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Oscillations Modulating Power Law Exponents in Isotropic Turbulence:
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Inertial-range features of turbulence are investigated using data from experimental measurements
of grid turbulence and direct numerical simulations of isotropic turbulence simulated in a periodic
box, both at the Taylor-scale Reynolds number Rλ ∼ 1000. In particular, oscillations modulating
the power-law scaling in the inertial range are examined for structure functions up to sixth order
moments. The oscillations in exponent ratios decrease with increasing sample size in simulations
though, in experiments, they survive at a low value of 4 parts in 1000 even after massive averaging.
The two data sets are consistent in their intermittent character but differ in small but observ-
able respects. Neither the scaling exponents themselves nor all the viscous effects are consistently
reproduced by existing models of intermittency.

Turbulent fluctuations on scales intermediate between
the small scale η and the large scale L, the so-called in-
ertial range, are thought to conform to power-laws [1–4].
In particular, one writes

Sm(r) ≡ 〈[δru]
m
〉 ∼ rζm , η ≪ r ≪ L , (1)

where δru = [u(r+x)−u(x)] · r̂ is the longitudinal veloc-
ity increment, m is the moment-order, r̂ is a unit vector
along vector r, r denotes magnitude of r and 〈·〉 denotes a
suitable average. Although the theoretical basis for Eq. 1
exists only for m = 3 [5], it is empirically regarded as vi-
able for other orders as well [6]. The power-law scaling
of Eq. 1, apart from offering the allure of ubiquity [7–10],
often allows a simplification of subsequent analysis (for
example, see [11]).

Recently, extensively sampled data from grid turbulence
[12] have shown an interesting feature with respect to
Eq. 1 (see Fig. 1) that power law exponents may be mod-
ulated by undulations that are only partly explained by
existing intermittency models [25]. These oscillations be-
come explicit when the exponent ratios ζ4/ζ2 in Eq. 1
are examined, as the authors of [12] showed (see Fig. 1).
The oscillations decrease with Reynolds number. Here,
by examining even more extensive data from the same ex-
periment [12] at one Reynolds number, along with those
from direct numerical simulations [13–15] at a compara-
ble Reynolds number, we show that inertial range un-
dulations observed in Fig. 1 manifest in exponent ratios
such as ζ4/ζ2, in both experiments (EXP) and simula-
tions (DNS), but diminish in the limit of massive av-
eraging; they seem to disappear in simulations to yield

pure power-law scaling (Eq. 1), but settle down to very
small root-mean-square magnitudes (rms) of the order
of 4 parts in 1000 in the experiment. The situation at
higher Rλ is unknown at present. Both EXP and DNS
show that the ratios ζ4/ζ2 and ζ6/ζ2 differ from the clas-
sical Kolmogorov phenomenology [1], but differ in small
but observable respects between them. We comment on
their possible origin. Table I reports a few important pa-

rameters in EXP and DNS. The Reynolds numbers (Rλ)
in both EXP and DNS are sufficiently high and compa-
rable to each other. The experiments were run for an un-
precedented duration and averages performed over more
than 105 independent turn-over times of the turbulence,
but the averaging is performed for only one component of
the velocity and do not take account of possible residual
anisotropies; the DNS data, on the other hand, extensive
though they are, do not correspond to similarly large
number of independent realizations but perform spheri-
cal averaging over the solid angle to obtain the isotropic
sector [16, 17] by the method given in [18], and elimi-
nates residual anisotropy effects. In order to measure

exponents ζm in Eq. 1 we consider the logarithmic local
slopes of velocity difference moments Sm(r) of order m,

ζm(r) ≡
d logSm(r)

d log(r)
. (2)

If the moments Sm(r) exhibit proper inertial range scal-
ing according to Eq. 1 then ζm(r) are constants in the
inertial range η ≪ r ≪ L. In Fig. 2 we compare the ra-
tio of local slopes ζ4,2 ≡ d[log S4]/d[logS2] = ζ4(r)/ζ2(r)
from EXP and DNS. This is the first non-trivial ratio
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FIG. 1. Replot of data from [12] of the ratio of logarith-
mic local slopes of fourth order longitudinal velocity structure
function (S4) to the corresponding quantity for the second or-
der (S2) vs. spatial separation r normalized by Kolmogorov
scale (η); see Eq. (2). The two thinner curves were computed
from datasets about ten times shorter than the others, as ex-
plained in [12]. The legend shows the microscale Reynolds
numbers Rλ.

