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We present a quantitative analysis of the inertial range statistics produced by Entropic Lattice
Boltzmann Method (ELBM) in the context of 3d homogeneous and isotropic turbulence. ELBM
is a promising mesoscopic model particularly interesting for the study of fully developed turbulent
flows because of its intrinsic scalability and its unconditional stability. In the hydrodynamic limit,
the ELBM is equivalent to the Navier-Stokes equations with an extra eddy viscosity term [1].
From this macroscopic formulation, we have derived a new hydrodynamical model that can be
implemented as a Large-Eddy Simulation (LES) closure. This model is not positive definite, hence,
able to reproduce backscatter events of energy transferred from the subgrid to the resolved scales.
A statistical comparison of both mesoscopic and macroscopic entropic models based on the ELBM
approach is presented and validated against fully resolved Direct Numerical Simulations (DNS).
Besides, we provide a second comparison of the ELBM with respect to the well known Smagorinsky
closure. We found that ELBM is able to extend the energy spectrum scaling range preserving
at the same time the simulation stability. Concerning the statistics of higher order, inertial range
observables, ELBM accuracy is shown to be comparable with other approaches such as Smagorinsky
model.

PACS numbers:

I. INTRODUCTION

Turbulence is common in nature and its unpredictable
behavior has fundamental consequences on the under-
standing and control of various systems, from smaller
engineering devices [2–4], up to the larger scales geo-
physical and astrophysical flows [5–7]. Turbulent flows
are described by the Navier-Stokes equations (NSE),{

∂tu + u ·∇u = −∇p+ ν∇2u + f

∇ · u = 0
(1)

which give the evolution of the incompressible velocity
field u(x, t), with kinematic viscosity ν, subject to a
pressure field p and to an external forcing f . However,
even though the equations of motion are known since
almost two hundred years a direct analytical approach
remains elusive [8]. To overcome mathematical difficul-
ties, scientists, helped by the exponential growth of the
computational power, have tried to search for approxi-
mate solutions using numerical algorithms [4, 9, 10]. Un-
fortunately, also in this direction not every effort were
successful. Indeed, the NSE have a very rich non-linear
dynamics, where a large range of scales from the domain
size up to the small scales fluctuations, are coupled to-
gether. This results in a very high dimensional prob-
lem, with the dimensionality proportional to the range of
active scales [8], and with highly intermittent statistics
dominated by the presence of extreme and rare fluctua-
tions [11–13]. As a consequence, no matter how power-
ful new-supercomputers are, numerical algorithms can-
not handle all the degrees of freedom involved in the dy-
namics [3]. The way out is to introduce a scale separa-
tion and compute only the dynamics of degrees of free-
dom belonging to a subset of scales while neglecting the

other ones [14–17]. However due to the non-linearity of
NSE there is never a real scale separation in the equa-
tions of motion [8, 18], and the small-scale effects on the
scales of interest need to be compensated by the intro-
duction of a model. In other words, the benefit of multi-
scale modeling is to achieve a scale separation, and the
main challenge is to find a “closure”, which guaranties
the numerical stability being at the same time the most
accurate as possible in reproducing the coupling of the
missing scales on the resolved ones. This is the princi-
ple behind the celebrated Large-Eddy simulations (LES),
which actually solve the flow only on a subset of “large”
scales by filtering each term of the NSE and replacing
with a closure the non-linear coupling term between the
resolved and the sub-grid scales (SGS) [4, 19]. One of
the most important differences between the real coupling
term coming from the filtered NSE and the common LES
closures used in the literature is for the latter to be purely
dissipative to ensure the simulation stability, see [14]. As
a consequence, it is impossible for the closures to repro-
duce the backscatter events of energy going from the SGS
to the large scales, with important consequences on the
statistics of the resolved velocity field. Another possible
numerical approach, who has gained particular popular-
ity, consists in solving the flow’s macroscopic hydrody-
namical properties as an approximation of its mesoscopic
behaviour [20]. The Lattice Boltzmann Method (LBM)
falls into that category [21, 22]. In LBM, the flow is sim-
ulated by evolving the Boltzmann equation for the single
phase density function, f(x, t). The idea is to evolve
the streaming and collision of particles distribution func-
tions, where the possible velocities are restricted on a
subset of discrete lattice directions [23, 24]. It is crucial
to choose the collision operator so that macroscopically,
(in the limit of small Knudsen number), the dynamics
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described by the NSE is recovered [25, 26]. The most
common collision operator is the Bhatnagar-Gross-Krook
model (BGK), see [27], corresponding to the relaxation
towards an equilibrium distribution, feqi (x, t), taken to
be a discrete Maxwellian, with a fixed relaxation time,
τ0,

fi(x + ci∆t, t+ ∆t)− fi(x, t) =

= − 1

τ0
[fi(x, t)− feqi (x, t)] + Fi.

