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Motivation: rapid development of data-driven predictive methods
Model-based methods (4D-Var, Kalman filter, PINN) Model-free methods (Neural networks, DMD, POD)

ECMWF

PangU, Huawei

Purely data-driven: The dynamics is learnedData assimilation: The dynamics is known and 
used as constrained

4D-Var, Jeff Kepert
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Model-based methods (4D-Var, Kalman filter, PINN) Model-free methods (Neural networks, DMD, POD)

ECMWF

PangU, Huawei

Purely data-driven: The dynamics is learnedData assimilation: The dynamics is known and 
used as constrained

4D-Var, Jeff Kepert

Improvements in data assimilation, models 
and measurements have gradually 
improved NWP over the past three decades.

PangU (Huawei) and FourCastNet 
(Nvidia and Lawrence Berkeley NL) are 
recently developed and already claim 
better performance than existing NWP.

Bauer et al., Nature 2015
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Model-based methods (4D-Var, Kalman filter, PINN) Model-free methods (Neural networks, DMD, POD)

ECMWF

PangU, Huawei

Purely data-driven: The dynamics is learnedData assimilation: The dynamics is known and 
used as constrained

4D-Var, Jeff Kepert

There is little to no understanding on under what conditions can a purely data-driven model-
free approach perform better than a model-based approach.

Hesitancy to use deep learning for end-to-end use limit their practical implementation.
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Motivation: rapid development of data-driven predictive methods
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There is little to no understanding on under what conditions can a purely data-driven model-
free approach perform better than a model-based approach.

Prediction of turbulent systems from limited measurements

Sp
ac

e

Time

Is there a limit of spatial resolution 
beyond which data assimilation methods 
cannot estimate/predict? 

Do model-free machine learning methods 
need higher or lower resolution? 

Can classical methods still be useful when 
data-driven methods fail?
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Data assimilation methods 
4D-Var (variational method) 
Ensemble Kalman filter (sequential method) 

Kuramoto-Sivashinsky system 
Measurement conditions 

Fully developed turbulence (criterion)

Model-based methods

Recurrent neural networks 
Reservoir computing 
LSTM 

Kuramoto-Sivashinsky system 
Measurement conditions 

Data assimilation (criterion)

Model-free methods

Linearised (low-rank 
approximation) models Model deduction for wall turbulence
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Methods: 4DVar, EnKF and Interpolation 

4D-Var (variational method)

EnKF (sequential method)

Interpolation (no data assimilation)
Predictions are obtained by simply time-marching the interpolated initial conditions 
Data assimilation methods must be significantly better than interpolation

Most common in numerical weather prediction 
Use variational calculus and adjoint equations 
Iterative calculations for optimal solution

Cost effective, common for turbulent flows 
Use Kalman filter and Monte Carlo sampling 
Sequential calculations for optimal solution

Methods 
Kuramoto-Sivashinsky 
Complexity measure 
Turbulent channel flow
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Kuramoto-Sivashinsky system: a model for weak turbulence 
(spatiotemporal chaos)

Prediction of turbulent systems from limited measurements

ut = − uux − uxx − νuxxxx  is the eddy viscosity and  is the system sizeν L = 32π

ν = 1.0

Introduced to describe turbulence in magnetised plasma, flame front propagation and 
chemical reaction diffusion process 

More complex than Lorenz system but much simpler than the Navier—Stokes equations

Methods 
Kuramoto-Sivashinsky 
Complexity measure 
Turbulent channel flow
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Kuramoto-Sivashinsky system: a model for weak turbulence 
(spatiotemporal chaos)

Prediction of turbulent systems from limited measurements

ut = − uux − uxx − νuxxxx  is the eddy viscosity and  is the system sizeν L = 32π

ν = 1.0

Use data before  (assimilation window) to predict the future t = 0 t > 0

ν = 0.5

Methods 
Kuramoto-Sivashinsky 
Complexity measure 
Turbulent channel flow
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ν = 1.0, n = 512

