Slide of the Seminar

On the multifractal structure of fully developed turbulence

Prof. Kirill Zybin

ERC Advanced Grant (N. 339032) "NewTURB" (P.I. Prof. Luca Biferale)

Università degli Studi di Roma TorVergata
C.F. n. 802 I 3750583 - Partita IVA n. 02I3397I008 -Via della Ricerca Scientifica, I - 00I33 ROMA

Kirill Zybin Valeria Sirota

On the multifractal structure of fully developed turbulence
P.N. Lebedev Physical Institute of RAS

Navier -Stokes equation

$$
\frac{\partial v_{i}}{\partial t}+v_{j} \frac{\partial v_{i}}{\partial x_{j}}=-\frac{\partial p}{\partial x_{i}}+\nu \Delta v_{i}
$$

$$
\frac{\partial v_{i}}{\partial x_{i}}=0
$$

hence $\quad \Delta p=-\frac{\partial v_{i}}{\partial x_{j}} \frac{\partial v_{j}}{\partial x_{i}} \rightarrow$ "nonlocal" nonlinearity

Eulerian structure functions

- Eulerian transverse structure functions:

$$
\left.S_{n}^{\perp}(I)=\langle |(\mathbf{v}(\mathbf{r}+\mathbf{I})-\mathbf{v}(\mathbf{r})) \times\left.\frac{\mathbf{I}}{l}\right|^{n}\right\rangle \propto I^{\zeta_{n}^{\perp}}
$$

- Eulerian longitudinal structure functions:

$$
\left.S_{n}^{\|}(I)=\left.\langle |(\mathbf{v}(\mathbf{r}+\mathbf{I})-\mathbf{v}(\mathbf{r})) \cdot \frac{\mathbf{I}}{l}\right|^{n}\right\rangle \propto l_{n}^{\|}
$$

- Modern experiment and numerical calculations $S_{n}: n \sim 8-10$
- there is no theory based on Navier Stokes equation
- exact result $\zeta_{2,3}^{\perp}=\zeta_{2,3}^{\|}$
- theoretical expectations: $\zeta_{n}^{\|}=\zeta_{n}^{\perp}$

Numerical simulations (Benzi et al. 2010, Gotoh et al. 2002)

Kolmogorov (K41) theory

- stationary, locally isotropic and homogeneous turbulence in incompressible fluid
- inertial range - dimensional theory - cascade

$$
\eta \ll I \ll L-\text { Eulerian case }
$$

- structure functions

$$
\begin{gathered}
\zeta_{n}^{E}=n / 3-\text { Eulerian case } \\
\text { experiment - anomalous scaling }
\end{gathered}
$$

Modern numerical simulations (M.Farge)

Total vorticity

Coherent
Vorticity
2.6\% N coefficients

80\%
enstrophy
99\% energy

Incoherent
Vorticity
94.7\% N
coefficients
20\%
enstrophy
1\% energy
vortex filaments -99\% energy! 80\% dissipation
life-time $100 \tau_{c}$
Okamoto et al., 2007 Phys. Fluids, 19(11)

Energy flux
 incoherent input $=0$

Okamoto et al., 2007 Phys. Fluids, 19(11)

Lagrangian trajectory (L.Biferale et al)

TRAPPING INTO VORTEX FILAMENTS

Fart cle Tappling in three-dimensional fuly developed turbelence

6 Bota

Aram

A lans
$j=2,4,6,8$

Cascade versus Singularity

- Cascade

$(0)-\infty$
$0 \rightarrow 0$

Cascade versus Singularity

- Singularity

Cascade versus Singularity

- Singularity

Cascade

Cascade is impossible without singularity

Multifractal model (Parisi Frisch 1985)

- The model generalizes the Kolmogorov theory (K41) to describe the observed nonlinear dependence of scaling exponents on their order
- Euler equations are invariant under the transformations

$$
r \rightarrow r^{\prime}=\gamma r, \quad v \rightarrow v^{\prime}=\gamma^{h} v, \quad t \rightarrow t^{\prime}=\gamma^{1-h} t
$$