(2)

Here, Fi, is a term introduced to model a macroscopic ex-
ternal forcing [22], and i = 0, .., q−1, indexes the different
velocity directions on the lattice. Eq. (2) is obtained dis-
cretizing the Boltzmann equation and selecting the lat-
tice spacing, ∆x, such as divided by the time step, ∆t,
they are equal to the lattice velocity ci = ∆x/∆t. From
those mesoscopic quantities, it is then possible to recover
the macroscopic velocity and density fields by following
the perturbative Chapman-Enskog expansion [24]. It can
be shown that evolving Eq. 2 is equivalent, up to approx-
imations, to evolving the weakly compressible NSE for a
flow with a density ρ(x, t) =

∑q−1
i=0 fi(x, t), a velocity

u(x, t) =
∑q−1
i=0 fi(x, t)ci/ρ(x, t) and a viscosity directly

related to the relaxation time [24],

ν0 = c2s∆t

(
τ0 −

1

2

)
, (3)

where, cs, is the speed of sound, and τ0 is the adimen-
sional relaxation time. A numerical validation of the hy-
drodynamic recovery of BGK-LBM in the context of 2D
homogeneous isotropic turbulence (HIT) was performed
in [28] showing good agreement with DNS either in de-
caying that in forced regimes. Although this method is
adapted to describing various physics of multi-phase and
flows with complex boundaries in a highly scalable fash-
ion, the BGK-LBM model suffers of numerical instabili-
ties when, τ0 → 1

2 , i.e. ν0 → 0, which has made the study
of turbulent flows highly prohibitive for this method [28].
To push LBM towards more turbulent regimes a number
of collision operators have been proposed, see [29–32].
Here we focus on the Entropic LBM (ELBM) [33, 34],
which tackles the stability issue by equipping LBM with
an H-theorem. To achieve this results the ELBM dif-
fers from BGK-LBM by two major aspects. First, the
equilibrium distribution feq(x, t) is not anymore a dis-
cretization of the Maxwell-Boltzmann distribution, but it
is calculated as the extremum of a discretized H-function
defined as;

H[f ] =

q−1∑
i=0

fi log

(
fi
wi

)
, f = {fi}q−1

i=0 , (4)

where wi are the weights associated to each lattice di-
rection, under the constraints of mass and momentum
conservation, see [35]. The second difference in ELBM,
is that the relaxation time is not a constant anymore but

is modified at every time step in order to enforce the
non-monotonicity of H after the collision. This results in
an apparent unconditional stability as ν0 → 0 [36]. It
follows that ELBM evolution equations are,

fi(x+ ci∆t, t+ ∆t)− fi(x, t) =

= −α(x, t)β[fi(x, t)− feqi (x, t)],
(5)

where β = 1/(2τ0) is constant, while the new relax-
ation time, τeff(x, t) = 1/(α(x, t)β), fluctuates in time
and space through the definition of an entropic parame-
ter α(x, t). More recently the ELBM method has been
extended to a family of multi-relaxation time (MRT)
lattice Boltzmann models [37–39]. Note that α can
be computed as the solution of the entropic equation
H[f ] = H[f −αfneq] which represents the maximum H-
function variation due to a collision, with fneq = f−feq.
Following this approach the computation of α(x, t) can
be performed via an expensive Newton-Raphson algo-
rithm for every grid and at every time step of ELBM. To
alleviate this problem, after the original ELBM formu-
lation [33], a new version has been proposed where the
computation of the entropic parameter is based on an an-
alytical formulation derived as an first order expansion
of the original model [40, 41]. However, to our knowl-
edge, a study of high-order structure functions in the
context of forced 3D HIT, has never been attempted be-
fore using the ELBM original model. In this regard, and
also aiming to measure high-order, extremely sensitive
statistical observables, we implemented the ELBM orig-
inal formulation, relying on the least number of approx-
imations, even though computationally more expensive.
More details about ELBM will be given in section II. Let
us notice that BGK-LBM is recovered from Eq. (5) with
α = 2 and the specific Maxwellian expression of feqi . It
is important to stress that the bridge relation described
in Eq. (3) connecting viscosity and relaxation time still
holds for fluctuating quantities, hence we can write,

