THE FLUID MECHANICS OF AIRWAY CLOSURE IN THE BRONCHIOLES

Francesco Romanò

Department of Fluid Mechanics and Energetics, Arts et Métiers, Lille

Thanks to: J.B. Grotberg, M. Muradoglu, H. Fujioka, O. Erken

Dept. of Physics, University of Rome Tor Vergata, Rome, Italy January 16, 2023

AIRWAY CLOSURE IN PHYSIOLOGY Morphology

MORPHOLOGY: $d_n = d_0 \times 2^{n/3}$

	Conduct	ng Zone	Respiratory Zone			
Trachea		Bronches	Bronchioles		Alvolos	
		Diolicies	non-respiratory	respiratory	Aiveoles	
Generation 0 1 2			0 1	6 1	.9 23	
	Generation	Diamet	er (cm)	Length (cm)		
ĺ	0 (Trachea) 1		.8	12		
	1	1.2	220 4.760		0	
	2 0.8		830	1.900		
	10 0.		130	0.460		
	16	0.0)60	0.16	5	
19		0.0	0.047		0.099	
	23	0.0	041	0.05	0	

MORPHOLOGY: $d_n = d_0 \times 2^{n/3}$

MORPHOLOGY: $d_n = d_0 \times 2^{n/3}$

gravity negligible from \approx 7th generation on

SURFACE TENSION MOLECULAR SCALE

SURFACE TENSION MOLECULAR SCALE

SURFACE TENSION MOLECULAR SCALE

SURFACE TENSION MACROSCOPIC SCALE

SURFACE TENSIONphase 2MACROSCOPIC SCALEinterfaceYoung-Laplace equation: $\Delta p = -\sigma \nabla \cdot \boldsymbol{n}$ $\boldsymbol{\rho} = -\sigma \nabla \cdot \boldsymbol{n}$ $\boldsymbol{\rho} = -\sigma \nabla \cdot \boldsymbol{n}$

SURFACE TENSION phase 2 MACROSCOPIC SCALE Young–Laplace equation: $\Delta p = -\sigma \nabla \cdot \boldsymbol{n}$ Curvature in cylindrical coordinates: $-\nabla \cdot \boldsymbol{n} = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$ phase 2 R_{2} а phase

SURFACE TENSION phase 2 MACROSCOPIC SCALE Young–Laplace equation: $\Delta p = -\sigma \nabla \cdot \boldsymbol{n}$ Curvature in cylindrical coordinates: $-\nabla \cdot \boldsymbol{n} = \left(\frac{1}{R_1} + \frac{1}{R_2}\right)$ phase 2 R_{2} $R_1 < 0$ а $R_1 = -(d_z^2 h)^{-1} R_1$ phase $R_2 = a - h$

- 7

INSTABILITY MECHANISM

Assuming a varicose perturbation: $h = \bar{h}[1 + A\sin(kz)]$

INSTABILITY MECHANISM

Assuming a varicose perturbation: $h = \bar{h}[1 + A\sin(kz)]$

 $\triangleright \text{ Effect of in-plane curvature } R_1^{-1} \sim \left[\bar{h}Ak^2\sin(kz)\right]$

INSTABILITY MECHANISM

Assuming a varicose perturbation: $h = \bar{h}[1 + A\sin(kz)]$

 \triangleright Effect of in-plane curvature $R_1^{-1} \sim \left[\bar{h}Ak^2\sin(kz)\right]$

INSTABILITY MECHANISM

Assuming a varicose perturbation: $h = \bar{h}[1 + A\sin(kz)]$

 \triangleright Effect of in-plane curvature $R_1^{-1} \sim \left[\bar{h}Ak^2\sin(kz)\right]$

INSTABILITY MECHANISM

Assuming a varicose perturbation: $h = \bar{h}[1 + A\sin(kz)]$

 \triangleright Effect of in-plane curvature $R_1^{-1} \sim \left[\bar{h}Ak^2\sin(kz)\right]$

INSTABILITY MECHANISM

Assuming a varicose perturbation: $h = \bar{h}[1 + A\sin(kz)]$

 \triangleright Effect of in-plane curvature $R_1^{-1} \sim \left[\bar{h}Ak^2\sin(kz)\right]$

INSTABILITY MECHANISM

Assuming a varicose perturbation: $h=\bar{h}[1+A\sin(kz)]$

 \triangleright Effect of in-plane curvature $R_1^{-1} \sim \left[\bar{h}Ak^2\sin(kz)\right]$

 \rightarrow The in-plane curvature has a stabilizing effect with $R_1~\sim k^2$

INSTABILITY MECHANISM

Assuming a varicose perturbation: $h=\bar{h}[1+A\sin(kz)]$

 $\triangleright \text{ Effect of in-plane curvature } R_1^{-1} \sim \left[\bar{h}Ak^2\sin(kz)\right]$

 \rightarrow The in-plane curvature has a stabilizing effect with $R_1~\sim k^2$

 $\triangleright \text{ Effect of cross-sectional curvature } R_2^{-1} \sim \left\{ a - \bar{h} [1 + A \sin(kz)] \right\}^{-1}$

