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Navier -Stokes equation
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! “nonlocal” nonlinearity



Eulerian structure functions

I Eulerian transverse structure functions:
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I Eulerian longitudinal structure functions:

S
k
n (l) =

⌧����(v(r + l)� v(r)) · l
l

����
n�

/ l⇣
k
n

I Modern experiment and numerical calculations Sn : n ⇠ 8� 10

I there is no theory based on Navier Stokes equation

I exact result ⇣?2,3 = ⇣k2,3

I theoretical expectations: ⇣kn = ⇣?n



Numerical simulations (Benzi et al. 2010, Gotoh et al. 2002)

⇣kn 6= ⇣?n poor accuracy ?



Kolmogorov (K41) theory

I stationary, locally isotropic and homogeneous turbulence in
incompressible fluid

I inertial range – dimensional theory – cascade

⌘ ⌧ l ⌧ L– Eulerian case

I structure functions
⇣En = n/3– Eulerian case

experiment – anomalous scaling



Modern numerical simulations (M.Farge)



vortex filaments –99% energy! 80% dissipation
life-time 100 ⌧c

Okamoto et al., 2007 Phys. Fluids, 19(11)



Energy flux
incoherent input = 0

Okamoto et al., 2007 Phys. Fluids, 19(11)



Lagrangian trajectory (L.Biferale et al)



Cascade versus Singularity
I Cascade



Cascade versus Singularity
I Singularity



Cascade versus Singularity
I Singularity



Cascade



Cascade is impossible without singularity



Multifractal model (Parisi Frisch 1985)

I The model generalizes the Kolmogorov theory (K41) to describe the
observed nonlinear dependence of scaling exponents on their order

I Euler equations are invariant under the transformations

r ! r 0 = �r , v ! v 0 = �hv , t ! t 0 = �1�ht

I assumption: determinative contribution to velocity structure functions is
given by �v(l) ⇠ lh (spectrum of singularities?!)

h�vni =
R
lnhl3�D(h)dµ(h)

I The introduction of “fractal dimension” D(h) follows naturally from the
theory of large deviations

Dk , D? ?



Multifractal theory

I In the limit l ! 0, only the smallest exponent contributes to the integral

⇣n = min
h

(nh + 3� D(h)) , lim
l!0

lnh�vni(l)
ln l

= ⇣n ,

I ⇣n relates to D(h) by the Legendre transformation



The statement of the problem
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+ (vr)v = �rP + F(r , t) + ⌫�v , r · v = 0

Introduction of randomness

Let Ui (r , t) – some large-scale random velocity field

Ui (r , t) =
1

L3

Z
Qi (r + ⇢, t)e�⇢2/L2d⇢ , r ·U = 0

Now we define large-scale stochastic force F (r , t) by relation
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+ (Ur)U = �r⇡ + F(r , t) + ⌫�U , r · F = 0

We substitute F on the right-hand side of NS equation. Seek the solution in
the form

v(r, t) = U+ u(r, t) , P = p + ⇡
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+ (Ur)ui + (ur)Ui + (ur)ui = �rip , r · u = 0

I This smoothed functions can be expanded in Taylor series for r ⌧ L

Ui (r , t) = Ui (0, t) + Aij(t)rj + Aijk
rj rk
L

. . . , Aii = 0

I In the limit L ! 1 but turnover time T = const only first two terms
remain

I the velocity Ui (0, t) can easily be taken zero by choosing the reference
frame

I NS equation takes the form
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+ (Ajk rkrj)ui + Aikuk + (ur)ui = �rip , r · u = 0



Velocity fluctuations

let Aij(t) be a random function of time

vi = Aij(t)rj + ui (r , t) , P = p +rirjP(0, t)ri rj

ui (r , t) – velocity pulsation

@

@t
ui + (Akj rjrk)ui + Aikuk + (ur)ui = �rip , riui = 0

this is the main equation of our theory

Asymptotic analysis (inviscid limit)

let ui (r , t) = giµ(t)wµ(X⌫ , t) , X⌫ = q⌫↵(t)r↵
where giµ(t) and q⌫↵(t) satisfy the equations:

ġi↵ + Aijgj↵ = 0 , gi↵(0) = �ij

q̇�⌫ + q�µAµ⌫ = 0 , qij(0) = �ij

let A = AT , hence gij = qji The equation then becomes
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Asymptotic behavior of q, g

I discrete approximation (A = AT is not required)
let Aij(t) = (An)ij be constant inside each small (n-th) interval

qN = e�A1�t · e�A2�t · · · · · e�AN�t

I production of N ! 1 unimodular matrixes

The Theorem

Furstenberg, Tutubalin, Molchanov, Nechaev, Sinai ... see review
Letchikov, UMN, v51, vypusk 1(307), 1996

I Iwasawa decomposition of the matrix q = z(q)d(q)s(q) z is an upper
triangular matrix with diagonal elements equal to 1, d is a diagonal
matrix with positive eigenvalues, s is an orthogonal matrix

z(qN) ! z1

d(qN) = diag
⇣
e�1N+O1(

p
N), e�2N+O2(

p
N), e�3N+O3(

p
N)
⌘

,

�1 < �2 < �3 , O1 ,O2 ,O3 Gaussian noise



Simplifications

I there is a strong exponential growth

(qg)N = (qqT )N ' z1d(qN)z
T
1

d(qN) = e2�3N · diag(0, 0, 1) + O(e�2N)

I we neglect the terms growing slower than e2�3N

I introduce a new vector variable V = Cw; Cij is a constant matrix
✓
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= 0 , P = e2�3t⇧

Stationary equation without randomness.This is due to the chosen
variables (X,V); the randomness remains in rotation

I in reality nonlinearity depletion
✓
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V ⇡ 0

I recent papers suppot it (Gibbon et al 2014),(Kuznetsov 2015)



Analysis of the solution

I To understand the properties of the solution , we have to rewrite it back
in laboratory coordinates (r,u).

I To separate the stochastic rotational part of the solution, we make one
more change of variables

r0 = sr , u0 = su

after some manipulations

u0i = e�i tVi (e
�1tr 01, e

�2tr 02, e
�3tr 03)

(no summation is assumed)
I in the rotating coordinates r0, the asymptotic solution is not random
I As t ! 1, the third component u03 dominates, and the solution

stretches exponentially with di↵erent coe�cients along di↵erent axes
I We now take the curl to find vorticity

!0 ' !0
1 = e��1t f

⇣
e�3tr 03

⌘

I since !0 = s!, the absolute values of vorticities are equal in the two
frames, so ! = !0



Analysis of the solution

I vorticity (and velocity) is transported from boundaries to the center
I in stationary conditions vorticity (and velocity) can’t grow exponentially

in a finite volume

< u2 >=
1
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u2d3r > n · const · e�mint

I Thus, in stationary conditions vorticity (and velocity) can grow
exponentially in some points only

I we have to demand that at some boundary point (see below)

!(t, L) ⇠ 1

I With account of the boundary condition, f (e�3t0L) ⇠ e�1t0 , for any t 0;
choosing t 0 as e�3tr 03 = e�3t0L

!(t, r 03) /
✓
r 03
L

◆�1/�3

It is valid for r 03 > Le�3(t0�t). At smaller r 03, the vorticity ! is determined
by the initial condition



Simple model

I ’straighten’ the random flow, excluding the matrix s (without rotation)
I Simplifications: fix diagonal Aij and u = u(x , t)

vx = a x , vy = b y + u(x , t) , vz = c z , a+ b + c = 0

One can get the exact equation for vorticity
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I Let also a < 0 , b > 0 , c = �(a+ b) > b
I the boundary condition !(t, 1) = 1 The solution takes the form

!(t, x) = ec(t�t0) !
�
t 0, 1

���
t0(x)=t�(ln x)/a

= xc/a , x > x̄(t) = eat

!(t, x) = ect!0
�
xe�at

�
, x < x̄(t)