νeff (α) = c2s∆t

(
1

αβ
− 1

2

)
=

= c2s∆t

(
1

2β
− 1

2

)
+ c2s∆t

2− α
2αβ

=

= ν0 + δνα,

(6)

where ν0 represents the constant kinematic viscosity and
δνα is the fluctuating term. Following this idea, it has
been shown that ELBM is implicitly enforcing a SGS
model of an eddy-viscosity type [1, 36]. In particular,
as initially done in [1], and then rederived in chapter 4
of [42], performing a third-order Chapman-Enskog per-
turbative expansion in the limit of small Knudsen number
(Kn), it is possible to obtain a macroscopic approxima-
tion of δνα, which can be written as,

δνMα = −c2s∆t2
S`jSijSi`
SijSij

, (7)

where Sij = 1/2(∂jui + ∂iuj) is the strain rate tensor.
The entropic eddy viscosity in Eq. (7) is particularly
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interesting because it is not positive definite and can
reproduce events of energy backscatter, which is gen-
erally not the case among the other LES closures, i.e.
see the Smagorinsky eddy viscosity [43]. After the
introduction of the new LES model, see section II, we
compare it with standard Smagorinsky closure and with
fully resolved data obtained from DNS. At the same
time, we also present for the first time a quantitative
investigation of the inertial range statistics provided
by the mesoscopic ELBM approach in the context of
3d turbulence. Results provide evidence that ELBM is
a good approximation of the 3d flows up to turbulent
regimes never reachable with the standard BGK-LBM.
We found that ELBM guaranties the simulation stability
producing a considerable extension of the inertial range
scaling, i.e. the extension of the energy spectrum power
law. Measuring statistical properties of higher order
observables such as the structure functions, we found
that ELBM is also able to reproduce qualitatively the
intermittent features of real 3d turbulent flows with an
accuracy comparable to the Smagorinsky model. To get
a more accurate estimation of the anomalous exponents
more refined models are required [44].

The paper is organized as follows. In section II we
introduce the details of the ELBM and the LES models
considered in this work. In section III we present the
set of simulations performed. In sect. IV we evaluate the
quality of the two LES closures by comparing them with
the real SGS energy transfer measured from fully resolved
DNS. In sect. V we focus on the intermittent properties
by analysing high-order inertial range statistics [12, 45].
In sect. VI we discuss our conclusions.

II. TURBULENCE MODELLING

In this section we give a description of the SGS mod-
elling approaches considered in this work. We start dis-
cussing the mesoscopic ELBM approach highlighting the
differences with respect to the standard BGK-LBM. Fol-
lowing we discuss the new hydrodynamic LES closure
inspired by the ELBM macroscopic approximation first
derived in [1]. In the end of this section we briefly recall
the well known Smagorinsky model.

A. Entropic Lattice Boltzmann Method

Using the same formalism as in [33], the ELBM,
Eq. (5), can be rewritten as,

fi(x+ ci∆t, t+ ∆t) =

=fi(x, t)− α(x, t)β (fi(x, t)− feqi (x, t))

= (1− β) fprei (x, t) + β fmiri (x, t)

=fposti (x, t),

(8)

where the fluctuating relaxation time is τeff(x, t) =
1/(α(x, t)β), with β = 1/(2τ0) and where α(x, t) is the
time and space dependent, locally-calculated, entropic
parameter. The post-collision distribution, fpost(β), can
be understood as a convex combination between the pre-
collision distribution, fpre = f , and the so-called mir-
ror distribution, fmir(α) = fpre − αfneq, with fneq =
fpre − feq, the non-equilibrium part of fpre. This con-
vex combination is parametrized by the parameter β in
the range 0 < β < 1 for which we have 0.5 < τ0 < +∞.
From the definition of the H-functional given in Eq. (4)
the discrete H-theorem can then be expressed as a the lo-
cal decrease of the H-functional between the pre-collision
and post-collision distributions,

∆H = H[fpost]−H[fpre]