Prediction accuracy variation with sparsity of observations
Methods 
Kuramoto-Sivashinsky 
Complexity measure 
Turbulent channel flow
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Quantification of prediction accuracy

ν = 1.0 ν = 0.5

4D-Var
EnKF
Int

This is normalised 
root-mean-square 
error averaged in 
space and over 
several calculations

ut = − uux − uxx − νuxxxx  is the eddy viscosity and  is the system sizeν L = 32π

Prediction of turbulent systems from limited measurements

Methods 
Kuramoto-Sivashinsky 
Complexity measure 
Turbulent channel flow
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ν = 1.0 ν = 0.5

4D-Var
EnKF
Int

This is normalised 
root-mean-square 
error averaged in 
space and over 
several calculations

 - The accuracy is 
measured in terms of 
the time at which the 
error crosses 0.5 
threshold

VPT

ut = − uux − uxx − νuxxxx  is the eddy viscosity and  is the system sizeν L = 32π

Prediction of turbulent systems from limited measurements

Quantification of prediction accuracy
Methods 
Kuramoto-Sivashinsky 
Complexity measure 
Turbulent channel flow
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Variation of prediction accuracy with sparsity of 
observations

High 
resolution

Low 
resolution

High 
resolution

Low 
resolution
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Methods 
Kuramoto-Sivashinsky 
Complexity measure 
Turbulent channel flow
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EnKF: Variation with the length of assimilation window

Takens’ Embedding theorem: Can longer time-series compensate for spatial sparsity?

Methods 
Kuramoto-Sivashinsky 
Complexity measure 
Turbulent channel flow
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Methods 
Kuramoto-Sivashinsky 
Complexity measure 
Turbulent channel flow

4D-Var: variation with the number of iterations

Can we iterate longer to compensate for spatial sparsity?
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Methods 
Kuramoto-Sivashinsky 
Complexity measure 
Turbulent channel flow

Measure the spatial complexity 
of the system in phase space 
using correlation dimension ( ) 

Beyond some level, the 
information on system 
complexity is lost?

Cd

Correlation dimension: measure of system dynamics
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Methods 
Kuramoto-Sivashinsky 
Complexity measure 
Turbulent channel flow

Measure the spatial complexity 
of the system in phase space 
using correlation dimension ( ) 

Beyond some level, the 
information on system 
complexity is lost?

Cd

Correlation dimension: measure of system dynamics

The level of sparsity up to 
which complexity can be 
captured matches well with the 
conditions for predictability
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Wild extrapolation: How about fully developed turbulence?

Recovering fine-scales from coarse grained 
data (Yoshida et al. 2005, PRL; Lalescu et 
al. 2013, PRL).

𝑧 𝑦

Recent study on turbulent channel shows that the 
Kolmogorov length-scale-based requirement is closely 
followed in super-resolution of turbulent channel flow via 
4D-Var, but Taylor micro-scale gives a better criterion 
(Wang & Zaki 2021, JFM)

Prediction of turbulent systems from limited measurements

Methods 
Kuramoto-Sivashinsky 
Complexity measure 
Turbulent channel flow
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Wild extrapolation: Not perfect but satisfying
Methods 
Kuramoto-Sivashinsky 
Complexity measure 
Turbulent channel flow
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Data assimilation methods 
4D-Var (variational method) 
Ensemble Kalman filter (sequential method) 

Kuramoto-Sivashinsky system 
Measurement conditions 

Fully developed turbulence (criterion)

Model-based methods

Recurrent neural networks 
Reservoir computing 
LSTM 

Kuramoto-Sivashinsky system 
Measurement conditions 

Data assimilation (criterion)

Model-free methods

Linearised (low-rank 
approximation) models Model deduction for wall turbulence
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Methods 
Kuramoto-Sivashinsky 
Data assimilation

Neural networks: model-free methods for learning turbulent 
systems

Reservoir-computing-based RNN (shallow network)

𝑊𝑜𝑢𝑡

Long-short-term memory RNN (deep learning)

