

Established by the European Commission

Slide of the Seminar

On the multifractal structure of fully developed turbulence

Prof. Kirill Zybin

ERC Advanced Grant (N. 339032) "NewTURB" (P.I. Prof. Luca Biferale)

Università degli Studi di Roma Tor Vergata C.F. n. 80213750583 – Partita IVA n. 02133971008 - Via della Ricerca Scientifica, I – 00133 ROMA

Kirill Zybin Valeria Sirota

On the multifractal structure of fully developed turbulence

P.N. Lebedev Physical Institute of RAS

Navier -Stokes equation

$$\frac{\partial v_i}{\partial t} + v_j \frac{\partial v_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \nu \Delta v_i$$

$$\frac{\partial v_i}{\partial x_i} = 0$$

hence $\Delta p = -\frac{\partial v_i}{\partial x_j} \frac{\partial v_j}{\partial x_i} \rightarrow$ "nonlocal" nonlinearity

Eulerian structure functions

Eulerian transverse structure functions:

$$\mathcal{S}_n^{\perp}(l) = \left\langle \left| \left(\mathbf{v}(\mathbf{r} + \mathbf{I}) - \mathbf{v}(\mathbf{r}) \right) imes \frac{\mathbf{I}}{l} \right|^n \right\rangle \propto l^{\zeta_n^{\perp}}$$

Eulerian longitudinal structure functions:

$$S_n^{\parallel}(I) = \left\langle \left| \left(\mathbf{v}(\mathbf{r} + \mathbf{I}) - \mathbf{v}(\mathbf{r}) \right) \cdot \frac{\mathbf{I}}{I} \right|^n \right\rangle \propto I^{\zeta_n^{\parallel}}$$

- Modern experiment and numerical calculations S_n : $n \sim 8 10$
- there is no theory based on Navier Stokes equation
- exact result $\zeta_{2,3}^{\perp} = \zeta_{2,3}^{\parallel}$
- ▶ theoretical expectations: $\zeta_n^{\parallel} = \zeta_n^{\perp}$

 $\zeta_n^{\parallel} \neq \zeta_n^{\perp}$ poor accuracy ?

Kolmogorov (K41) theory

- stationary, locally isotropic and homogeneous turbulence in incompressible fluid
- ▶ inertial range dimensional theory cascade

 $\eta \ll I \ll L$ – Eulerian case

structure functions

 $\zeta_n^E = n/3$ - Eulerian case

experiment – anomalous scaling

Modern numerical simulations (M.Farge)

Total vorticity

Coherent Vorticity 2.6% N coefficients 80% enstrophy 99% energy

vortex filaments –99% energy! 80% dissipation life-time 100 τ_c Okamoto et al., 2007 Phys. Fluids, 19(11)

E(k)

 $k\eta$

Energy flux

incoherent input = 0

Okamoto et al., 2007 Phys. Fluids, 19(11)

Lagrangian trajectory (L.Biferale et al)

Cascade versus Singularity

Х

Cascade versus Singularity

► Singularity

 $\alpha = \beta + 1$

Cascade versus Singularity

► Singularity

 $\alpha = \beta + 1$

Cascade

Cascade is impossible without singularity

Multifractal model (Parisi Frisch 1985)

- The model generalizes the Kolmogorov theory (K41) to describe the observed nonlinear dependence of scaling exponents on their order
- Euler equations are invariant under the transformations

$$r \rightarrow r' = \gamma r$$
, $v \rightarrow v' = \gamma^h v$, $t \rightarrow t' = \gamma^{1-h} t$

► assumption: determinative contribution to velocity structure functions is given by δv(l) ~ l^h (spectrum of singularities?!)

$$\langle \Delta v^n \rangle = \int I^{nh} I^{3-D(h)} d\mu(h)$$

The introduction of "fractal dimension" D(h) follows naturally from the theory of large deviations

$$D_{\parallel}, D_{\perp}$$
?

