
Deep reinforcement learning to uncover
autonomous navigation strategies in turbulent flows

Aurore Loisy, with Christophe Eloy

Aix-Marseille Univ, CNRS, Centrale Marseille, IRPHE, Marseille, France

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation programme (grant agreement No 834238).

Deciphering animal navigation

All livings organisms have evolved autonomous navigation strategies to survive,
e.g., to travel long distances efficiently or to locate food, shelter, and mates.

Instantaneous behaviour described by: motor action = π(sensory cues).

What should this function be to allow the animal to ultimately reach its target?

Hypothesis: techniques from artificial intelligence (deep reinforcement learning)
can help us to reverse-engineer navigation algorithms used by animals.

Two examples: vertical migration of plankton and olfactory search by insects.

2 / 30

Deciphering animal navigation

All livings organisms have evolved autonomous navigation strategies to survive,
e.g., to travel long distances efficiently or to locate food, shelter, and mates.

Instantaneous behaviour described by: motor action = π(sensory cues).

What should this function be to allow the animal to ultimately reach its target?

Hypothesis: techniques from artificial intelligence (deep reinforcement learning)
can help us to reverse-engineer navigation algorithms used by animals.

Two examples: vertical migration of plankton and olfactory search by insects.

2 / 30

Deciphering animal navigation

All livings organisms have evolved autonomous navigation strategies to survive,
e.g., to travel long distances efficiently or to locate food, shelter, and mates.

Instantaneous behaviour described by: motor action = π(sensory cues).

What should this function be to allow the animal to ultimately reach its target?

Hypothesis: techniques from artificial intelligence (deep reinforcement learning)
can help us to reverse-engineer navigation algorithms used by animals.

Two examples: vertical migration of plankton and olfactory search by insects.

2 / 30

Deep Reinforcement Learning for games

DQN (Nature, 2015) AlphaGo (Nature, 2016)

AlphaStar (Nature, 2019) GT Sophy (Nature, 2022)

3 / 30

Reinforcement learning

How should an agent behave in order to maximize a long-term objective

ENVIRONMENT

AGENT

action

reward

state The agent’s behavior is
controlled by the policy π.

The policy maps each state to
an action: a = π(s).

In deep RL, the policy is
a deep neural network

(universal approximator).

Each episode (“game”) is a sequence s1, a1, r1, s2, . . . , aT , rT .

The return (“final score”) for an episode is G =
∑T

t=1 rt .

We seek the optimal policy π∗, defined as π∗ = argmaxπ Eπ[G].

RL provides the methods to compute or approximate the optimal policy.
These methods are based on the agent interacting with the environment: the

agent learns by doing (self-generated experience is our “training set”).

4 / 30

Reinforcement learning

How should an agent behave in order to maximize a long-term objective

ENVIRONMENT

AGENT

action

reward

state The agent’s behavior is
controlled by the policy π.

The policy maps each state to
an action: a = π(s).

In deep RL, the policy is
a deep neural network

(universal approximator).

Each episode (“game”) is a sequence s1, a1, r1, s2, . . . , aT , rT .

The return (“final score”) for an episode is G =
∑T

t=1 rt .

We seek the optimal policy π∗, defined as π∗ = argmaxπ Eπ[G].

RL provides the methods to compute or approximate the optimal policy.
These methods are based on the agent interacting with the environment: the

agent learns by doing (self-generated experience is our “training set”).

4 / 30

Reinforcement learning

How should an agent behave in order to maximize a long-term objective

ENVIRONMENT

AGENT

action

reward

state The agent’s behavior is
controlled by the policy π.

The policy maps each state to
an action: a = π(s).

In deep RL, the policy is
a deep neural network

(universal approximator).

Each episode (“game”) is a sequence s1, a1, r1, s2, . . . , aT , rT .

The return (“final score”) for an episode is G =
∑T

t=1 rt .

We seek the optimal policy π∗, defined as π∗ = argmaxπ Eπ[G].

RL provides the methods to compute or approximate the optimal policy.
These methods are based on the agent interacting with the environment: the

agent learns by doing (self-generated experience is our “training set”).
4 / 30

Part 1

Vertical migration of plankton

with

Rémi Monthiller (PhD 2022) and Selim Mecanna (PhD student)

5 / 30

Diel vertical migration of plankton

Credit: Woods Hole Oceanographic Institution

Every day, millimetric zooplanktons travel hundreds of meters in the water column
(equivalent to 10 daily marathons for humans).