INSTABILITY MECHANISM

Assuming a varicose perturbation: $h = \bar{h}[1 + A\sin(kz)]$

 $\triangleright \text{ Effect of in-plane curvature } R_1^{-1} \sim \left[\bar{h}Ak^2\sin(kz)\right]$

 \rightarrow The in-plane curvature has a stabilizing effect with $R_1~\sim k^2$

 $\triangleright \text{ Effect of cross-sectional curvature } R_2^{-1} \sim \left\{ a - \bar{h}[1 + A\sin(kz)] \right\}^{-1}$

INSTABILITY MECHANISM

Assuming a varicose perturbation: $h = \bar{h}[1 + A\sin(kz)]$

 $\triangleright \text{ Effect of in-plane curvature } R_1^{-1} \sim \left[\bar{h}Ak^2\sin(kz)\right]$

 \rightarrow The in-plane curvature has a stabilizing effect with $R_1~\sim k^2$

 $\triangleright \text{ Effect of cross-sectional curvature } R_2^{-1} \sim \left\{ a - \bar{h}[1 + A\sin(kz)] \right\}^{-1}$

INSTABILITY MECHANISM

Assuming a varicose perturbation: $h = \bar{h}[1 + A\sin(kz)]$

 $\triangleright \text{ Effect of in-plane curvature } R_1^{-1} \sim \left[\bar{h}Ak^2\sin(kz)\right]$

 \rightarrow The in-plane curvature has a stabilizing effect with $R_1~\sim k^2$

 $\triangleright \text{ Effect of cross-sectional curvature } R_2^{-1} \sim \left\{ a - \bar{h}[1 + A\sin(kz)] \right\}^{-1}$

INSTABILITY MECHANISM

Assuming a varicose perturbation: $h = \bar{h}[1 + A\sin(kz)]$

 $\triangleright \text{ Effect of in-plane curvature } R_1^{-1} \sim \left[\bar{h}Ak^2\sin(kz)\right]$

 \rightarrow The in-plane curvature has a stabilizing effect with $R_1~\sim k^2$

 $\triangleright \text{ Effect of cross-sectional curvature } R_2^{-1} \sim \left\{ a - \bar{h}[1 + A\sin(kz)] \right\}^{-1}$

INSTABILITY MECHANISM

Assuming a varicose perturbation: $h = \bar{h}[1 + A\sin(kz)]$

 $\triangleright \text{ Effect of in-plane curvature } R_1^{-1} \sim \left[\bar{h}Ak^2 \sin(kz) \right]$

 \rightarrow The in-plane curvature has a stabilizing effect with $R_1~\sim k^2$

 $\triangleright \text{ Effect of cross-sectional curvature } R_2^{-1} \sim \left\{ a - \bar{h} [1 + A \sin(kz)] \right\}^{-1}$

 \rightarrow The cross-sectional curvature has a destabilizing effect with $R_2 \sim a - \bar{h}$

INSTABILITY MECHANISM

Assuming a varicose perturbation: $h = \bar{h}[1 + A\sin(kz)]$

 $\triangleright \text{ Effect of in-plane curvature } R_1^{-1} \sim \left[\bar{h}Ak^2 \sin(kz) \right]$

 \rightarrow The in-plane curvature has a stabilizing effect with $R_1~\sim k^2$

 $\triangleright \text{ Effect of cross-sectional curvature } R_2^{-1} \sim \left\{ a - \bar{h} [1 + A \sin(kz)] \right\}^{-1}$

 \rightarrow The cross-sectional curvature has a destabilizing effect with $R_2 \sim a - \bar{h}$

For a given \bar{h}/a one can find the critical wavenumber k_c

AIRWAY CLOSURE IN PHYSIOLOGY BREATHING CYCLE

AIRWAY CLOSURE IN PHYSIOLOGY BREATHING CYCLE

BREATHING CYCLE

Breathing Cycle

Young–Laplace equation: $\Delta p = -\sigma \nabla \cdot \mathbf{n}$ Plateau–Rayleigh instability: $2\pi(a-h)/L < 0.698$

Breathing Cycle

Young–Laplace equation: $\Delta p = -\sigma \nabla \cdot \mathbf{n}$ Plateau–Rayleigh instability: $2\pi(a-h)/L < 0.698$

Plateau–Rayleigh instability during deep exhalation in distal airways

IMPACT ON THE EPITHELIUM

IMPACT ON THE EPITHELIUM

airway closure may induce lethal or sub-lethal responses for epithelial cells

Modeling Challenges

Physiological Airways

- \triangleright complex multilayer structure
- $\triangleright~$ ciliated surface
- \triangleright fluid structure interaction
- $\triangleright~$ complex multiphase flow
- $\triangleright~$ non-Newtonian two-layer liquid
- \triangleright surfactant dynamics