N3 L/η ns Rλ

EXP . . . 2567 1010 1030
DNS 81923 2514 1015 1300

TABLE I. Parameters of the data from the experiment and
direct numerical simulation. N3 is the number of collocation
points for DNS in a periodic cube of fixed size L0. L/η is
the ratio of the integral scale L (L/L0 ≈ 0.2 for DNS) to the

Kolmogorov scale η ≡ (ν3/〈ǫ〉)1/4, where ν is the kinematic
viscosity, 〈ǫ〉 the mean dissipation rate; ns is the total number
of samples in space and/or time (but the meaning of ns in
EXP and DNS is different because the ratio of the number
of independent samples to ns differ between EXP and DNS);
Rλ is the Taylor microscale Reynolds number.

between exponents of analytic functions that involve no
modulus, and is less affected by strong cancellations (as
can happen for odd-orders) and poor statistics (as can
happen for higher-order moments) [22, 23]. The point
of [12] was this ratio had an undulating character in the
inertial range, albeit of decreasing magnitude with in-
creasing Reynolds numbers.

Figure 2(a) shows that the general trend in EXP (cir-
cles) and the isotropic DNS data (solid line) is very simi-
lar with a conspicuous Rλ-dependent viscous dip around
r/η ∼ 10 predicted by the multifractal model in both
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FIG. 2. Ratio of logarithmic local slopes of S4 and S2,
ζ4,2(r) ≡ d[log S4(r)]/d[log S2(r)], versus spatial separation
r normalized by Kolmogorov scale η. (a) Data from EXP
at Rλ = 1030 (open circles) are from [12]; the isotropic sec-
tor from DNS at Rλ = 1300 (solid line) [15] are compared
with the p-model (dash-dot line) of Meneveau and Sreeni-
vasan [19], She-Leveque model (dashed line) [20] and that by
Yakhot (dotted line) [21]. Horizontal line at ζ4,2 = 2 corre-
sponds to non-intermittent scaling [5]. Error bars indicate the
standard error obtained from temporal fluctuations of local
slopes. (b) Isotropic DNS data at different Reynolds num-
bers: Rλ = 240 (dotted line), 650 (dash-dot line) and 1300
(solid line) are plotted to show that the viscous bottleneck
around r/η = 80 decreases in amplitude with increasing Rλ

in the direction shown. (c) Data from EXP (open circles),
compared with the DNS data for the isotropic sector (solid
line) and the one-dimensional cuts in DNS along the three
Cartesian directions: r̂ = (1, 0, 0) (dotted line), r̂ = (0, 1, 0)
(dashed line) and r̂ = (0, 0, 1) (dash-dot line). The latter
three illustrate that the inertial range value of ζ4,2(r) can be
affected by non-universal large scale effects when not project-
ing onto the isotropic sector.

Eulerian and Lagrangian frameworks [12, 24–26]. With
increasing scale-size a crossover “bottleneck” between the
viscous and inertial regimes around r/η = 80 is seen in
both EXP and DNS. This is not predicted by any existing
models. This viscous bottleneck (which lies outside the
inertial range) decreases in amplitude with increasing Rλ

as shown in Fig. 2(b) in the DNS (see also Fig. 1). The
relation between this physical space bottleneck and that
in the Fourier space [27, 28] remains to be understood
properly.
It is evident from Fig. 2(a) that inside the inertial range
η ≪ r ≪ L, which is roughly estimated to be in the range
r/η ∈ (100, 1000) [15], ζ4,2 from both EXP and isotropic
sector of DNS differ from the self-similar value of ζ4,2 = 2
indicating that higher-Rλ turbulence is indeed intermit-
tent with a definite departure from the K41-similarity [5].
One can also see that EXP and isotropic DNS data differ
from one another and both show some r-dependent undu-
lations instead of the r-independent constant (see Eq. 1).
The finite (and small) mismatch in ζ4,2 between EXP and
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FIG. 3. Log-log plot of the standard deviation of the oscil-
lation amplitude in d[log(S4)]/d[log(S2)] from its mean value
in the range r/η ∈ (100, 1000) in Fig. 2 as function of sample
size n for (a) the experiments and (b) the isotropic sector from
DNS. Error bars indicate the variation obtained by changing
the interval r/η ∈ [100, 1000] by 10% on either side. We in-
clude an analysis of a second EXP dataset (green squares)
acquired at Rλ = 961 in order to illustrate typical variation
in large n behavior. The standard deviation in the experiment
is approximately constant for about two orders of magnitude
for n > 108, or equivalently for more than 105 turnover times,
while that in DNS shows a −0.31± 0.04 power-law decay for
n > 3 × 1012, as indicated by the solid line. The sample size
in DNS cannot be easily translated to turnover time scales.
The dashed line in panel (a) corresponds to the −1/2 scaling
of random noise.

the isotropic sector from DNS could arise from the fact
that the former is not projected onto the isotropic sec-
tor. Indeed, similar one-dimensional cuts in DNS shown
in Fig. 2(c) behave differently along different directions
beyond r/η = 100 with that along r̂ = (0, 0, 1) matching
the EXP data closely in the inertial range. Another pos-
sible reason for the mismatch might be that EXP relies on
Taylor’s frozen flow hypothesis [29] while the DNS data
do not. Finally, one cannot exclude non-universal and
Reynolds-number-independent effects induced by differ-
ent forcing mechanisms [30].