6 / 30

Diel vertical migration of plankton

Planktons are advected by the flow.

But many can swim and sense fluid motion relative to their bodies.

Can hydrodynamic signals be exploited to migrate more efficiently?

6 / 30

Model problem

Equation of motion: Ẋ = u(X , t) + V p̂

Sensors: local velocity gradient ∇u (and ẑ)

Control: direction of motion p̂

Objective: maximize vertical distance travelled

environment

agent

7 / 30

Model problem

Equation of motion: Ẋ = u(X , t) + V p̂

Sensors: local velocity gradient ∇u (and ẑ)

Control: direction of motion p̂

Objective: maximize vertical distance travelled

environment

agent

7 / 30

What’s new

Here, we use continuous states and actions with a deep-NN policy
8 / 30

Methods

agent: stochastic policy

action distribution
state

RL: actor-critic PPO

environment 1: Taylor-Green

environment 2: 2D turbulence

pseudo-spectral DNS (256x256)
with large-scale stochastic forcing

9 / 30

Benchmarking (preliminary)

Taylor-Green 2D turbulence

tabular RL
(Q-Learning)

deep RL
(PPO)

human
(surf *)

0

25

50

75

100

125

150

175

m
ea

n
pe

rfo
rm

an
ce

 (a
.u

.)

122

162
148

naive (p = z)

loose upper bound (optimal control)

tabular RL
(Q-Learning)

deep RL
(PPO)

human
(surf *)

0

20

40

60

80

100

120

140

160

m
ea

n
pe

rfo
rm

an
ce

 (a
.u

.)

80

151 151

naive (p = z)

loose upper bound (optimal control)

∗ Monthiller, Loisy, Koehl, Favier & Eloy (Phys. Rev. Lett, 2022)
† Calascibetta, Biferale, Borra, Celani & Cencini (arXiv.2305.04677, 2023)

10 / 30

Example trajectory (preliminary)

11 / 30

Conclusions and perspectives

Conclusions
I information provided by local velocity gradients can be exploited to travel

effectively much faster in complex flows → biology implications?
I deep RL provides better, more robust solutions than ’vanilla’ Q-learning and

deep nets remain fairly cheap to train (half day on Intel Core i7-10700)

Perspectives
I physical interpretation of the NN policy
I 3D turbulence
I agent with memory (recurrent NN)

action

state

memory

· challenging to train (very stochastic
environment → huge variance)

· expected gain is small (memoryless
PPO is already close to OC)

12 / 30

Part 2

Olfactory search by insects

13 / 30

Search strategies vs scales

microscopic scale (e.g., bacteria)

molecular diffusion

macroscopic scale (e.g., insects)

turbulent dispersion

strategy: chemotaxis

directional motion in response to a
chemical signal (gradient ascent)

strategy?

illustrations from Reddy, Murthy & Vergassola (Annu. Rev. Condens. Matter Phys., 2022)

14 / 30

Olfactory search POMDP

formulated by Vergassola, Villermaux & Shraiman (Nature, 2007)

What is the best strategy to find the source as quickly as possible?

15 / 30

Physical model of dispersion and detection

formulated by Vergassola, Villermaux & Shraiman (Nature, 2007)

Source
I point source at a fixed location
I odor particles emitted at a rate R with finite lifetime τ
I isotropic medium characterized by an effective diffusivity D
I characteristic lengthscale of dispersion λ =

√
Dτ

Agent
I sphere of radius a
I takes a “sniff” during a time ∆t (absorbs odor particles diffusing to its surface)
I then moves by one body length ∆x = 2a

Independent physical parameters: R, λ, ∆t, ∆x

Dimensionless parameters

I dimensionless dispersion lengthscale L =
λ

∆x
I dimensionless source intensity I = R∆t

16 / 30

Observation model

formulated by Vergassola, Villermaux & Shraiman (Nature, 2007)

The mean number of hits µ decays with the distance d to the source

µ(d) =
I

2d
exp

(
−d
L

)
(in 3D)

where L is the dispersion lengthscale and I is the source intensity.