- assumption: determinative contribution to velocity structure functions is given by $\delta v(I) \sim I^{h}$ (spectrum of singularities?!)

$$
\left\langle\Delta v^{n}\right\rangle=\int I^{n h} \beta^{3-D(h)} d \mu(h)
$$

- The introduction of "fractal dimension" $D(h)$ follows naturally from the theory of large deviations

$$
D_{\|}, \quad D_{\perp} ?
$$

Multifractal theory

- In the limit $I \rightarrow 0$, only the smallest exponent contributes to the integral

$$
\zeta_{n}=\min _{h}(n h+3-D(h)), \quad \lim _{l \rightarrow 0} \frac{\ln \left\langle\Delta v^{n}\right\rangle(I)}{\ln I}=\zeta_{n}
$$

- ζ_{n} relates to $D(h)$ by the Legendre transformation

The statement of the problem

$$
\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \nabla) \mathbf{v}=-\nabla P+\mathbf{F}(r, t)+\nu \Delta \mathbf{v}, \quad \nabla \cdot \mathbf{v}=0
$$

Introduction of randomness
Let $U_{i}(r, t)$ - some large-scale random velocity field

$$
U_{i}(r, t)=\frac{1}{L^{3}} \int Q_{i}(\mathbf{r}+\rho, t) e^{-\rho^{2} / L^{2}} d \rho, \quad \nabla \cdot \mathbf{U}=0
$$

Now we define large-scale stochastic force $F(r, t)$ by relation

$$
\frac{\partial \mathbf{U}}{\partial t}+(\mathbf{U} \nabla) \mathbf{U}=-\nabla \pi+\mathbf{F}(r, t)+\nu \Delta \mathbf{U}, \quad \nabla \cdot \mathbf{F}=0
$$

We substitute \mathbf{F} on the right-hand side of NS equation. Seek the solution in the form

$$
\mathbf{v}(\mathbf{r}, t)=\mathbf{U}+\mathbf{u}(\mathbf{r}, t), \quad P=p+\pi
$$

$$
\frac{\partial u_{i}}{\partial t}+(\mathbf{U} \nabla) u_{i}+(\mathbf{u} \nabla) U_{i}+(\mathbf{u} \nabla) u_{i}=-\nabla_{i} p, \quad \nabla \cdot \mathbf{u}=0
$$

- This smoothed functions can be expanded in Taylor series for $r \ll L$

$$
U_{i}(r, t)=U_{i}(0, t)+A_{i j}(t) r_{j}+A_{i j k} \frac{r_{j} r_{k}}{L} \ldots, \quad A_{i j}=0
$$

- In the limit $L \rightarrow \infty$ but turnover time $T=$ const only first two terms remain
- the velocity $U_{i}(0, t)$ can easily be taken zero by choosing the reference frame
- NS equation takes the form

$$
\frac{\partial u_{i}}{\partial t}+\left(A_{j k} r_{k} \nabla_{j}\right) u_{i}+A_{i k} u_{k}+(\mathbf{u} \nabla) u_{i}=-\nabla_{i} p, \quad \nabla \cdot \mathbf{u}=0
$$

Velocity fluctuations

let $A_{i j}(t)$ be a random function of time

$$
v_{i}=A_{i j}(t) r_{j}+u_{i}(r, t), \quad P=p+\nabla_{i} \nabla_{j} P(0, t) r_{i} r_{j}
$$