Deep learning RNN

Reservoir-computing-based RNN

Vlachas, Pathak, Hunt, Sapsis, Girvan, Ott and 
Koumoutsakos 2020

Prediction of turbulent systems from limited measurements
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Methods 
Kuramoto-Sivashinsky 
Data assimilation

Reservoir-computing-based RNN (shallow network)

𝑊𝑜𝑢𝑡

Long-short-term memory RNN (deep learning)

Deep learning RNN

Reservoir-computing-based RNN

Vlachas, Pathak, Hunt, Sapsis, Girvan, Ott and 
Koumoutsakos 2020

Prediction of turbulent systems from limited measurements

Neural networks: model-free methods for learning turbulent 
systems
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ν = 1.0, n = 512

Spatial resolution required for learning the system and making the 
predictions

Prediction of turbulent systems from limited measurements

Methods 
Kuramoto-Sivashinsky 
Data assimilation
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ν = 1.0, n = 512

Spatial resolution required for learning the system and making the 
predictions

Xst = 1

Xst = 2

Xst = 3

Xst = 4

Xst = 5

Xst = 6

Xst = 7

Xst = 8

ν = 0.5, n = 512

Xst = 1

Xst = 2

Xst = 3

Xst = 4

Xst = 5

Xst = 6

Prediction of turbulent systems from limited measurements

Methods 
Kuramoto-Sivashinsky 
Data assimilation
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Spatial resolution required for learning the system and making the 
predictions

Prediction of turbulent systems from limited measurements

Methods 
Kuramoto-Sivashinsky 
Data assimilation

High 
resolution

Low 
resolution

High 
resolution

Low 
resolution
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Data assimilation vs Neural networks 
Model-based vs Model-free methods

Methods 
Kuramoto-Sivashinsky 
Data assimilation

Prediction of turbulent systems from limited measurements
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Data assimilation vs Neural networks 
Model-based vs Model-free methods

Methods 
Kuramoto-Sivashinsky 
Data assimilation

Prediction of turbulent systems from limited measurements
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Summary of data-driven methods part

Prediction of turbulent systems from limited measurements

Data assimilation methods can work 
only up to the resolution at which the 
system’s complexity is captured. 
Machine learning methods need 
higher resolution because they need to 
learn the system dynamics from data.

Is there a limit of spatial resolution beyond which data assimilation methods cannot estimate/
predict? 

Do model-free machine learning methods need higher or lower resolution? 

Can classical methods still be useful when data-driven methods fail?
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Caution: data-driven methods are still a decade or two away for practical 
turbulent systems

Prediction of turbulent systems from limited measurements

Data assimilation methods can work 
only up to the resolution at which the 
system’s complexity is captured. 
Machine learning methods need 
higher resolution because they need to 
learn the system dynamics from data.

Is there a limit of spatial resolution beyond which data assimilation methods cannot estimate/
predict? 

Do model-free machine learning methods need higher or lower resolution? 

Can classical methods still be useful when data-driven methods fail?
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Data assimilation methods 
4D-Var (variational method) 
Ensemble Kalman filter (sequential method) 

Kuramoto-Sivasinshky system 
Measurement conditions 

Fully developed turbulence (criterion)

Model-based methods

Recurrent neural networks 
Reservoir computing 
LSTM 

Kuramoto-Sivasinshky system 
Measurement conditions 

Data assimilation (criterion)

Model-free methods

Linearised (low-rank 
approximation) models Model deduction for wall turbulence
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Linearised models: Low data requirement and high physical 
interpretability

Motivation 
Model deduction 
Turbulent channel flow 
Applications

Data assimilation and neural networks may not work with such limited measurements.

Measurement plane

Need estimation at 
other planes

Prediction of turbulent systems from limited measurements
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Linearised models: Low data requirement and high physical 
interpretability

Motivation 
Model deduction 
Turbulent channel flow 
Applications

Need estimation at 
other planes

Dominant flow structures (attached eddies), experimental 
eduction by Dennis & Nickels (JFM, 2011)

Mechanism: del Alamo & Jimenez (JFM 2006), Pujals et al. (PoF 2009), McKeon & Sharma (JFM 2010), 
Pickering et al. (JFM 2020), etc. 