0 2 4 6 8
d

0

1

2

3

4

µ

3D, = 5, = 5

Hits provide noisy information about the distance to the source

17 / 30

Observation model

formulated by Vergassola, Villermaux & Shraiman (Nature, 2007)

The actual number of hits h is drawn from a Poisson distribution with mean µ:

Pr(h;µ) =
µhe−µ

h!
for h = 0, 1, 2, . . .

0 2 4 6 8
d

0

1

2

3

4

µ

3D, = 5, = 5

0 1 2 3 4 5
h

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

y

d = 5

Hits provide noisy information about the distance to the source

17 / 30

Observation model

formulated by Vergassola, Villermaux & Shraiman (Nature, 2007)

The actual number of hits h is drawn from a Poisson distribution with mean µ:

Pr(h;µ) =
µhe−µ

h!
for h = 0, 1, 2, . . .

0 2 4 6 8
d

0

1

2

3

4

µ

3D, = 5, = 5

0 1 2 3 4 5
h

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

y

d = 5
d = 2

Hits provide noisy information about the distance to the source

17 / 30

Observation model

formulated by Vergassola, Villermaux & Shraiman (Nature, 2007)

The actual number of hits h is drawn from a Poisson distribution with mean µ:

Pr(h;µ) =
µhe−µ

h!
for h = 0, 1, 2, . . .

0 2 4 6 8
d

0

1

2

3

4

µ

3D, = 5, = 5

0 1 2 3 4 5
h

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

y

d = 5
d = 2
d = 1

Hits provide noisy information about the distance to the source

17 / 30

Observation model

formulated by Vergassola, Villermaux & Shraiman (Nature, 2007)

The actual number of hits h is drawn from a Poisson distribution with mean µ:

Pr(h;µ) =
µhe−µ

h!
for h = 0, 1, 2, . . .

0 2 4 6 8
d

0

1

2

3

4

µ

3D, = 5, = 5

0 1 2 3 4 5
h

0.0

0.2

0.4

0.6

0.8

pr
ob

ab
ilit

y

d = 5
d = 2
d = 1

Hits provide noisy information about the distance to the source

17 / 30

Belief-MDP formulation

The agent remembers the entire sequence of past actions and observations.

All past information can be encoded in the agent’s belief state s = [xa,Pr(x)].

After observing h hits in xa, Pr(x) is updated using Bayes’ rule:

Pr(x |xa, h) ∝ Pr(h|x , xa) Pr(x)

posterior likelihood prior

(given by the detection model)

18 / 30

Optimal policy

choose action at = π(st)

source
found?

receive ht hits

s0

return T = t + 1

st ← Bayes(st, at, ht)

t ← t + 1

yes

no

The agent’s behavior is
controlled by the policy π.

The policy maps each belief
state to an action: a = π(s).

The performance of a policy π is measured by Eπ[T],

the expected number of steps to reach the source when acting according to π.

We seek the optimal policy π∗, defined as π∗ = argminπ Eπ[T].

Our problem is a belief-MDP: an MDP where states are replaced by belief states.

19 / 30

Optimal value function

The optimal value function v∗(s) of a belief state s is defined as the minimum,
over all policies, of the expected number of steps remaining to find the source
when starting from belief state s:

v∗(s) = min
π

vπ(s) where vπ(s) = Eπ[T − t|st = s].

Given v∗(s), the optimal policy consists in choosing the action that minimizes
the expected number of remaining steps v∗(s ′):

π∗(s) = argmin
a

∑
s′

Pr(s ′|s, a)v∗(s ′).

Here Pr(s ′|s, a) is the probability of
transitioning from belief state s to next
belief state s ′ after executing action a.

20 / 30

Optimal value function

The optimal value function v∗(s) of a belief state s is defined as the minimum,
over all policies, of the expected number of steps remaining to find the source
when starting from belief state s:

v∗(s) = min
π

vπ(s) where vπ(s) = Eπ[T − t|st = s].

Given v∗(s), the optimal policy consists in choosing the action that minimizes
the expected number of remaining steps v∗(s ′):

π∗(s) = argmin
a

∑
s′

Pr(s ′|s, a)v∗(s ′).

Here Pr(s ′|s, a) is the probability of
transitioning from belief state s to next
belief state s ′ after executing action a.

20 / 30

Solving Bellman optimality equation

The optimal value function satisfies the Bellman optimality equation

v∗(s) = 1 + min
a

∑
s′

Pr(s ′|s, a)v∗(s ′) for all nonterminal belief states s.