Modeling Challenges

Physiological Airways

Airways Modeling

- ▷ rigid airway walls
- \triangleright no through flow
- ▷ periodic conditions
- $\triangleright~$ complex multiphase flow
- $\triangleright~$ non-Newtonian two-layer
- ▷ surfactant dynamics

- \triangleright ciliated surface
- \triangleright fluid structure interaction
- $\triangleright~$ complex multiphase flow
- $\triangleright~$ non-Newtonian two-layer liquid
- $\triangleright~$ surfact ant dynamics

Physiological Airways

Airways Modeling

- \triangleright rigid airway walls
- \triangleright no through flow
- ▷ periodic conditions
- $\triangleright~$ complex multiphase flow
- $\triangleright~$ non-Newtonian two-layer
- ▷ surfactant dynamics

- \triangleright ciliated surface
- \triangleright fluid structure interaction
- \triangleright complex multiphase flow
- $\,\triangleright\,$ non-Newtonian two-layer liquid
- \triangleright surfactant dynamics

Scientific Approach

 $\,\triangleright\,$ Newtonian single-layer clean

Physiological Airways

Airways Modeling

- \triangleright rigid airway walls
- \triangleright no through flow
- ▷ periodic conditions
- $\triangleright~$ complex multiphase flow
- $\triangleright~$ non-Newtonian two-layer
- ▷ surfactant dynamics

- \triangleright ciliated surface
- \triangleright fluid structure interaction
- $\triangleright~$ complex multiphase flow
- $\triangleright\,$ non-Newtonian two-layer liquid
- \triangleright surfactant dynamics

Scientific Approach

- $\triangleright~$ Newtonian single-layer clean
- \triangleright Newtonian two-layer clean

Physiological Airways

Airways Modeling

- $\triangleright~$ rigid airway walls
- \triangleright no through flow
- ▷ periodic conditions
- $\triangleright~$ complex multiphase flow
- $\triangleright~$ non-Newtonian two-layer
- ▷ surfactant dynamics

- \triangleright complex multilayer structure
- $\triangleright~$ ciliated surface
- \triangleright fluid structure interaction
- \triangleright complex multiphase flow
- $\,\triangleright\,$ non-Newtonian two-layer liquid
- \triangleright surfactant dynamics

Scientific Approach

- $\triangleright~$ Newtonian single-layer clean
- $\triangleright~$ Newtonian two-layer clean
- $\,\triangleright\,$ viscoelastic single-layer clean

Physiological Airways

Airways Modeling

- \triangleright rigid airway walls
- \triangleright no through flow
- ▷ periodic conditions
- $\triangleright~$ complex multiphase flow
- ▷ non-Newtonian two-layer
- ▷ surfactant dynamics

- ▷ complex multilayer structure
- $\triangleright~$ ciliated surface
- \triangleright fluid structure interaction
- \triangleright complex multiphase flow
- $\,\triangleright\,$ non-Newtonian two-layer liquid
- \triangleright surfactant dynamics

Scientific Approach

- $\triangleright~$ Newtonian single-layer clean
- $\triangleright~$ Newtonian two-layer clean
- $\,\triangleright\,$ viscoelastic single-layer clean
- $\triangleright~$ Newtonian single-layer + surf.

Romanò et al., PRF (2019)

MATHEMATICAL MODEL

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\operatorname{La}\left[\frac{\partial\left(\tilde{\varrho}\boldsymbol{u}\right)}{\partial t} + \nabla\cdot\left(\tilde{\varrho}\boldsymbol{u}\boldsymbol{u}\right)\right] = -\nabla p + \nabla\cdot\left[\tilde{\mu}\left(\nabla\boldsymbol{u} + \nabla^{T}\boldsymbol{u}\right)\right] + \int_{A}\sigma\kappa\boldsymbol{n}\delta\left(\boldsymbol{x} - \boldsymbol{x}_{\mathrm{f}}\right)dA$$

Romanò et al., PRF (2019)

MATHEMATICAL MODEL

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\operatorname{La}\left[\frac{\partial\left(\tilde{\varrho}\boldsymbol{u}\right)}{\partial t} + \nabla\cdot\left(\tilde{\varrho}\boldsymbol{u}\boldsymbol{u}\right)\right] = -\nabla p + \nabla\cdot\left[\tilde{\mu}\left(\nabla\boldsymbol{u} + \nabla^{T}\boldsymbol{u}\right)\right] + \int_{A}\sigma\kappa\boldsymbol{n}\delta\left(\boldsymbol{x} - \boldsymbol{x}_{\mathrm{f}}\right)dA$$

Single-field approach: $\tilde{\varrho} = \phi + \varrho(1 - \phi), \quad \tilde{\mu} = \phi + \mu(1 - \phi)$ Non-dimensional groups: La $= \frac{\sigma \rho_{\rm L} a}{\mu_{\rm L}^2}, \quad \varrho = \frac{\rho_{\rm G}}{\rho_{\rm L}}, \quad \mu = \frac{\mu_{\rm G}}{\mu_{\rm L}}, \quad \lambda = \frac{L}{a}, \quad \varepsilon = \frac{h}{a}$ Initial perturbation: $r = R_{\rm I}(t = 0) = a - h[1 - 0.1 \times \cos(2\pi z/L)]$