Estimation: Zare et al. (JFM 2017), Illingworth et al. (JFM 2018), Towne et al. (JFM 2020), Gupta et al. (JFM 
2021), Wu & He (JFM 2023), etc. 

Control: Semeraro et al. (JFM 2013), Jin et al. (2020), Jafari et al. (JFM 2023), etc.

Measurement plane

Prediction of turbulent systems from limited measurements
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Linearised models: Low data requirement and high physical 
interpretability

Motivation 
Model deduction 
Turbulent channel flow 
Applications

Need estimation at 
other planes

Dominant flow structures (attached eddies), experimental 
eduction by Dennis & Nickels (JFM, 2011)

Mechanism: del Alamo & Jimenez (JFM 2006), Pujals et al. (PoF 2009), McKeon & Sharma (JFM 2010), 
Pickering et al. (JFM 2020), etc. 

Estimation: Zare et al. (JFM 2017), Illingworth et al. (JFM 2018), Towne et al. (JFM 2020), Gupta et al. (JFM 
2021), Wu & He (JFM 2023), etc. 

Control: Semeraro et al. (JFM 2013), Jin et al. (2020), Jafari et al. (JFM 2023), etc.

How do we obtain such linear models?

Measurement plane

Prediction of turbulent systems from limited measurements
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Motivation 
Model deduction 
Turbulent channel flow 
Applications

Prediction of turbulent systems from limited measurements

We will try to understand the formation of energetic structures via the mean flow instabilities of the 
governing Navier—Stokes equations.

𝜕𝑢𝑖

𝜕𝑡
= − 𝑢𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘
−

𝜕𝑝
𝜕𝑥𝑖

+
1

𝑅𝑒
𝜕2𝑢𝑖

𝜕𝑥𝑘𝜕𝑥𝑘

𝜕𝑢𝑘

𝜕𝑥𝑘
= 0

𝑢𝑖 = 𝑈𝑖 + 𝑢𝑖,   𝑝 = 𝑃 + 𝑝

𝜕𝑢𝑖

𝜕𝑡
= − 𝑈𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘
− 𝑢𝑘

𝜕𝑈𝑖

𝜕𝑥𝑘
−

𝜕𝑢𝑘𝑢𝑖

𝜕𝑥𝑘
−

𝜕𝑝
𝜕𝑥𝑖

+
1

𝑅𝑒
𝜕2𝑢𝑖

𝜕𝑥𝑘𝜕𝑥𝑘

𝐸(𝑡) =  
1
2 ∫ 𝑢𝑖𝑢𝑖𝑑𝑉

Decompose the governing equations in terms of the 
mean and fluctuating parts

Evolution of disturbance over the base flow state(𝑢𝑖, 𝑝)

Volume integral of the disturbance kinetic energy

 is the base flow state(𝑈𝑖, 𝑃)
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Motivation 
Model deduction 
Turbulent channel flow 
Applications

Prediction of turbulent systems from limited measurements

We will try to understand the formation of energetic structures via the mean flow instabilities of the 
governing Navier—Stokes equations.

𝑢𝑖 = 𝑈𝑖 + 𝑢𝑖,   𝑝 = 𝑃 + 𝑝

𝜕𝑢𝑖

𝜕𝑡
= − 𝑈𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘
− 𝑢𝑘

𝜕𝑈𝑖

𝜕𝑥𝑘
−

𝜕𝑢𝑘𝑢𝑖

𝜕𝑥𝑘
−

𝜕𝑝
𝜕𝑥𝑖

+
1

𝑅𝑒
𝜕2𝑢𝑖

𝜕𝑥𝑘𝜕𝑥𝑘

𝐸(𝑡) =  
1
2 ∫ 𝑢𝑖𝑢𝑖𝑑𝑉

Evolution of disturbance over the base flow state(𝑢𝑖, 𝑝)