Finding the optimal policy π∗ amounts to finding v∗ that satisfies this equation.

Curse of history: number of belief states grows as (Nactions × Nobservations)
Nsteps .

→ The optimal value function cannot be computed exactly.

→ We seek approximate solutions.

Standard approach

Value iteration

v∗(s)← 1 + min
a

∑
s′

Pr(s ′|s, a)v∗(s ′) on a subset of belief states

will converge to the fixed point v = v∗.

Different solvers use different heuristics to construct the subset of belief states.

Heinonen, Biferale, Celani & Vergassola (Phys. Rev. E, 2023)

21 / 30

Solving Bellman optimality equation

The optimal value function satisfies the Bellman optimality equation

v∗(s) = 1 + min
a

∑
s′

Pr(s ′|s, a)v∗(s ′) for all nonterminal belief states s.

Finding the optimal policy π∗ amounts to finding v∗ that satisfies this equation.

Curse of history: number of belief states grows as (Nactions × Nobservations)
Nsteps .

→ The optimal value function cannot be computed exactly.

→ We seek approximate solutions.

Standard approach

Value iteration

v∗(s)← 1 + min
a

∑
s′

Pr(s ′|s, a)v∗(s ′) on a subset of belief states

will converge to the fixed point v = v∗.

Different solvers use different heuristics to construct the subset of belief states.

Heinonen, Biferale, Celani & Vergassola (Phys. Rev. E, 2023)
21 / 30

Using model-based DRL

We approximate v∗(s) by a neural network v∗(s; w∗). The optimal weights w∗
minimize the residual error on the Bellman optimality equation (the “loss”)

v∗(s; w∗) ≈ 1 + min
a

∑
s′

Pr(s ′|s, a)v∗(s ′; w∗) for s ∼ π̂∗ derived from v∗

The NN is trained using a custom deep reinforcement learning algorithm.
Loisy & Eloy (Proc. R. Soc. A, 2022)

22 / 30

Reinforcement learning (a.k.a. learning from experience)

Initialize value function v with random weights w

Initialize belief state s

Loop forever

Compute all s ′ accessible from s for every action a

Compute targets y = mina

∑
s′ Pr(s ′|s, a)[1 + v(s ′;w)]

Gradient descent step: adjust w to reduce loss L(w) = (y − v(s;w))2

Select action from current policy: a = argmina

∑
s′ Pr(s ′|s, a)[1 + v(s ′;w)]

if source found then

Reinitialize s for a new episode

else

Receive a hit h

Transition to a new belief state: s ← Bayes(s, a, h)

end if

23 / 30

Reinforcement learning (a.k.a. learning from experience)

Initialize value function v with random weights w

Initialize belief state s

Loop forever

Compute all s ′ accessible from s for every action a

Compute targets y = mina

∑
s′ Pr(s ′|s, a)[1 + v(s ′;w)]

Gradient descent step: adjust w to reduce loss L(w) = (y − v(s;w))2

Select action from current policy: a = argmina

∑
s′ Pr(s ′|s, a)[1 + v(s ′;w)]

if source found then

Reinitialize s for a new episode

else

Receive a hit h

Transition to a new belief state: s ← Bayes(s, a, h)

end if

23 / 30

Reinforcement learning (a.k.a. learning from experience)

Initialize value function v with random weights w

Initialize belief state s

Loop forever

Compute all s ′ accessible from s for every action a

Compute targets y = mina

∑
s′ Pr(s ′|s, a)[1 + v(s ′;w)]

Gradient descent step: adjust w to reduce loss L(w) = (y − v(s;w))2

Select action from current policy: a = argmina

∑
s′ Pr(s ′|s, a)[1 + v(s ′;w)]

if source found then

Reinitialize s for a new episode

else

Receive a hit h

Transition to a new belief state: s ← Bayes(s, a, h)

end if

23 / 30

Reinforcement learning (a.k.a. learning from experience)

Initialize value function v with random weights w

Initialize belief state s

Loop forever

Compute all s ′ accessible from s for every action a

Compute targets y = mina

∑
s′ Pr(s ′|s, a)[1 + v(s ′;w)]