Multifractal theory

• In the limit $I \rightarrow 0$, only the smallest exponent contributes to the integral

$$\zeta_n = \min_h \left(nh + 3 - D(h) \right) , \qquad \lim_{I \to 0} \frac{\ln \langle \Delta v'' \rangle(I)}{\ln I} = \zeta_n ,$$

• ζ_n relates to D(h) by the Legendre transformation

The statement of the problem

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}\nabla)\mathbf{v} = -\nabla P + \mathbf{F}(r,t) + \nu \Delta \mathbf{v}, \qquad \nabla \cdot \mathbf{v} = 0$$

Introduction of randomness

Let $U_i(r, t)$ – some large-scale random velocity field

$$U_i(r,t) = \frac{1}{L^3} \int Q_i(\mathbf{r}+\rho,t) e^{-\rho^2/L^2} d\rho, \qquad \nabla \cdot \mathbf{U} = 0$$

Now we define large-scale stochastic force F(r, t) by relation

$$\frac{\partial \mathbf{U}}{\partial t} + (\mathbf{U}\nabla)\mathbf{U} = -\nabla\pi + \mathbf{F}(r,t) + \nu\Delta\mathbf{U}, \qquad \nabla\cdot\mathbf{F} = 0$$

We substitute \mathbf{F} on the right-hand side of NS equation. Seek the solution in the form

$$\mathbf{v}(\mathbf{r},t) = \mathbf{U} + \mathbf{u}(\mathbf{r},t), \qquad P = \mathbf{p} + \pi$$

$$\frac{\partial u_i}{\partial t} + (\mathbf{U}\nabla)u_i + (\mathbf{u}\nabla)U_i + (\mathbf{u}\nabla)u_i = -\nabla_i p, \qquad \nabla \cdot \mathbf{u} = 0$$

• This smoothed functions can be expanded in Taylor series for $r \ll L$

$$U_i(r,t) = U_i(0,t) + A_{ij}(t)r_j + A_{ijk}\frac{r_jr_k}{L}..., \qquad A_{ii} = 0$$

- ▶ In the limit $L \to \infty$ but turnover time T = const only first two terms remain
- the velocity U_i(0, t) can easily be taken zero by choosing the reference frame
- NS equation takes the form

$$\frac{\partial u_i}{\partial t} + (A_{jk}r_k\nabla_j)u_i + A_{ik}u_k + (\mathbf{u}\nabla)u_i = -\nabla_i p, \qquad \nabla \cdot \mathbf{u} = 0$$

Velocity fluctuations

let $A_{ij}(t)$ be a random function of time

$$v_i = A_{ij}(t)r_j + u_i(r,t), \qquad P = p + \nabla_i \nabla_j P(0,t)r_ir_j$$

 $u_i(r, t)$ – velocity pulsation

$$\frac{\partial}{\partial t}u_i + (A_{kj}r_j\nabla_k)u_i + A_{ik}u_k + (u\nabla)u_i = -\nabla_i p, \qquad \nabla_i u_i = 0$$

this is the main equation of our theory

Asymptotic analysis (inviscid limit)

let $u_i(r, t) = g_{i\mu}(t) w_\mu(X_\nu, t)$, $X_\nu = q_{\nu\alpha}(t) r_\alpha$ where $g_{i\mu}(t)$ and $q_{\nu\alpha}(t)$ satisfy the equations:

$$egin{array}{lll} \dot{g}_{ilpha}+A_{ij}g_{jlpha}=0\,, & g_{ilpha}(0)=\delta_{ij}\ \dot{q}_{\gamma
u}+q_{\gamma\mu}A_{\mu
u}=0\,, & q_{ij}(0)=\delta_{ij} \end{array}$$

let $A = A^T$, hence $g_{ij} = q_{ji}$ The equation then becomes

$$\frac{\partial w_{\mu}}{\partial t} + q_{\kappa\gamma} g_{\gamma\alpha} w_{\alpha} \frac{\partial w_{\mu}}{\partial X_{\kappa}} = -\frac{\partial P}{\partial X_{\mu}} , \qquad q_{\nu i} g_{i\mu} \frac{\partial w_{\mu}}{\partial X_{\nu}} = 0$$

Asymptotic behavior of q, g

 ▶ discrete approximation (A = A^T is not required) let A_{ij}(t) = (A_n)_{ij} be constant inside each small (n-th) interval

$$q_N = e^{-A_1 \Delta t} \cdot e^{-A_2 \Delta t} \cdot \cdot \cdot e^{-A_N \Delta t}$$