Volume integral of the disturbance kinetic energy

 is the base flow state(𝑈𝑖, 𝑃)

𝑢𝑖
𝜕𝑢𝑖

𝜕𝑡
= − 𝑈𝑘𝑢𝑖

𝜕𝑢𝑖

𝜕𝑥𝑘
− 𝑢𝑘𝑢𝑖

𝜕𝑈𝑖

𝜕𝑥𝑘
− 𝑢𝑖

𝜕𝑢𝑘𝑢𝑖

𝜕𝑥𝑘
− 𝑢𝑖

𝜕𝑝
𝜕𝑥𝑖

+
𝑢𝑖

𝑅𝑒
𝜕2𝑢𝑖

𝜕𝑥𝑘𝜕𝑥𝑘

Use the divergence free condition and apply the volume integral

Role of the linear terms
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Motivation 
Model deduction 
Turbulent channel flow 
Applications

Prediction of turbulent systems from limited measurements

Transfer of energy 
from the basic flow Viscous dissipation

Reynolds-Orr equation

The energy for developing and sustaining turbulence must come through the 
linear energy amplification mechanism.

𝑢𝑖
𝜕𝑢𝑖

𝜕𝑡
= − 𝑈𝑘𝑢𝑖

𝜕𝑢𝑖

𝜕𝑥𝑘
− 𝑢𝑘𝑢𝑖

𝜕𝑈𝑖

𝜕𝑥𝑘
− 𝑢𝑖

𝜕𝑢𝑘𝑢𝑖

𝜕𝑥𝑘
− 𝑢𝑖

𝜕𝑝
𝜕𝑥𝑖

+
𝑢𝑖

𝑅𝑒
𝜕2𝑢𝑖

𝜕𝑥𝑘𝜕𝑥𝑘

Use the divergence free condition and apply the volume integral
𝑑𝐸
𝑑𝑡

= − ∫ 𝑢𝑖𝑢𝑘
𝜕𝑈𝑖

𝜕𝑥𝑘
𝑑𝑉 −

1
𝑅𝑒 ∫

𝜕𝑢𝑖

𝜕𝑥𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘
𝑑𝑉

𝜕
𝜕𝑥𝑘 [−

1
2

𝑢𝑖𝑢𝑘𝑈𝑘 −
1
2

𝑢𝑖𝑢𝑖𝑢𝑘 − 𝑢𝑖𝑝𝛿𝑖𝑘]

Role of the linear terms
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𝜕𝑢𝑖

𝜕𝑡
= − 𝑈𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘
− 𝑢𝑘

𝜕𝑈𝑖

𝜕𝑥𝑘
−

𝜕(𝑢𝑘𝑢𝑖 − ⟨𝑢𝑘𝑢𝑖⟩)

𝜕𝑥𝑘
−

𝜕𝑝
𝜕𝑥𝑖

+
1

𝑅𝑒
𝜕2𝑢𝑖

𝜕𝑥𝑘𝜕𝑥𝑘

 is the mean flow velocity 

 is the mean Reynolds stress

𝑈(𝑧)

⟨𝑢𝑘𝑢𝑖⟩
𝑧 𝑦

Vikrant Gupta (vikrant@sustech.edu.cn)

Motivation 
Model deduction 
Turbulent channel flow 
Applications

KTH, SG2221 lecture notes, A Ceci
Prediction of turbulent systems from limited measurements

Turbulent channel flow: linear amplification mechanism
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𝜕𝑢𝑖

𝜕𝑡
= − 𝑈𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘
− 𝑢𝑘

𝜕𝑈𝑖

𝜕𝑥𝑘
−

𝜕(𝑢𝑘𝑢𝑖 − ⟨𝑢𝑘𝑢𝑖⟩)

𝜕𝑥𝑘
−

𝜕𝑝
𝜕𝑥𝑖

+
1

𝑅𝑒
𝜕2𝑢𝑖

𝜕𝑥𝑘𝜕𝑥𝑘

 is the mean flow velocity 

 is the mean Reynolds stress

𝑈(𝑧)

⟨𝑢𝑘𝑢𝑖⟩
𝑧 𝑦

Vikrant Gupta (vikrant@sustech.edu.cn)

Motivation 
Model deduction 
Turbulent channel flow 
Applications

Problem: Without the nonlinear term, there is no engine to 
sustain the turbulence.

