the best quantifier of cascade processes:  
–       provides monotonic behavior consistently;
– numerical values more robust and reliable markers for diagnostics;
–                             ,                      (except for the unknot).   