$u_{i}(r, t)$ - velocity pulsation

$$
\frac{\partial}{\partial t} u_{i}+\left(A_{k j} r_{j} \nabla_{k}\right) u_{i}+A_{i k} u_{k}+(u \nabla) u_{i}=-\nabla_{i} p, \quad \quad \nabla_{i} u_{i}=0
$$

this is the main equation of our theory
Asymptotic analysis (inviscid limit)
let $\quad u_{i}(r, t)=g_{i \mu}(t) w_{\mu}\left(X_{\nu}, t\right), \quad X_{\nu}=q_{\nu \alpha}(t) r_{\alpha}$ where $g_{i \mu}(t)$ and $q_{\nu \alpha}(t)$ satisfy the equations:

$$
\begin{array}{lr}
\dot{g}_{i \alpha}+A_{i j} g_{j \alpha}=0, & g_{i \alpha}(0)=\delta_{i j} \\
\dot{q}_{\gamma \nu}+q_{\gamma \mu} A_{\mu \nu}=0, & q_{i j}(0)=\delta_{i j}
\end{array}
$$

let $A=A^{T}$, hence $g_{i j}=q_{j i}$ The equation then becomes

$$
\frac{\partial w_{\mu}}{\partial t}+q_{\kappa \gamma} g_{\gamma \alpha} w_{\alpha} \frac{\partial w_{\mu}}{\partial X_{\kappa}}=-\frac{\partial P}{\partial X_{\mu}}, \quad q_{\nu i} g_{i \mu} \frac{\partial w_{\mu}}{\partial X_{\nu}}=0
$$

Asymptotic behavior of q, g

- discrete approximation ($A=A^{T}$ is not required) let $A_{i j}(t)=\left(A_{n}\right)_{i j}$ be constant inside each small (n-th) interval

$$
q_{N}=e^{-A_{1} \Delta t} \cdot e^{-A_{2} \Delta t} \cdots e^{-A_{N} \Delta t}
$$

- production of $N \rightarrow \infty$ unimodular matrixes

The Theorem

Furstenberg, Tutubalin, Molchanov, Nechaev, Sinai ... see review Letchikov, UMN, v51, vypusk 1(307), 1996

- Iwasawa decomposition of the matrix $q=z(q) d(q) s(q) z$ is an upper triangular matrix with diagonal elements equal to $1, d$ is a diagonal matrix with positive eigenvalues, s is an orthogonal matrix

$$
\begin{gathered}
z\left(q_{N}\right) \rightarrow z_{\infty} \\
d\left(q_{N}\right)=\operatorname{diag}\left(e^{\lambda_{1} N+O_{1}(\sqrt{N})}, e^{\lambda_{2} N+O_{2}(\sqrt{N})}, e^{\lambda_{3} N+O_{3}(\sqrt{N})}\right), \\
\lambda_{1}<\lambda_{2}<\lambda_{3}, \quad O_{1}, O_{2}, O_{3} \quad \text { Gaussian noise }
\end{gathered}
$$

Simplifications

- there is a strong exponential growth

$$
\begin{gathered}
(q g)_{N}=\left(q q^{T}\right)_{N} \simeq z_{\infty} d\left(q_{N}\right) z_{\infty}^{T} \\
d\left(q_{N}\right)=e^{2 \lambda_{3} N} \cdot \operatorname{diag}(0,0,1)+O\left(e^{\lambda_{2} N}\right)
\end{gathered}
$$

- we neglect the terms growing slower than $e^{2 \lambda_{3} N}$
- introduce a new vector variable $\mathbf{V}=C \mathbf{w} ; C_{i j}$ is a constant matrix

$$
\left(\mathbf{v} \frac{\partial}{\partial \mathbf{X}}\right) \mathbf{V}=-C \frac{\partial}{\partial \mathbf{X}} \Pi, \quad \frac{\partial \mathbf{V}}{\partial \mathbf{X}}=0, \quad P=e^{2 \lambda_{3} t} \Pi
$$

Stationary equation without randomness. This is due to the chosen variables (\mathbf{X}, \mathbf{V}); the randomness remains in rotation

- in reality nonlinearity depletion

$$
\left(\mathbf{v} \frac{\partial}{\partial \mathbf{X}}\right) \mathbf{V} \approx 0
$$

- recent papers suppot it (Gibbon et al 2014),(Kuznetsov 2015)