▶ production of $N \rightarrow \infty$ unimodular matrixes

The Theorem

Furstenberg, Tutubalin, Molchanov, Nechaev, Sinai ... see review Letchikov, UMN, v51, vypusk 1(307), 1996

Iwasawa decomposition of the matrix q = z(q)d(q)s(q) z is an upper triangular matrix with diagonal elements equal to 1, d is a diagonal matrix with positive eigenvalues, s is an orthogonal matrix

$$z(q_N) \rightarrow z_\infty$$

$$\begin{split} d(q_N) &= \mathsf{diag}\left(e^{\lambda_1 N + O_1(\sqrt{N})}, e^{\lambda_2 N + O_2(\sqrt{N})}, e^{\lambda_3 N + O_3(\sqrt{N})}\right) \ ,\\ \lambda_1 &< \lambda_2 < \lambda_3 \,, \qquad O_1 \,, O_2 \,, O_3 \qquad \mathsf{Gaussian noise} \end{split}$$

Simplifications

there is a strong exponential growth

$$(qg)_N = (qq^T)_N \simeq z_\infty d(q_N) z_\infty^T$$

 $d(q_N) = e^{2\lambda_3 N} \cdot ext{diag}(0,0,1) + O(e^{\lambda_2 N})$

• we neglect the terms growing slower than $e^{2\lambda_3 N}$

• introduce a new vector variable $\mathbf{V} = C\mathbf{w}$; C_{ij} is a constant matrix

$$\left(\mathbf{V}\frac{\partial}{\partial\mathbf{X}}\right)\mathbf{V} = -C\frac{\partial}{\partial\mathbf{X}}\Pi, \qquad \qquad \frac{\partial\mathbf{V}}{\partial\mathbf{X}} = 0, \qquad P = e^{2\lambda_3 t}\Pi$$

Stationary equation without randomness. This is due to the chosen variables (X, V); the randomness remains in rotation

in reality nonlinearity depletion

$$\left(\mathbf{V}\frac{\partial}{\partial\mathbf{X}}\right)\mathbf{V}\approx 0$$

recent papers suppot it (Gibbon et al 2014),(Kuznetsov 2015)

Analysis of the solution

- ► To understand the properties of the solution , we have to rewrite it back in laboratory coordinates (r, u).
- To separate the stochastic rotational part of the solution, we make one more change of variables

$$\mathbf{r}' = s\mathbf{r}$$
, $\mathbf{u}' = s\mathbf{u}$

after some manipulations

$$u_i' = e^{\lambda_i t} V_i(e^{\lambda_1 t} r_1', e^{\lambda_2 t} r_2', e^{\lambda_3 t} r_3')$$

(no summation is assumed)

- \blacktriangleright in the rotating coordinates **r**', the asymptotic solution is not random
- ► As t → ∞, the third component u'₃ dominates, and the solution stretches exponentially with different coefficients along different axes
- We now take the curl to find vorticity

$$\omega' \simeq \omega_1' = e^{-\lambda_1 t} f\left(e^{\lambda_3 t} r_3'\right)$$

► since \u03c6' = s\u03c6, the absolute values of vorticities are equal in the two frames, so \u03c6 = \u03c6'

Analysis of the solution

- vorticity (and velocity) is transported from boundaries to the center
- in stationary conditions vorticity (and velocity) can't grow exponentially in a finite volume

$$< u^2 >= \left. \frac{1}{V} \int_V u^2 d^3 r \right|_{t \to \infty} = \sum_j \frac{1}{V} \int_{V_j} u^2 d^3 r > n \cdot const \cdot e^{\lambda_{min} t}$$

- Thus, in stationary conditions vorticity (and velocity) can grow exponentially in some points only
- we have to demand that at some boundary point (see below)

 $\omega(t,L) \sim 1$

► With account of the boundary condition, f(e^{λ₃t'L}) ~ e^{λ₁t'}, for any t'; choosing t' as e^{λ₃t}r'₃ = e^{λ₃t'L}

$$\omega(t, r_3') \propto \left(\frac{r_3'}{L}\right)^{\lambda_1/\lambda_3}$$

It is valid for $r'_3 > Le^{\lambda_3(t_0-t)}$. At smaller r'_3 , the vorticity ω is determined by the initial condition