KTH, SG2221 lecture notes, A Ceci
Prediction of turbulent systems from limited measurements

Turbulent channel flow: linear amplification mechanism
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𝜕𝑥𝑖
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𝑅𝑒
𝜕2𝑢𝑖

𝜕𝑥𝑘𝜕𝑥𝑘

Unknown forcing term 
McKeon & Sharma (2010)

Damping term 
del Alamo & Jimenez (2006)
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Sharma & 
McKeon (2013) - 
linear model

Dennis & Nickels 
(2011) - experimental 
study

del Alamo & Jimenez (2006) - linear model 
captures the inner and outer peaks

𝜕𝑢𝑖

𝜕𝑡
= − 𝑈𝑘

𝜕𝑢𝑖
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𝜕𝑢𝑘

𝜕𝑥𝑖 )) −
𝜕𝑝
𝜕𝑥𝑖

+
1

𝑅𝑒
𝜕2𝑢𝑖

𝜕𝑥𝑘𝜕𝑥𝑘
Baseline model
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Refining the linear model for quantitative accuracy
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𝜕𝑢𝑖

𝜕𝑡
= − 𝑈𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘
− 𝑢𝑘

𝜕𝑈𝑖

𝜕𝑥𝑘
+ 𝑑(𝑥, 𝑡) +

𝜕
𝜕𝑥𝑘 (𝜈𝑡( 𝜕𝑢𝑖

𝜕𝑥𝑘
+

𝜕𝑢𝑘

𝜕𝑥𝑖 )) −
𝜕𝑝
𝜕𝑥𝑖

+
1

𝑅𝑒
𝜕2𝑢𝑖

𝜕𝑥𝑘𝜕𝑥𝑘
Baseline model

Two main approaches to refine the models are: 

Statistical: Zare et al. (2017), Majda & Qi (2018), etc. 

Phenomenological: Gupta et al. (2021), Wu and He (2023), etc.
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 - measurement plane location𝑧𝑚
 - estimation plane location𝑧𝑝

𝜕𝑢𝑖

𝜕𝑡
= − 𝑈𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘
− 𝑢𝑘

𝜕𝑈𝑖

𝜕𝑥𝑘
+ 𝑑(𝑥, 𝑡) +

𝜕
𝜕𝑥𝑘 (𝜈𝑡( 𝜕𝑢𝑖

𝜕𝑥𝑘
+

𝜕𝑢𝑘

𝜕𝑥𝑖 )) −
𝜕𝑝
𝜕𝑥𝑖

+
1

𝑅𝑒
𝜕2𝑢𝑖

𝜕𝑥𝑘𝜕𝑥𝑘

dq
dt

= Aq + Bd

ym = Cq

Estimate  based on observation q ym

zm

zp

zp
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 - measurement plane location𝑧𝑚
 - estimation plane location𝑧𝑝

𝜕𝑢𝑖

𝜕𝑡
= − 𝑈𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘
− 𝑢𝑘

𝜕𝑈𝑖

𝜕𝑥𝑘
+ 𝑑(𝑥, 𝑡) +

𝜕
𝜕𝑥𝑘 (𝜈𝑡( 𝜕𝑢𝑖

𝜕𝑥𝑘
+

𝜕𝑢𝑘

𝜕𝑥𝑖 )) −
𝜕𝑝
𝜕𝑥𝑖

+
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𝑅𝑒
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𝜕𝑥𝑘𝜕𝑥𝑘

dq
dt

= Aq + Bd

ym = Cq

Estimate  based on observation q ym

zm

zp

zp

We improve the stochastic forcing term  and the eddy 
viscosity term  in the baseline model to obtain accurate 
estimation of the large-scale fluctuations in wall turbulence

d(x, t)
νt
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DNS results 
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𝜕𝑥𝑖 )