Analysis of the solution

- To understand the properties of the solution, we have to rewrite it back in laboratory coordinates (\mathbf{r}, \mathbf{u}).
- To separate the stochastic rotational part of the solution, we make one more change of variables

$$
\mathbf{r}^{\prime}=s \mathbf{r}, \quad \mathbf{u}^{\prime}=s \mathbf{u}
$$

after some manipulations

$$
u_{i}^{\prime}=e^{\lambda_{i} t} V_{i}\left(e^{\lambda_{1} t} r_{1}^{\prime}, e^{\lambda_{2} t} r_{2}^{\prime}, e^{\lambda_{3} t} r_{3}^{\prime}\right)
$$

(no summation is assumed)

- in the rotating coordinates \mathbf{r}^{\prime}, the asymptotic solution is not random
- As $t \rightarrow \infty$, the third component u_{3}^{\prime} dominates, and the solution stretches exponentially with different coefficients along different axes
- We now take the curl to find vorticity

$$
\omega^{\prime} \simeq \omega_{1}^{\prime}=e^{-\lambda_{1} t} f\left(e^{\lambda_{3} t} r_{3}^{\prime}\right)
$$

- since $\omega^{\prime}=s \omega$, the absolute values of vorticities are equal in the two frames, so $\omega=\omega^{\prime}$

Analysis of the solution

- vorticity (and velocity) is transported from boundaries to the center
- in stationary conditions vorticity (and velocity) can't grow exponentially in a finite volume

$$
<u^{2}>=\left.\frac{1}{V} \int_{V} u^{2} d^{3} r\right|_{t \rightarrow \infty}=\sum_{j} \frac{1}{V} \int_{V_{j}} u^{2} d^{3} r>n \cdot \text { const } \cdot e^{\lambda_{\min } t}
$$

- Thus, in stationary conditions vorticity (and velocity) can grow exponentially in some points only
- we have to demand that at some boundary point (see below)

$$
\omega(t, L) \sim 1
$$

- With account of the boundary condition, $f\left(e^{\lambda_{3} t^{\prime}} L\right) \sim e^{\lambda_{1} t^{\prime}}$, for any t^{\prime}; choosing t^{\prime} as $e^{\lambda_{3} t} r_{3}^{\prime}=e^{\lambda_{3} t^{\prime}} L$

$$
\omega\left(t, r_{3}^{\prime}\right) \propto\left(\frac{r_{3}^{\prime}}{L}\right)^{\lambda_{1} / \lambda_{3}}
$$

It is valid for $r_{3}^{\prime}>L e^{\lambda_{3}\left(t_{0}-t\right)}$. At smaller r_{3}^{\prime}, the vorticity ω is determined by the initial condition

Simple model

- 'straighten' the random flow, excluding the matrix s (without rotation)
- Simplifications: fix diagonal $A_{i j}$ and $u=u(x, t)$

$$
v_{x}=a x, \quad v_{y}=b y+u(x, t), \quad v_{z}=c z, \quad a+b+c=0
$$

One can get the exact equation for vorticity

$$
\frac{\partial \omega}{\partial t}+a x \frac{\partial \omega}{\partial x}-c \omega=0
$$

- Let also $a<0, \quad b>0, \quad c=-(a+b)>b$
- the boundary condition $\omega(t, 1)=1$ The solution takes the form

$$
\begin{gathered}
\omega(t, x)=\left.e^{c\left(t-t^{\prime}\right)} \omega\left(t^{\prime}, 1\right)\right|_{t^{\prime}(x)=t-(\ln x) / a}=x^{c / a}, \quad x>\bar{x}(t)=e^{a t} \\
\omega(t, x)=e^{c t} \omega_{0}\left(x e^{-a t}\right), \quad x<\bar{x}(t)
\end{gathered}
$$

- If the boundary condition is $\omega(t, 1)=f(t)$

$$
\omega(t, x)=x^{c / a} f\left(t-\frac{1}{a} \ln x\right) \rightarrow_{t \rightarrow \infty} x^{c / a} f(t)
$$