NEWTONIAN AIRWAY CLOSURE Comparison with Experiments

Romanò et al., PRF (2019)

CFD: Romanò et al., PRF (2019)

Lines: Romanò et al., PRF (2019)

NEWTONIAN AIRWAY CLOSURE Comparison with Experiments

Romanò et al., PRF (2019)

CFD: Romanò et al., PRF (2019)

Lines: Romanò et al., PRF (2019)

peak of shear stress right after closure (t_c)

NEWTONIAN AIRWAY CLOSURE BI-FRONTAL PLUG GROWTH

Romanò et al., PRF (2019)

F. Romanò | The Fluid Mechanics of Airway Closure in the Bronchioles

NEWTONIAN AIRWAY CLOSURE **BI-FRONTAL PLUG GROWTH** La= 100, $\varepsilon = 0.25$, $\mu = 0.0015$, $\varrho = 0.001$ -0.47 -0.33 $|\partial_z \tau_w|_{\max}$ 0.5 0.6 p 0.351 $0.4 \frac{1}{9^{2} \mathcal{L}_{m}} 100$ -1.503 1.278 +0.58 $^{\rm nin}_{\rm M}$ -57.155 -55.6 -54.8 $\tau_{w}|_{max}$, $\tau_{\rm w}|_{\rm max}$ $R_{\rm min}$ 0.2 0.2 0.1-57.155 -56.4 -55.6 -54.8 0 600 80Ŭ

Plateau–Rayleigh instability and rapid bi-frontal plug growth

-0.200

2.205

-54,000

-54.000

NEWTONIAN AIRWAY CLOSURE **BI-FRONTAL PLUG GROWTH**

La= 100, $\varepsilon = 0.25$, $\mu = 0.0015$, $\rho = 0.001$

NEWTONIAN AIRWAY CLOSURE **BI-FRONTAL PLUG GROWTH**

La= 100, $\varepsilon = 0.25$, $\mu = 0.0015$, $\rho = 0.001$

bi-frontal plug growth correlated to the wall pressure gradient

Romanò et al., PRF (2019)

BI-FRONTAL PLUG GROWTH

Romanò et al., PRF (2019)

EFFECT OF FILM THICKNESS

Romanò et al., PRF (2019)

EFFECT OF FILM THICKNESS

increasing ε speeds up the closure and reduces the wall pressure gradient

NEWT. TWO-LAYER AIRWAY CLOSURE Erken et al., JFM (2022) MATHEMATICAL MODEL

$$\nabla \cdot \boldsymbol{u} = 0$$

La $\left[\frac{\partial \left(\tilde{\varrho}\boldsymbol{u}\right)}{\partial t} + \nabla \cdot \left(\tilde{\varrho}\boldsymbol{u}\boldsymbol{u}\right)\right] = -\nabla p + \nabla \cdot \left[\tilde{\mu}\left(\nabla \boldsymbol{u} + \nabla^{T}\boldsymbol{u}\right)\right] + \int_{A} \sigma_{*}\kappa \boldsymbol{n}\delta\left(\boldsymbol{x} - \boldsymbol{x}_{\mathrm{f}}\right)dA$

NEWT. TWO-LAYER AIRWAY CLOSURE Erken et al., JFM (2022) MATHEMATICAL MODEL

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\operatorname{La}\left[\frac{\partial\left(\tilde{\varrho}\boldsymbol{u}\right)}{\partial t} + \nabla\cdot\left(\tilde{\varrho}\boldsymbol{u}\boldsymbol{u}\right)\right] = -\nabla p + \nabla\cdot\left[\tilde{\mu}\left(\nabla\boldsymbol{u} + \nabla^{T}\boldsymbol{u}\right)\right] + \int_{A}\sigma_{*}\kappa\boldsymbol{n}\delta\left(\boldsymbol{x} - \boldsymbol{x}_{\mathrm{f}}\right)dA$$

Single-field approach: $\tilde{\varrho}(\phi_1, \phi_2), \quad \tilde{\mu}(\phi_1, \phi_2)$

Non-dimensional groups: La =
$$\frac{\sigma_{a-m}\rho_m a}{\mu_m^2}$$
, $\varrho^* = \frac{\rho_a}{\rho_m}$, $\mu^* = \frac{\mu_a}{\mu_m}$, $\lambda = \frac{L}{a}$, $\sigma = \frac{\sigma_{a-m}}{\sigma_{m-s}}$
 $\varepsilon_m = \frac{h_m - h_s}{a}$, $\varepsilon_s = \frac{h_s}{a}$, $\varepsilon = \frac{h_m}{h_s}$, $\mu = \frac{\mu_m}{\mu_s}$, $\rho = \frac{\rho_m}{\rho_s}$