Gradient descent step: adjust w to reduce loss L(w) = (y − v(s;w))2

Select action from current policy: a = argmina

∑
s′ Pr(s ′|s, a)[1 + v(s ′;w)]

if source found then

Reinitialize s for a new episode

else

Receive a hit h

Transition to a new belief state: s ← Bayes(s, a, h)

end if

23 / 30

Reinforcement learning (a.k.a. learning from experience)

Initialize value function v with random weights w

Initialize belief state s

Loop forever

Compute all s ′ accessible from s for every action a

Compute targets y = mina

∑
s′ Pr(s ′|s, a)[1 + v(s ′;w)]

Gradient descent step: adjust w to reduce loss L(w) = (y − v(s;w))2

Select action from current policy: a = argmina

∑
s′ Pr(s ′|s, a)[1 + v(s ′;w)]

if source found then

Reinitialize s for a new episode

else

Receive a hit h

Transition to a new belief state: s ← Bayes(s, a, h)

end if

23 / 30

Reinforcement learning (a.k.a. learning from experience)

Initialize value function v with random weights w

Initialize belief state s

Loop forever

Compute all s ′ accessible from s for every action a

Compute targets y = mina

∑
s′ Pr(s ′|s, a)[1 + v(s ′;w)]

Gradient descent step: adjust w to reduce loss L(w) = (y − v(s;w))2

Select action from current policy: a = argmina

∑
s′ Pr(s ′|s, a)[1 + v(s ′;w)]

if source found then

Reinitialize s for a new episode

else

Receive a hit h

Transition to a new belief state: s ← Bayes(s, a, h)

end if

23 / 30

Reinforcement learning (a.k.a. learning from experience)

Initialize value function v with random weights w

Initialize belief state s

Loop forever

Compute all s ′ accessible from s for every action a

Compute targets y = mina

∑
s′ Pr(s ′|s, a)[1 + v(s ′;w)]

Gradient descent step: adjust w to reduce loss L(w) = (y − v(s;w))2

Select action from current policy: a = argmina

∑
s′ Pr(s ′|s, a)[1 + v(s ′;w)]

if source found then

Reinitialize s for a new episode

else

Receive a hit h

Transition to a new belief state: s ← Bayes(s, a, h)

end if

23 / 30

Reinforcement learning (a.k.a. learning from experience)

Initialize value function v with random weights w

Initialize belief state s

Loop forever

Compute all s ′ accessible from s for every action a

Compute targets y = mina

∑
s′ Pr(s ′|s, a)[1 + v(s ′;w)]

Gradient descent step: adjust w to reduce loss L(w) = (y − v(s;w))2

Select action from current policy: a = argmina

∑
s′ Pr(s ′|s, a)[1 + v(s ′;w)]

if source found then

Reinitialize s for a new episode

else

Receive a hit h

Transition to a new belief state: s ← Bayes(s, a, h)

end if

23 / 30

Reinforcement learning (a.k.a. learning from experience)

Initialize value function v with random weights w

Initialize belief state s

Loop forever

Compute all s ′ accessible from s for every action a

Compute targets y = mina

∑
s′ Pr(s ′|s, a)[1 + v(s ′;w)]

Gradient descent step: adjust w to reduce loss L(w) = (y − v(s;w))2

Select action from current policy: a = argmina

∑
s′ Pr(s ′|s, a)[1 + v(s ′;w)]

if source found then

Reinitialize s for a new episode

else

Receive a hit h

Transition to a new belief state: s ← Bayes(s, a, h)

end if

23 / 30

Reinforcement learning (a.k.a. learning from experience)

Initialize value function v with random weights w

Initialize belief state s

Loop forever

Compute all s ′ accessible from s for every action a

Compute targets y = mina

∑
s′ Pr(s ′|s, a)[1 + v(s ′;w)]

Gradient descent step: adjust w to reduce loss L(w) = (y − v(s;w))2

Select action from current policy: a = argmina

∑
s′ Pr(s ′|s, a)[1 + v(s ′;w)]

if source found then

Reinitialize s for a new episode

else

Receive a hit h

Transition to a new belief state: s ← Bayes(s, a, h)

end if

23 / 30

Reinforcement learning (a.k.a. learning from experience)

Initialize replay memory to capacity memory size
Initialize value function v with random weights w

Initialize target value function v− with random weights w− = w
converged weights ← False
it ← 0
while not converged weights do