I If the boundary condition is !(t, 1) = f (t)

!(t, x) = xc/af

✓
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Example of the solution



Evolution of spectrum

I The idea of cascade is based on power-law spectrum

I Let initial distribution of vorticity be

!0(x) = (1 + ix)c/a + (1� ix)c/a

The Fourier transform of this function is

!(k , t) = |k |b/ae�|k|eat , a < 0

I The spectrum falls exponentially at k ⇠ x̄�1 = e�at

I Stationary fluctuations if k ⌧ x̄�1

The result is similar to the e↵ect of viscosity, but cuto↵ depends on time



E↵ect of viscosity

I It is easy to generalize and include the viscosity

@u(x , t)
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I Changing to the variable q = xe�at we get
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The Fourier transformation gives

!(k , t) = e�bt!0(ke
at)e
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I For the example of initial condition considered in the previous slide

!(k , t) = |k |b/ae�|k|eate
⌫
2a k

2(1�e2at) , a < 0



Introduction of stochastics

I According to the Theorem, the stochastic generalization has the form
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⇠1(t) and ⇠2(t)are Gaussian delta-correlated random processes
I The probability density
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I For x = 0,taking t 0 = 0, we get

!(t, 0) = e
ct+

tR

0
⇠2(t00)dt00

!(0, 0)



stochastic solution

I hence
h!(t, 0)ni = enct+n2D2t/2!n(0, 0)

This characterizes the solution inside the non-stationary inner region
with growing vorticity

I x̄ of the non-stationary region is determined by the condition
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I scaling of velocity moments is
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Discussion 1

I Average large-scale exponents �i determine the scaling (fractal)
behavior of the solutions, while fluctuations of these exponents
⇠1(t) , ⇠2(t) produce multifractality

I Stretching of the vortex filaments is the main process. Maximal
stretching (n ! 1) is

v =
[ez , r]
r

I Structure functions
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I At n ! 1 there is a strong di↵erence between k and ? exponents

I in simulations ⇠k > ⇠?longitudinal – sub-leading term !? S
k
1 = 3

I Taking into account ⇠3 = 1 one can get all structure functions



the result



Discussion 2

I The main process is stretching of the vortex filaments, but not
vortices breaking

I If P(A) = P(RAR�1) and P(Aij) = P(�Aij) the exponents are
�1 = �� , �2 = 0 , �3 = �

I �2 = 0 because the transformation A ! �A is time reversal, but it is
not true for turbulence – there is energy flux flowing into small scales

< � >=

⌧Z
V 2Vds

�
/ AijAjkAki / det A

I Hence �2 6= 0 and �1 < �2 < �3

I Simple model a < 0 , b > 0 , c > b corresponds to correct sign of
energy flux



The assumptions and simplifications

I r ⌧ L is not important, the approximation improves with time
I !(1, t) = f (t) the structure function exponets do not change for any

f (t) < et

I nonlinear dependence of structure function exponents on n are
calculated for small D2 only (D2n/(2 b) ⌧ 1)

I depletion of nonlinearity (vr)v is obtained for the case AT = A
in this case

q g (vr)v = q qT (vr)v / e2�3tz1diag (0, 0, 1) zT1(vr)v

I if AT 6= A but P(⌦) = P(�⌦) , 2⌦ = A� AT in this case

q = z11 d R1(t) , g = R�1
2 (t) d zT21

and nonlinearity

q g (vr)v / e2�3tR33(t) z11diag (0, 0, 1) zT21(vr)v ,

rigorous analysis gives �2(A) < 0
I so, the result looks general



I THUS:

I We believe that ⇠n? < ⇠nk for some n > N⇤
IN THIS CASE:

I ⇠n? is the leading asymptotic term ⇠nk is sub-leading term

I It is very di�cult to construct theory for sub-leading terms
WE EXPECT:

I to calculate ⇠n?, to get saturation and to find saturation level directly
from NS equation.

I unsolved problem why �i are universal?