NEWT. TWO-LAYER AIRWAY CLOSURE Erken et al., JFM (2022) EFFECT OF SEROUS LAYER La = 174, $\lambda = 6$, $\mu = 10$, $\rho = 1$, $\sigma = 10$, $(\epsilon_m + \epsilon_s) = 0.2$, $\epsilon = 3$

15/33

NEWT. TWO-LAYER AIRWAY CLOSURE Erken et al., JFM (2022) EFFECT OF SEROUS LAYER La = 174, $\lambda = 6$, $\mu = 10$, $\rho = 1$, $\sigma = 10$, $(\epsilon_{\rm m} + \epsilon_{\rm s}) = 0.2$, $\epsilon = 3$

NEWT. TWO-LAYER AIRWAY CLOSURE Erken et al., JFM (2022) EFFECT OF MUCUS LAYER THICKNESS La = 174, $\lambda = 6$, $\mu = 10$, $\rho = 1$, $\sigma = 10$, $\epsilon_s = 0.05$

NEWT. TWO-LAYER AIRWAY CLOSURE Erken et al., JFM (2022) EFFECT OF MUCUS LAYER THICKNESS La = 174, $\lambda = 6$, $\mu = 10$, $\rho = 1$, $\sigma = 10$, $\epsilon_{\rm s} = 0.05$

 $\epsilon_{\rm m} \downarrow$ stabilizes the Plateau–Rayleigh instability for $\epsilon_{\rm m} = 0.1225$

NEWT. TWO-LAYER AIRWAY CLOSURE Erken et al., JFM (2022) EFFECT OF SEROUS LAYER THICKNESS La = 174, $\lambda = 6$, $\mu = 10$, $\rho = 1$, $\sigma = 10$, $\epsilon_m = 0.15$

NEWT. TWO-LAYER AIRWAY CLOSURE Erken et al., JFM (2022) EFFECT OF SEROUS LAYER THICKNESS La = 174, $\lambda = 6$, $\mu = 10$, $\rho = 1$, $\sigma = 10$, $\epsilon_m = 0.15$

NEWT. TWO-LAYER AIRWAY CLOSURE Erken et al., JFM (2022) EFFECT OF VISCOSITY RATIO La = 174, $\lambda = 6$, $\rho = 1$, $\sigma = 10$, $(\epsilon_{\rm m} + \epsilon_{\rm s}) = 0.2$, $\epsilon = 3$

NEWT. TWO-LAYER AIRWAY CLOSURE Erken et al., JFM (2022) EFFECT OF VISCOSITY RATIO La = 174, $\lambda = 6$, $\rho = 1$, $\sigma = 10$, $(\epsilon_m + \epsilon_s) = 0.2$, $\epsilon = 3$

 $\mu \uparrow$ reduces the shear stresses and does not impact the normal stresses

Romanò et al., submit.

MATHEMATICAL MODEL

$$\operatorname{La}\left[\frac{\partial\left(\tilde{\varrho}\boldsymbol{u}\right)}{\partial t} + \nabla\cdot\left(\tilde{\varrho}\boldsymbol{u}\boldsymbol{u}\right)\right] = -\nabla p + \nabla\cdot\left[\tilde{\mu}\left(\nabla\boldsymbol{u} + \nabla^{T}\boldsymbol{u}\right)\right] + \int_{A}\sigma(\Gamma)\kappa\boldsymbol{n}\delta\left(\boldsymbol{x} - \boldsymbol{x}_{\mathrm{f}}\right)dA + \int_{A}\nabla_{s}\sigma(\Gamma)\delta\left(\boldsymbol{x} - \boldsymbol{x}_{\mathrm{f}}\right)dA$$

Single-field approach: $\tilde{\varrho} = \phi + \varrho(1 - \phi), \quad \tilde{\mu} = \phi + \mu(1 - \phi)$

Romanò et al., submit.

MATHEMATICAL MODEL

Romanò et al., submit.

MATHEMATICAL MODEL

Romanò et al., submit.

MATHEMATICAL MODEL

Non-dimensional groups: La =
$$\frac{\sigma_0 \rho_L a}{\mu_L^2}$$
, $\rho = \frac{\rho_G}{\rho_L}$, $\mu = \frac{\mu_G}{\mu_L}$, $\lambda = \frac{L}{a}$, $\varepsilon = \frac{h}{a}$,
 $\beta = \frac{\mathcal{R}T\Gamma_{\infty}}{\sigma_0}$, Sc = $\frac{\mu_L}{\rho_L D_L}$, Sc_s = $\frac{\mu_L}{\rho_L D_S}$,
K_a = $\frac{k_a C_{cmc} a^2}{D_S}$, K_d = $\frac{k_a a^2}{D_S}$, $\chi = \frac{\Gamma_{\infty}}{C_{cmc} a}$,
Initial perturbation: $r = R_I(t = 0) = a - h[1 - 0.1 \times \cos(2\pi z/L)]$

Romanò et al., PRF (2022)