Example of the solution

Evolution of spectrum

- The idea of cascade is based on power-law spectrum
- Let initial distribution of vorticity be

$$
\omega_{0}(x)=(1+i x)^{c / a}+(1-i x)^{c / a}
$$

The Fourier transform of this function is

$$
\omega(k, t)=|k|^{b / a} e^{-|k| e^{a t}}, \quad a<0
$$

- The spectrum falls exponentially at $\quad k \sim \bar{x}^{-1}=e^{-a t}$
- Stationary fluctuations if $\quad k \ll \bar{x}^{-1}$

The result is similar to the effect of viscosity, but cutoff depends on time

Effect of viscosity

- It is easy to generalize and include the viscosity

$$
\frac{\partial u(x, t)}{\partial t}+a x \frac{\partial u(x, t)}{\partial x}+b u(x, t)=\nu \frac{\partial^{2} u}{\partial x^{2}}
$$

- Changing to the variable $q=x e^{-a t}$ we get

$$
\frac{\partial \omega(q, t)}{\partial t}-c \omega(q, t)=\nu e^{-2 a t} \frac{\partial^{2} \omega}{\partial q^{2}}
$$

The Fourier transformation gives

$$
\omega(k, t)=e^{-b t} \omega_{0}\left(k e^{a t}\right) e^{\frac{\nu}{2 a} k^{2}\left(1-e^{2 a t}\right)}
$$

- For the example of initial condition considered in the previous slide

$$
\omega(k, t)=|k|^{b / a} e^{-|k| e^{a t}} e^{\frac{\nu}{2 a} k^{2}\left(1-e^{2 a t}\right)}, \quad a<0
$$

Introduction of stochastics

- According to the Theorem, the stochastic generalization has the form

$$
\frac{\partial \omega}{\partial t}+\left(a+\xi_{1}(t)\right) x \frac{\partial \omega}{\partial x}-\left(c+\xi_{2}(t)\right) \omega=0
$$

$\xi_{1}(t)$ and $\xi_{2}(t)$ are Gaussian delta-correlated random processes

- The probability density

$$
d P\left[\xi_{1}(t), \xi_{2}(t)\right]=e^{-\frac{1}{2 D_{1}} \int \xi_{1}\left(t^{\prime}\right)^{2} d t^{\prime}} e^{-\frac{1}{2 D_{2}} \int \xi_{2}\left(t^{\prime}\right)^{2} d t^{\prime}} \prod_{t} d \xi_{1}(t) d \xi_{2}(t)
$$

the solution is

$$
\omega(t, x)=e^{c\left(t-t^{\prime}\right)+\int_{t^{\prime}}^{t} \xi_{2}\left(t^{\prime \prime}\right) d t^{\prime \prime}} \omega\left(t^{\prime}, x e^{-a\left(t-t^{\prime}\right)-\int_{t^{\prime}}^{t} \xi_{1}\left(t^{\prime \prime}\right) d t^{\prime \prime}}\right)
$$

- For $x=0$, taking $t^{\prime}=0$, we get

$$
\omega(t, 0)=e^{c t+\int_{0}^{t} \xi_{2}\left(t^{\prime \prime}\right) d t^{\prime \prime}} \omega(0,0)
$$

stochastic solution

- hence

$$
\left\langle\omega(t, 0)^{n}\right\rangle=e^{n c t+n^{2} D_{2} t / 2} \omega^{n}(0,0)
$$

This characterizes the solution inside the non-stationary inner region with growing vorticity

- \bar{x} of the non-stationary region is determined by the condition

$$
\bar{x} e^{-a t-\int \xi_{1} d t} \simeq 1
$$

But at $t \rightarrow \infty: \int \xi_{1} d t \propto \sqrt{t}$ hence $\bar{x} \simeq e^{a t} \rightarrow$

$$
\left\langle\omega^{n}\right\rangle=x^{n c / a} \int e^{\int\left(-\frac{\xi_{2}^{2}}{2 D_{2}}+n \xi_{2}\right) d t} \prod_{t} d \xi_{2}(t) \omega^{n}\left(t^{\prime}, 1\right) \propto x^{n \frac{c}{a}+n^{2} \frac{D_{2}}{2 a}}
$$