= H[(1− β)fpre + βfmir(α)]−H[f ] ≤ 0,
(9)

The equilibrium distribution function feq can be calcu-
lated as the extremum of the convex H-functional intro-
duced in Eq. (4), which has an analytical solution for
the D1Q3 lattice, whose tensorial product is solution for
three D2Q9 and the D3Q27 lattice,

feqi (x, t) =

wiρ

d∏
j=1


2−

√
1 +

u2
j

c2s




2uj√
3cs

+

√
1 +

u2
j

c2s

1− uj√
3cs


cij√
3cs

 ,

(10)

where d is the dimension of the DdQq lattice, cs is the
speed of sound, wi are the weights associated with each
lattice direction and uj(x, t) =

∑q−1
i=0 fi(x, t)cij/ρ(x, t) is

the flow macroscopic velocity. It is important to remark
that the first three moments of the entropic equilibrium
distribution Eq. (10) are exactly the same as the one
coming from the 3rd order Hermite polynomial expan-
sion of the Maxwell-Boltzmann equilibrium distribution,
namely,

f eq
i (ρ,u) = wiρ

(
1 +

u · ci
c2s

+
uu : cici − c2s|u|2

2c4s

+
uuu : · cicici − 3c2s|u|2u · ci

6c6s

)
,

(11)

therefore, it allows the recovery of the same ather-
mal weakly compressible NSE as in the case of BGK-
LBM [35]. This recovery, obtained by performing a
Chapman-Enskog expansion at the second order in Kn,
is also valid for ELBM as fluctuation of α around 2 leads
to higher-order terms in Kn, absorbed in O(Kn2) [42]. In
this work, following the approach used in [33], we calcu-
late α(x, t) as the solution of,

H[fpre] = H[fmir], (12)

which can be estimated via the popular Newton-Raphson
algorithm. In this way, fposti being a convex combination
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between two distributions, fprei and fmiri of equal H-
value, and being H at the same time a convex functional,
the monotonic decrease of the H is ensured. Let us stress
that, as it was shown in [42], the ELBM equation can-
not be considered macroscopically as an approximation
to the weakly compressible NSE with the addiction of a
sole eddy viscosity term of the form of Eq. (7). Indeed,
this term appears in a macroscopic equation of motion
that requires a Chapman-Enskog expansion of third or-
der in the Knudsen number, while the NSE are recovered
at the second order. As a consequence a number of ex-
tra third-order terms are part of the implicit ELBM SGS
model. This makes the actual ELBM closure even more
complex than a simple eddy viscosity, and in principle,
able to outperform standard methods. On top of this, as
already discussed in the introduction, the macroscopic
approximation of the ELBM eddy viscosity, Eq. (7), has
itself a very interesting formulation, being similar to a
Smagorinsky eddy viscosity [43], but being not positive-
definite and therefore allows events of energy backscatter,
i.e. energy transfer from the unresolved to the resolved
scales. Indeed, while energy in 3d turbulence is on aver-
age cascading from the large towards the small scales, in
real flows there are local events of energy going backward
with non-trivial implications on the statistical properties
of the resolved scales.

B. Large-Eddy Simulations

The LES governing equations can be directly de-
rived by filtering each term of the incompressible NSE,
see [14, 19]. The filtering operation consist in a convo-
lution between the full velocity field and a filter kernel.
There are several choices that can be made for the filter
kernel, see [4], in this work, we consider a “sharp spectral
cutoff” in Fourier space. This choice is convenient for two
reasons, first, the sharp cutoff produces a clear separation
between resolved and sub-grid scales, defined respectively
as all scales above and below the cutoff wavenumber, kc.
Second, it is a Galerkin projector that produces the same
results when operating multiple times on a field, which
allows to have a clear scale separation also in a dynamical
sense, namely it projects on the same support all terms
(non-linear ones included) of the equations of motion,
see [46]. In the following we briefly sketch the main op-
erations required to arrive at the LES equations. Given
a filter kernel G∆(x), the filtered velocity u(x, t) can be
defined by the following convolution operation,

u(x, t) ≡
∫

Ω

dy G∆(|x− y|)u(y, t) =

=
∑
k∈Z3

Ĝ∆(|k|)û(k, t)eikx
(13)

where Ĝ∆ is the Fourier transform of G∆, and ∆ ∼ π/kc,
is the filter cutoff scale, see [4]. Applying the filtering
operation to all terms in the Navier-Stokes equations we

get,

∂tu +∇ · (u⊗ u) = −∇p−∇ · τ∆(u,u) + ν∆u . (14)