Dynamics of the Surfactant

La = 100, β = 0.7, Sc = 10, Sc_s = 100, K_a = 10⁴, K_d = 10², χ = 0.01, $C_0 = 10^{-4}, \varepsilon = 0.25$

Romanò et al., PRF (2022)

EFFECT OF SURFACTANT CONCENTRATION La = 100, $\beta = 0.7$, Sc = 10, Sc_s = 100, K_a = 10⁴, K_d = 10², $\chi = 0.01$, $\varepsilon = 0.25$

Romanò et al., PRF (2022)

EFFECT OF SURFACTANT CONCENTRATION La = 100, $\beta = 0.7$, Sc = 10, Sc_s = 100, K_a = 10⁴, K_d = 10², $\chi = 0.01$, $\varepsilon = 0.25$

increasing C_0 slows down the closure and reduces the stresses

NEWT. AIRWAY CLOSURE + SURF. Romanò et al., PRF (2022)

EFFECT OF SURFACTANT ELASTICITY PARAMETER La = 100, $\chi = 0.01$, Sc = 10, Sc_s = 100, K_a = 10⁴, K_d = 10², C₀ = 10⁻⁴, $\varepsilon = 0.25$

NEWT. AIRWAY CLOSURE + SURF. Romanò et al., PRF (2022)

EFFECT OF SURFACTANT ELASTICITY PARAMETER La = 100, $\chi = 0.01$, Sc = 10, Sc_s = 100, K_a = 10⁴, K_d = 10², C₀ = 10⁻⁴, $\varepsilon = 0.25$

Romanò et al., PRF (2022)

EFFECT OF PENETRATION DEPTH

La = 100, β = 0.7, Sc = 10, Sc_s = 100, K_a = 10⁴, K_d = 10², C₀ = 10⁻⁴, ε = 0.25

Romanò et al., PRF (2022)

EFFECT OF PENETRATION DEPTH

La = 100, β = 0.7, Sc = 10, Sc_s = 100, K_a = 10⁴, K_d = 10², C₀ = 10⁻⁴, ε = 0.25

NEWT. AIRWAY CLOSURE + SURF.

Romanò et al., PRF (2022)

EFFECT OF SCHMIDT NUMBERS La = 100, $\chi = 0.01$, $\beta = 0.7$, $K_a = 10^4$, $K_d = 10^2$, $C_0 = 10^{-4}$, $\varepsilon = 0.25$

NEWT. AIRWAY CLOSURE + SURF.

Romanò et al., PRF (2022)

EFFECT OF SCHMIDT NUMBERS La = 100, $\chi = 0.01$, $\beta = 0.7$, $K_a = 10^4$, $K_d = 10^2$, $C_0 = 10^{-4}$, $\varepsilon = 0.25$

NEWT. AIRWAY CLOSURE + SURF. Romanò et al., PRF (2022)

EFFECT OF ADSORPTION AND DESORPTION COEFFICIENTS La = 100, $\chi = 0.01$, $\beta = 0.7$, Sc = 10, Sc_s = 100, $C_0 = 10^{-4}$, $\varepsilon = 0.25$

NEWT. AIRWAY CLOSURE + SURF. Romanò et al., PRF (2022)

EFFECT OF ADSORPTION AND DESORPTION COEFFICIENTS La = 100, $\chi = 0.01$, $\beta = 0.7$, Sc = 10, Sc_s = 100, $C_0 = 10^{-4}$, $\varepsilon = 0.25$

NEWT. AIRWAY CLOSURE + SURF. Romanò et al., PRF (2022) STABILITY ANALYSIS La = 100, $\chi = 0.01$, $\beta = 0.7$, Sc = 10, Sc_s = 100, K_a = 10⁴, K_d = 10²

NEWT. AIRWAY CLOSURE + SURF. Romanò et al., PRF (2022) STABILITY ANALYSIS La = 100, $\chi = 0.01$, $\beta = 0.7$, Sc = 10, Sc_s = 100, K_a = 10⁴, K_d = 10²

NEWT. AIRWAY CLOSURE + SURF. Romanò et al., PRF (2022) STABILITY ANALYSIS La = 100, $\chi = 0.01$, $\beta = 0.7$, Sc = 10, Sc_s = 100, K_a = 10⁴, K_d = 10²

surfactant replacement can stabilize and shift closure to higher generations

Romanò et al., JFM (2021)

MATHEMATICAL MODEL

$$\nabla \cdot \boldsymbol{u} = 0$$

$$\operatorname{La}\left[\frac{\partial\left(\tilde{\varrho}\boldsymbol{u}\right)}{\partial t} + \nabla\cdot\left(\tilde{\varrho}\boldsymbol{u}\boldsymbol{u}\right)\right] = -\nabla p + \nabla\cdot\tilde{\tau} + \int_{A}\sigma\kappa\boldsymbol{n}\delta\left(\boldsymbol{x}-\boldsymbol{x}_{\mathrm{f}}\right)dA$$

Romanò et al., JFM (2021)