Simple model

'straighten' the random flow, excluding the matrix s (without rotation)
 Simplifications: fix diagonal A_{ij} and u = u(x, t)

$$v_x = a x$$
, $v_y = b y + u(x, t)$, $v_z = c z$, $a + b + c = 0$

One can get the exact equation for vorticity

$$\frac{\partial \omega}{\partial t} + a x \frac{\partial \omega}{\partial x} - c \, \omega = 0$$

- ► Let also a < 0, b > 0, c = -(a + b) > b
- the boundary condition $\omega(t,1) = 1$ The solution takes the form

$$\begin{split} \omega(t,x) &= e^{c(t-t')} \omega\left(t',1\right)\big|_{t'(x)=t-(\ln x)/a} = x^{c/a}, \qquad x > \bar{x}(t) = e^{at}\\ \omega(t,x) &= e^{ct} \omega_0\left(xe^{-at}\right), \qquad x < \bar{x}(t) \end{split}$$

• If the boundary condition is $\omega(t,1) = f(t)$

$$\omega(t,x) = x^{c/a} f\left(t - \frac{1}{a} \ln x\right) \to_{t \to \infty} x^{c/a} f(t)$$

Example of the solution

Evolution of spectrum

- The idea of cascade is based on power-law spectrum
- Let initial distribution of vorticity be

$$\omega_0(x) = (1 + ix)^{c/a} + (1 - ix)^{c/a}$$

The Fourier transform of this function is

$$\omega(k,t) = |k|^{b/a} e^{-|k|e^{at}}, \qquad a < 0$$

- The spectrum falls exponentially at $k \sim \bar{x}^{-1} = e^{-at}$
- Stationary fluctuations if $k \ll \bar{x}^{-1}$ The result is similar to the effect of viscosity, but cutoff depends on time

Effect of viscosity

► It is easy to generalize and include the viscosity

$$\frac{\partial u(x,t)}{\partial t} + ax \frac{\partial u(x,t)}{\partial x} + bu(x,t) = \nu \frac{\partial^2 u}{\partial x^2}$$

• Changing to the variable $q = xe^{-at}$ we get

$$\frac{\partial \omega(q,t)}{\partial t} - c\omega(q,t) = \nu e^{-2at} \frac{\partial^2 \omega}{\partial q^2}$$

The Fourier transformation gives

$$\omega(k,t) = e^{-bt}\omega_0(ke^{at})e^{\frac{\nu}{2a}k^2(1-e^{2at})}$$

► For the example of initial condition considered in the previous slide

$$\omega(k,t) = |k|^{b/a} e^{-|k|e^{at}} e^{\frac{\nu}{2a}k^2(1-e^{2at})}, \qquad a < 0$$

Introduction of stochastics

According to the Theorem, the stochastic generalization has the form

$$\frac{\partial \omega}{\partial t} + (a + \xi_1(t))x\frac{\partial \omega}{\partial x} - (c + \xi_2(t))\omega = 0$$

ξ₁(t) and ξ₂(t)are Gaussian delta-correlated random processes
 The probability density

$$dP[\xi_1(t),\xi_2(t)] = e^{-\frac{1}{2D_1}\int \xi_1(t')^2 dt'} e^{-\frac{1}{2D_2}\int \xi_2(t')^2 dt'} \prod_t d\xi_1(t) d\xi_2(t)$$

the solution is

$$\omega(t,x) = e^{c(t-t') + \int_{t'}^{t} \xi_2(t'')dt''} \omega\left(t', xe^{-a(t-t') - \int_{t'}^{t} \xi_1(t'')dt''} t', xe^{-a(t-t') - \int_{t'}^{t} \xi_1(t'')dt''} \right)$$

For x = 0, taking t' = 0, we get

$$\omega(t,0) = e^{ct + \int_0^t \xi_2(t'')dt''} \omega(0,0)$$

stochastic solution

hence

$$\langle \omega(t,0)^n \rangle = e^{nct+n^2D_2t/2}\omega^n(0,0)$$

This characterizes the solution inside the non-stationary inner region with growing vorticity