DNS results 
(data from UPM)
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𝜕𝑥𝑘
+

𝜕𝑢𝑘

𝜕𝑥𝑖 )
Wall-dependence implemented such that the 
forcing is proportional to the damping term

DNS results 
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Comparison of the ratio of fluctuations magnitude from DNS data
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𝜈𝑡( 𝜕𝑢𝑖

𝜕𝑥𝑘
+

𝜕𝑢𝑘

𝜕𝑥𝑖 )
Wall-dependence implemented such that the 
forcing is proportional to the damping term

Scale-dependence implemented such that 
the energy transfers are proportional to the 
length-scales

DNS results 
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Physical interpretation in terms of the production term

𝑢𝑖
𝜕𝑢𝑖

𝜕𝑡
= − 𝑈𝑘𝑢𝑖

𝜕𝑢𝑖

𝜕𝑥𝑘
− 𝑢𝑘𝑢𝑖

𝜕𝑈𝑖

𝜕𝑥𝑘
− 𝑢𝑖

𝜕𝑢𝑘𝑢𝑖

𝜕𝑥𝑘
− 𝑢𝑖

𝜕𝑝
𝜕𝑥𝑖

+
𝑢𝑖

𝑅𝑒
𝜕2𝑢𝑖

𝜕𝑥𝑘𝜕𝑥𝑘

𝑑𝐸
𝑑𝑡

= − ∫ 𝑢𝑖𝑢𝑘
𝜕𝑈𝑖

𝜕𝑥𝑘
𝑑𝑉 −

1
𝑅𝑒 ∫

𝜕𝑢𝑖

𝜕𝑥𝑘

𝜕𝑢𝑖

𝜕𝑥𝑘
𝑑𝑉

Production term

Production term, although linear, will be zero if nonlinear 
term is ignored. The nonlinear term thus needs to be 
modelled appropriately to capture the production term
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Collaborators: 

Wen Zhang, Southern University of Science & Technology, Shenzhen
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These results show the wide applicability of linear models and their ability for turbulence estimation even when very 
little measurement data is available
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Application to wind turbine wakes: calculation of TKE 
generation in the far wake region
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Mean streamwise velocity and TKE in the spanwise plane behind turbine 

Collaborators: 

Dachuan Feng, joint PhD student at SUSTech and HKUST (now at TU Delft) 
Larry K. B. Li, The Hong Kong University of Science & Technology

Existing engineering wake models can predict the mean streamwise velocity satisfactorily but the estimation of TKE is a challenge. 

Can we use linear models for the TKE estimation?

Prediction of turbulent systems from limited measurements
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Mean streamwise velocity and TKE in the spanwise plane behind turbine 

Validation results: Data-based modes via spectral proper orthogonal decomposition (SPOD) are first obtained

First SPOD mode at Strouhal number (St) = 0.2
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Application to wind turbine wakes: calculation of TKE 
generation in the far wake region
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Neglecting the 
eddy viscosity

Wake eddy 
viscosity model

Background ABL 
eddy viscosity
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Data-based Resolvent-model-based

Resolvent analysis for predicting energetic structures in 
the far-wake of a wind turbine, Feng, Gupta, Li & Wan, 
Under review, PRF
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Caution: data-driven methods are still a decade or two away for practical 
turbulent systems

Prediction of turbulent systems from limited measurements

Data assimilation methods can work 
only up to the resolution at which the 
system’s complexity is captured. 
Machine learning methods need 
higher resolution because they need to 
learn the system dynamics from data. 
Classical methods still have a role to 
play.

Is there a limit of spatial resolution beyond which data assimilation methods cannot estimate/
predict? 

Do model-free machine learning methods need higher or lower resolution? 

Can classical methods still be useful when data-driven methods fail?
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