Mathematical Model

 $\nabla \cdot \boldsymbol{u} = 0$

$$\operatorname{La}\left[\frac{\partial\left(\tilde{\varrho}\boldsymbol{u}\right)}{\partial t}+\nabla\cdot\left(\tilde{\varrho}\boldsymbol{u}\boldsymbol{u}\right)\right]=-\nabla p+\nabla\cdot\tilde{\tau}+\int_{A}\sigma\kappa\boldsymbol{n}\delta\left(\boldsymbol{x}-\boldsymbol{x}_{\mathrm{f}}\right)dA$$

Single-field approach: $\tilde{\varrho} = \phi + \varrho(1-\phi), \ \tilde{\tau} = [\mu_{\rm S}\phi + \mu(1-\phi)] \left(\nabla \boldsymbol{u} + \nabla^T \boldsymbol{u}\right) + \phi \boldsymbol{S}$

Oldroyd-B: We
$$\left[\partial_t S + (\boldsymbol{u} \cdot \nabla) S - (\nabla \boldsymbol{u}) S - S(\nabla^T \boldsymbol{u})\right] + S = \mu_P \left(\nabla \boldsymbol{u} + \nabla^T \boldsymbol{u}\right)$$

MATHEMATICAL MODEL

Romanò et al., JFM (2021)

epithelial cells serous layer mucus layer air air yiscoclastic airway closure model (clean)

Non-dimensional groups: La =
$$\frac{\sigma \rho_{\rm L} a}{\mu_{\rm L}^2}$$
, $\rho = \frac{\rho_{\rm G}}{\rho_{\rm L}}$, $\mu = \frac{\mu_{\rm G}}{\mu_{\rm L}}$, $\lambda = \frac{L}{a}$, $\varepsilon = \frac{h}{a}$
We = $\frac{\Lambda \sigma}{a\mu_{\rm L}}$, $\mu_{\rm S} = \frac{\mu_{\rm L,S}}{\mu_{\rm L}}$, $\mu_{\rm P} = 1 - \mu_{\rm S}$, (\mathcal{L}^2 for FENE-CR)

Initial perturbation: $r = R_{I}(t = 0) = a - h[1 - 0.1 \times \cos(2\pi z/L)]$

27/33

$\begin{array}{ll} \mbox{VISCOELASTIC AIRWAY CLOSURE} & \mbox{Romano et al., JFM (2021)} \\ \mbox{EFFECT OF VISCOELASTICITY (OLDROYD-B)} \\ \mbox{$\mu = 1.5 \times 10^{-4}, \ \varrho = 10^{-3}, \ \epsilon = 0.25, \ \lambda = 6, \ \mu_{\rm S} = 0.5, \ {\rm We} = 100} \end{array}$

$\begin{array}{ll} \mbox{VISCOELASTIC AIRWAY CLOSURE} & \mbox{Romano et al., JFM (2021)} \\ \mbox{EFFECT OF VISCOELASTICITY (OLDROYD-B)} \\ \mbox{$\mu = 1.5 \times 10^{-4}, \ \varrho = 10^{-3}, \ \epsilon = 0.25, \ \lambda = 6, \ \mu_{\rm S} = 0.5, \ {\rm We} = 100} \end{array}$

qualitative difference between Newtonian and viscoelastic

VISCOELASTIC AIRWAY CLOSURE Romanò et al., JFM (2021) EFFECT OF VISCOELASTICITY (FENE-CR)

 $\mu = 1.5 \times 10^{-4}, \ \varrho = 10^{-3}, \ \epsilon = 0.25, \ \lambda = 6, \ \mu_{\rm S} = 0.5, \ {\rm We} = 100$

VISCOELASTIC AIRWAY CLOSURE Romanò et al., JFM (2021) EFFECT OF VISCOELASTICITY (FENE-CR) $\mu = 1.5 \times 10^{-4}, \rho = 10^{-3}, \epsilon = 0.25, \lambda = 6, \mu_{\rm S} = 0.5, \text{We} = 100$

Romanò et al., JFM (2021)

Romanò et al., JFM (2021)

instability due to curvature of the streamlines

Romanò et al., JFM (2021)

Effect of Flow and Polymeric Parameters $\mu = 1.5 \times 10^{-4}, \ \varrho = 10^{-3}, \ \epsilon = 0.25, \ \lambda = 6,$

Romanò et al., JFM (2021)

Effect of Flow and Polymeric Parameters $\mu = 1.5 \times 10^{-4}, \ \varrho = 10^{-3}, \ \epsilon = 0.25, \ \lambda = 6,$

Romanò et al., JFM (2021)

Elasto-Inertial Instability $\mu = 1.5 \times 10^{-4}, \ \varrho = 10^{-3}, \ \epsilon = 0.25, \ \lambda = 6,$

Romanò et al., JFM (2021)

Elasto-Inertial Instability $\mu = 1.5 \times 10^{-4}, \ \varrho = 10^{-3}, \ \epsilon = 0.25, \ \lambda = 6,$