- scaling of velocity moments is

$$
\left\langle\Delta v^{n}(I)\right\rangle \sim\left\langle\omega^{n}\right\rangle I^{n} \sim I^{\zeta_{n}}, \quad \zeta_{n}=-\frac{b}{a} n+\frac{D_{2}}{2 a} n^{2}
$$

Discussion 1

- Average large-scale exponents λ_{i} determine the scaling (fractal) behavior of the solutions, while fluctuations of these exponents $\xi_{1}(t), \xi_{2}(t)$ produce multifractality
- Stretching of the vortex filaments is the main process. Maximal stretching $(n \rightarrow \infty)$ is

$$
\mathbf{v}=\frac{\left[\mathbf{e}_{z}, \mathbf{r}\right]}{r}
$$

- Structure functions

$$
S_{n}^{\|}=2 \sqrt{\frac{2 \pi}{n}} \frac{l^{2}}{e n^{2}}, \quad S_{n}^{\perp}=l^{2} \frac{2^{n}}{n} \ln \frac{R}{l}
$$

- At $n \rightarrow \infty$ there is a strong difference between $\|$ and \perp exponents
- in simulations $\xi_{\|}>\xi_{\perp}$ longitudinal - sub-leading term !? $S_{\infty}^{\|}=3$
- Taking into account $\xi_{3}=1$ one can get all structure functions

the result

Discussion 2

- The main process is stretching of the vortex filaments, but not vortices breaking
- If $P(A)=P\left(R A R^{-1}\right)$ and $P\left(A_{i j}\right)=P\left(-A_{i j}\right)$ the exponents are $\lambda_{1}=-\lambda, \quad \lambda_{2}=0, \quad \lambda_{3}=\lambda$
- $\lambda_{2}=0$ because the transformation $A \rightarrow-A$ is time reversal, but it is not true for turbulence - there is energy flux flowing into small scales

$$
<\Phi>=\left\langle\int V^{2} \mathbf{V} d \mathbf{s}\right\rangle \propto A_{i j} A_{j k} A_{k i} \propto \operatorname{det} A
$$

- Hence $\lambda_{2} \neq 0$ and $\lambda_{1}<\lambda_{2}<\lambda_{3}$
- Simple model $a<0, \quad b>0, \quad c>b$ corresponds to correct sign of energy flux
- $r \ll L$ is not important, the approximation improves with time
- $\omega(1, t)=f(t)$ the structure function exponets do not change for any $f(t)<e^{\kappa t}$
- nonlinear dependence of structure function exponents on n are calculated for small D_{2} only

$$
\left(D_{2} n /(2 b) \ll 1\right)
$$

- depletion of nonlinearity $(v \nabla) v$ is obtained for the case $A^{T}=A$ in this case

$$
q g(v \nabla) v=q q^{T}(v \nabla) v \propto e^{2 \lambda_{3} t} z_{\infty} \operatorname{diag}(0,0,1) z_{\infty}^{T}(v \nabla) v
$$

- if $A^{T} \neq A$ but $P(\Omega)=P(-\Omega), \quad 2 \Omega=A-A^{T}$ in this case

$$
q=z_{1 \infty} d R_{1}(t), \quad g=R_{2}^{-1}(t) d z_{2 \infty}^{T}
$$

and nonlinearity

$$
q g(v \nabla) v \propto e^{2 \lambda_{3} t} R_{33}(t) z_{1 \infty} \operatorname{diag}(0,0,1) z_{2 \infty}^{T}(v \nabla) v
$$

rigorous analysis gives $\lambda_{2}(A)<0$

- so, the result looks general
- THUS:
- We believe that $\xi_{\perp}^{n}<\xi_{\|}^{n}$ for some $n>N *$ IN THIS CASE:
- ξ_{\perp}^{n} is the leading asymptotic term $\xi_{\|}^{n}$ is sub-leading term
- It is very difficult to construct theory for sub-leading terms WE EXPECT:
- to calculate ξ_{\perp}^{n}, to get saturation and to find saturation level directly from NS equation.
- unsolved problem why λ_{i} are universal?