We compare ζ4,2 in Fig. 2(a) with three different phe-
nomenological models. While the p-model of Meneveau
and Sreenivasan with the parameter p set to their value
of 0.7 [19] compares favorably with EXP, the model by
Yakhot [21, 31] closely matches DNS. The She-Leveque
prediction [20] lies in between EXP and DNS, being closer
to the latter than the former. A similar comparison of
ζ4,2 from EXP and DNS with other inertial range models
[32–34], although not shown here, reveals that the agree-
ment is qualitatively similar to those shown in Fig. 2.

We now assess in Fig. 2 the r-dependent inertial range
oscillations modulating the power-law expectations of
Eq. 1, which is the feature to which Ref. [12] drew at-
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FIG. 4. Ratio of logarithmic local slopes of S6 and S2,
ζ6,2(r) ≡ d[log S6(r)]/d[log S2(r)] versus spatial separation r
normalized by Kolmogorov scale η. Error bars indicate stan-
dard error obtained from temporal fluctuations of local slopes.
Data from experiment (open circles) and the isotropic sector
of DNS (solid line) are compared with the p-model (dash-dot
line) of Meneveau and Sreenivasan [19], She-Leveque model
(dashed line) [20] and that by Yakhot (dotted line) [21].
Horizontal line at ζ6,2 = 3 corresponds to self-similar non-
intermittent scaling [5]. Inset shows a blow-up of the inertial
range and to either side of it to highlight differences between
EXP and DNS.

tention. Noting that the power-law behavior of Eq. 1 is
expected to truly hold only at sufficiently large Rλ and
as sample size n → ∞, and that real systems such as
the ones examined here are obviously at finite Reynolds
numbers, we measure the oscillation amplitude for EXP
and DNS and plot their standard deviations as functions
of their respective sample size n in Fig. 3. EXP and DNS
show different behaviors, with EXP suggesting a satura-
tion at a small but finite value at even the large sample
sizes considered here, while DNS exhibit a power-law de-
cay with the sample size, even though care must be taken
because of the short scaling range. Furthermore, the de-
parture from a pure power law can have different origins
depending on whether we are close to the viscous scale or
to the integral scale. For example, while viscous effects
are much less affected by statistical sampling, large-scale
properties can be less stable because of lack of statistics
in DNS and some sustained low-level forcing of a differ-
ent kind in EXP. The differences in the data might also
result from differences in the averaging procedures in the
two instances or to differences in the extent of the two
datasets. We recall that the standard deviation for ran-
dom noise varies as n−1/2 with sample size.

The differences that exist between EXP and DNS in the
inertial range in Fig. 2 persist at higher orders. Fig-
ure 4 shows ζ6,2 ≡ d[logS6]/d[logS2] = ζ6/ζ2 as a
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function of scale r with a focus in the inertial range,
r/η ∈ (100, 1000). K41-similarity [5] would correspond
to ζ6,2 = 3. Both EXP and isotropic DNS show roughly
double the deviation from K41-similarity at the level of
ζ6,2 than that at ζ4,2 (the increased departure being a
characteristic of intermittency), and exhibit qualitatively
similar behavior including the persistence of differences
between EXP and DNS (see inset of Fig. 4). In the case
of ζ6,2 the She-Leveque model [20] seems to agree some-
what better with EXP than the p-model, which under
predicts the level of intermittency. All three models ap-
pear to under-predict the inertial range intermittency of
the DNS for ζ6,2.

In summary, we have examined the commonly held be-
lief that non-universal large-scale and viscous effects are
forgotten to yield universal statistics well inside the in-
ertial range. In particular, we compared turbulence data
from simulations and experiments at similar Reynolds
numbers and examined if power-law scaling prevails in
the inertial range and, if it does, to what extent the
assumed universality [35, 36] holds for structure func-
tions. We confirmed that the scaling exponent ratios
depart considerably from the K41 prediction [1, 2] and
that existing phenomenological models do not account
for all the observed small-scale non-universalities. We
found that viscous effects in the exponent ratios persist
up to at least r/η ∼ 80 (although this precise number
may vary with the context). For larger scale separations
and up to r/η ∼ 1000 scaling properties are close to a
pure power-law with superposed small oscillations whose
amplitudes decrease with increasing scale and Reynolds
number; they decay continually with sample size in DNS
but have a sustained presence of about 4 parts in 1000
even for very large sample sizes in EXP. A small but
detectable mismatch between DNS and EXP data is fur-
ther measured at all scales. Both these effects may be
due to Reynolds-number-independent breaking of uni-
versality, which would call to question the last 80 years
of turbulence theory, or to some subtle and long-lived
large-scale effects, or something else. These important
findings, though subtle, have been possible because of
the unprecedented combination of high sample sizes and
high Reynolds numbers in both DNS and EXP. We are
entering an era where scaling laws in turbulent flows can
be assessed to within a few percent accuracy and over
two or more decades of scale-by-scale comparisons.
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