Support from NIH (R01-HL136141) and from TUKITAK (119M513)

▷ Numerical simulations well reproduce the experiments

Support from NIH (R01-HL136141) and from TUKITAK (119M513)

- ▷ Numerical simulations well reproduce the experiments
- $\triangleright~$ Liquid film coalescence induces high stress levels

Support from NIH (R01-HL136141) and from TUKITAK (119M513)

- $\triangleright~$ Numerical simulations well reproduce the experiments
- $\triangleright~$ Liquid film coalescence induces high stress levels
- $\triangleright~$ Quick bi-frontal plug growth: post-coalescence stress mechanism

Support from NIH (R01-HL136141) and from TUKITAK (119M513)

- ▷ Numerical simulations well reproduce the experiments
- $\triangleright~$ Liquid film coalescence induces high stress levels
- $\triangleright~$ Quick bi-frontal plug growth: post-coalescence stress mechanism
- $\triangleright~$ Bi-frontal plug growth can injury the epithelial cells

Support from NIH (R01-HL136141) and from TUKITAK (119M513)

- ▷ Numerical simulations well reproduce the experiments
- $\triangleright~$ Liquid film coalescence induces high stress levels
- $\triangleright~$ Quick bi-frontal plug growth: post-coalescence stress mechanism
- $\triangleright~$ Bi-frontal plug growth can injury the epithelial cells
- $\triangleright~$ The two-layer airway closure is much faster than the single-layer one

Support from NIH (R01-HL136141) and from TUKITAK (119M513)

- ▷ Numerical simulations well reproduce the experiments
- $\triangleright~$ Liquid film coalescence induces high stress levels
- $\triangleright~$ Quick bi-frontal plug growth: post-coalescence stress mechanism
- $\triangleright~$ Bi-frontal plug growth can injury the epithelial cells
- $\triangleright~$ The two-layer airway closure is much faster than the single-layer one
- $\triangleright~$ The stability limits are strongly affected by the two-layer dynamics

Support from NIH (R01-HL136141) and from TUKITAK (119M513)

- ▷ Numerical simulations well reproduce the experiments
- $\triangleright~$ Liquid film coalescence induces high stress levels
- $\triangleright~$ Quick bi-frontal plug growth: post-coalescence stress mechanism
- $\triangleright~$ Bi-frontal plug growth can injury the epithelial cells
- $\triangleright~$ The two-layer airway closure is much faster than the single-layer one
- $\triangleright~$ The stability limits are strongly affected by the two-layer dynamics
- $\triangleright~$ Increasing the mucus-to-serous viscosity ratio decreases the stresses

Support from NIH (R01-HL136141) and from TUKITAK (119M513)

- ▷ Numerical simulations well reproduce the experiments
- $\triangleright~$ Liquid film coalescence induces high stress levels
- $\triangleright~$ Quick bi-frontal plug growth: post-coalescence stress mechanism
- $\triangleright~$ Bi-frontal plug growth can injury the epithelial cells
- $\triangleright~$ The two-layer airway closure is much faster than the single-layer one
- $\triangleright~$ The stability limits are strongly affected by the two-layer dynamics
- $\triangleright~$ Increasing the mucus-to-serous viscosity ratio decreases the stresses
- $\triangleright~$ Double coalescence is observed for two-layer airway closure

Support from NIH (R01-HL136141) and from TUKITAK (119M513)

- ▷ Numerical simulations well reproduce the experiments
- $\triangleright~$ Liquid film coalescence induces high stress levels
- $\triangleright~$ Quick bi-frontal plug growth: post-coalescence stress mechanism
- $\triangleright~$ Bi-frontal plug growth can injury the epithelial cells
- $\triangleright~$ The two-layer airway closure is much faster than the single-layer one
- $\triangleright~$ The stability limits are strongly affected by the two-layer dynamics
- $\triangleright~$ Increasing the mucus-to-serous viscosity ratio decreases the stresses
- $\triangleright~$ Double coalescence is observed for two-layer airway closure
- $\triangleright~$ At high We, elasto-inertial instability induces severe extra stresses

Support from NIH (R01-HL136141) and from TUKITAK (119M513)

- ▷ Numerical simulations well reproduce the experiments
- $\triangleright~$ Liquid film coalescence induces high stress levels
- $\triangleright~$ Quick bi-frontal plug growth: post-coalescence stress mechanism
- $\triangleright~$ Bi-frontal plug growth can injury the epithelial cells
- $\triangleright~$ The two-layer airway closure is much faster than the single-layer one
- $\triangleright~$ The stability limits are strongly affected by the two-layer dynamics
- $\triangleright~$ Increasing the mucus-to-serous viscosity ratio decreases the stresses
- $\triangleright~$ Double coalescence is observed for two-layer airway closure
- $\triangleright~$ At high We, elasto-inertial instability induces severe extra stresses
- $\triangleright~$ Surfact ant reduces the wall stresses and postpones the airway closure

Support from NIH (R01-HL136141) and from TUKITAK (119M513)