// Generate new experience

epsilon ← max(epsilon init ∗ exp(−it/epsilon decay), epsilon floor) // decaying ε of ε-greedy
m ← 0
episode complete ← True
while m < new transitions per it do

if episode complete then
initialize belief state s for a new episode
episode complete ← False

end if
s ← apply random symmetry(s) // randomize over symmetries of the problem

for all actions a, compute all s′ accessible from s (i.e. all outcomes (found/not found and hits))

store (s, a, s′) in replay memory
m ← m + 1
with probability epsilon select a random action a, // ε-greedy exploration

otherwise select action a = arg mina
∑

s′ Pr(s′|s, a)[1 + v(s′ ; w)] // according to current policy

s ← make step in env (s, a) // transition to a new belief state according to action

episode complete ← is episode complete(s)

end while
// Update weights by stochastic gradient descent

for gd step = 1, gd steps per it do

Sample minibatch size transitions (s, a, s′) from replay memory

For each transition, compute targets y = mina
∑

s′ Pr(s′|s, a)[1 + v−(s′ ; w−)] // using delayed target network

Perform a gradient descent step on (y − v(s; w))2 with respect to the network parameters w

end for

converged weights ← are weights converged()

it ← it + 1

every update target network it iterations, reset v− = v

end while

23 / 30

Example of quasi-optimal searches: no mean wind

24 / 30

Example of quasi-optimal searches: directional mean wind

25 / 30

Results for various search conditions

100 101

10

20

30

40
M

ea
n(

T)
 in

 1
D

1D search, varying size
best known heuristic: infotaxis

(Vergassola et al., 2007)

deep reinforcement learning

10 2 10 1 100 101 102
6

8

10

12

14

16 1D search, varying intensity

100 101

dimensionless problem size

0

20

40

60

80

100

120

M
ea

n(
T)

 in
 2

D

2D search, varying size

10 2 10 1 100 101 102

dimensionless source intensity

8

10

12

14

16 2D search, varying intensity

26 / 30

Scaling up

Number of free parameters:

N = H(I + 2H + 4) + 1

Neurons per hidden layer:

H ∼ I

Free parameters vs input size:

⇒ N ∝ I 2

Scale-up: multiscale coarse-graining?
103 104 105 106

input size I

105

107

109

1011

fre
e

pa
ra

m
et

er
s N

2D

3D

N
I2

27 / 30

Benchmarking

Two concurrent methods to solve approximately the Bellman optimality equation:

v∗(s) = Bv∗(s) with Bv(s) = 1 + min
a

∑
s′

Pr(s ′|s, a)v(s ′)

point-based value iteration
(PBVI)

approximate v∗ by a piecewise-linear

concave function (alpha-vectors) and

repeatedly apply the Bellman operator

B until convergence to its fixed point

deep reinforcement learning
(DRL)

approximate v∗ by a deep neural

network and minimize the Bellman error

by adjusting the network parameters

using stochastic gradient descent

PBVI DRL

v∗ representation alpha-vectors deep neural network

free parameters ∼ 108 parameters ∼ 107 parameters

optimality 3 equally good policies

solving speed 3 5 hours to converge 7 5 days to train

execution speed 7 2 days for 104 episodes 3 2 hours for 104 episodes

Loisy & Heinonen (Eur. Phys. J. E, 2023)
28 / 30

What about real turbulence?

How to find a source of odor in turbulence

29 / 30

What about real turbulence?

How to find a source of odor in turbulence
a stochastic environment using uncorrelated observations

29 / 30

What about real turbulence?

Agent trained in stochastic environment and tested in real 2D turbulence

29 / 30

Perspectives

Can we really learn to navigate a turbulent odor plume?

turbulent odor plume

synthetic data

(no correlations)

real data

(correlated detections)

m
em

or
y

model-based

(Bayesian map)
this talk data-driven model

model-free

(variable to optimize)

recurrent neural network†

finite-state controller‡
next challenge

for DRL?

†Singh, van Breugel, Rao & Brunton (Nature Machine Intelligence, 2023)
‡Verano, Panizon & Celani (PNAS, 2023)

Optimal strategies have
applications in robotics.

Are they also relevant to animal
behaviour?

30 / 30

	Introduction
	Part 1: Vertical migration of plankton
	Part 2: Olfactory search by insects