• \bar{x} of the non-stationary region is determined by the condition

$$ar{x}e^{-at-\int \xi_1 dt}\simeq 1$$

But at $t \to \infty$: $\int \xi_1 dt \propto \sqrt{t}$ hence $\bar{x} \simeq e^{at} \to$

$$\langle \omega^n \rangle = x^{nc/a} \int e^{\int \left(-\frac{\xi_2^2}{2D_2} + n\xi_2\right) dt} \prod_t d\xi_2(t) \omega^n(t',1) \propto x^{n\frac{c}{a} + n^2 \frac{D_2}{2a}}$$

scaling of velocity moments is

$$\langle \Delta v^n(I) \rangle \sim \langle \omega^n \rangle I^n \sim I^{\zeta_n} , \quad \zeta_n = -\frac{b}{a}n + \frac{D_2}{2a}n^2$$

Discussion 1

- Average large-scale exponents λ_i determine the scaling (fractal) behavior of the solutions, while fluctuations of these exponents ξ₁(t), ξ₂(t) produce multifractality
- ► Stretching of the vortex filaments is the main process. Maximal stretching (n→∞) is

$$\mathbf{v} = rac{[\mathbf{e}_z, \mathbf{r}]}{r}$$

Structure functions

$$S_n^{\parallel} = 2\sqrt{\frac{2\pi}{n}} \frac{l^2}{en^2}, \qquad \qquad S_n^{\perp} = l^2 \frac{2^n}{n} ln \frac{R}{l}$$

• At $n \to \infty$ there is a strong difference between \parallel and \perp exponents

- in simulations $\xi_{\parallel} > \xi_{\perp}$ longitudinal sub-leading term !? $S_{\infty}^{\parallel} = 3$
- Taking into account $\xi_3 = 1$ one can get all structure functions

the result

Discussion 2

- The main process is stretching of the vortex filaments, but not vortices breaking
- ▶ If $P(A) = P(RAR^{-1})$ and $P(A_{ij}) = P(-A_{ij})$ the exponents are $\lambda_1 = -\lambda$, $\lambda_2 = 0$, $\lambda_3 = \lambda$
- ► $\lambda_2 = 0$ because the transformation $A \rightarrow -A$ is time reversal, but it is not true for turbulence there is energy flux flowing into small scales

$$<\Phi>=\left\langle \int V^2 \mathbf{V} d\mathbf{s}
ight
angle \propto A_{ij} A_{jk} A_{ki} \propto det A$$

• Hence $\lambda_2 \neq 0$ and $\lambda_1 < \lambda_2 < \lambda_3$

Simple model a < 0, b > 0, c > b corresponds to correct sign of energy flux

The assumptions and simplifications

- $r \ll L$ is not important, the approximation improves with time
- ▶ nonlinear dependence of structure function exponents on n are calculated for small D₂ only $(D_2n/(2b) \ll 1)$
- ► depletion of nonlinearity (v∇)v is obtained for the case A^T = A in this case

$$q g (v\nabla)v = q q^{T}(v\nabla)v \propto e^{2\lambda_{3}t} z_{\infty} diag (0,0,1) z_{\infty}^{T}(v\nabla)v$$

if $A^{T} \neq A$ but $P(\Omega) = P(-\Omega)$, $2\Omega = A - A^{T}$ in this case

$$q = z_{1\infty} d R_1(t), \qquad g = R_2^{-1}(t) d z_{2\infty}^T$$

and nonlinearity

 $qg(v\nabla)v \propto e^{2\lambda_3 t} R_{33}(t) z_{1\infty} diag(0,0,1) z_{2\infty}^{T}(v\nabla)v,$

rigorous analysis gives $\lambda_2(A) < 0$

► so, the result looks general

► THUS:

- We believe that $\xi_{\perp}^n < \xi_{\parallel}^n$ for some n > N*IN THIS CASE:
- ξ_{\perp}^{n} is the leading asymptotic term ξ_{\parallel}^{n} is sub-leading term
- It is very difficult to construct theory for sub-leading terms WE EXPECT:
- ► to calculate \$\xi_1^n\$, to get saturation and to find saturation level directly from NS equation.
- unsolved problem why λ_i are universal?