Here, we have introduced the SGS tensor, τ∆(u,u), de-
fined as,

τ∆
ij(u,u) = uiuj − uiuj , (15)

which is the only term of Eq. (14) that depends on SGS
scales. Hence, it is the only term that needs to be re-
placed by a model to close the equations in terms of the
resolved-scales dynamics. From τ∆(u,u), we can easily

get the exact formulation of the SGS energy transfer Π
∆

,
namely, the energy transfer across the filter scale pro-
duced by the real non-linear coupling in the NSE. To do
so we need to multiply with a scalar product each term
of Eq. (14) and the velocity field to obtain the filtered
energy balance equations;

1

2
∂t(uiui) + ∂jAij + Π

∆

L = −Π
∆
. (16)

The terms on the lhs of Eq. (16) are defined respec-
tively as ∂jAj = ∂jui(uiuj + pδij + τ∆

ij − 1
2uiuj) and

Π
∆

L = −∂jui
(
uiuj − uiuj

)
. As shown in [46, 47], to get

the correct contribution to the energy transfer, it is im-

portant to distinguish between Π
∆

L and the actual SGS

energy transfer Π
∆

because the former depends only on
resolved-scales quantities and does not contribute to the
mean energy flux across the cutoff scale. On the other
hand,

Π
∆

= −∂jui τ∆
ij(u,u) = −∂jui

(
uiuj − uiuj

)
, (17)

is the flux which depends on both the SGS and the re-
solved scales. In this work, as already mentioned, we
consider as possible closure the Smagorinsky LES model
(referred to as S-LES in the sequel), τS

ij(u,u), which
aims to model the deviatoric part of the stress tensor,
τ∆
ij − 1

3τ
∆
kkδij → τS

ij , as follows,

τS
ij = −2νSe (x, t)S̄ij , νSe = (CS∆)2

√
2SijSij (18)

where, S̄ij = 1/2(∂jui + ∂iuj), is the resolved scales
strain-rate tensor, νSe is the Smagorinsky eddy viscos-
ity depending on the filter cutoff scale ∆ and the non-
dimensional factor CS . From the definition of the macro-
scopic approximation of the ELBM eddy viscosity in
Eq. (7), we can now define the hydrodynamic ELBM-
LES model (called E-LES in the sequel),

τE
ij = −2νEe (x, t)S̄ij , νEe = (CE∆)2S`jSjiSi`

SijSij
, (19)

where CE is the entropic dimensionless coefficient. Com-
paring the definition of νEe with δνMα , in Eq. (7), we can
see that they both have the same functional dependency
on the strain-rate tensor, but different signs and multi-
plicative constants. In particular, the minus sign of the
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ID Eddy viscosities Stress tensors Energy transfers

DNS — τ∆
ij = uiuj − uiuj Π

∆
= −∂jui τ∆

ij(u,u)

S-LES νSe = (CS∆)2
√

2SijSij τS
ij = −2νSe S̄ij Π

S
LES = −τS

ijSij

E-LES νEe = (CE∆)2 S`jSjiSi`

SijSij
τE
ij = −2νEe S̄ij Π

E
LES = −τE

ijSij

ELBM δνα = c2s
2−α
2αβ

∆t ταij = −2δναS̄ij Π
E
LBM = −ταijSij

TABLE I: Summary of definitions of eddy viscosities, sub-grid scales stresses and energy transfers. The ID column indicates the
names of the corresponding set of simulations, see sect. III, in particular S-LES and E-LES correspond to the hydrodynamical
LES respectively with Smagorinsky and macroscopic ELBM model, while with ELBM we refer to the SGS energy transfer
measured from the mesoscopic quantities.

E-LES closure has been absorbed in the definition of τE
ij

to align with the Smagorinsky closure formulation. Let
us stress that the E-LES model has the same scaling as
the Smagorinsky model, proportional to the strain rate,
but it is not positive definite. From the above definitions
of the S-LES and E-LES models the two corresponding
SGS energy transfers can be written as,

Π
S

LES = −τS
ijSij ; Π

E

LES = −τE
ijSij . (20)

To compare the behaviour of the mesoscopic ELBM
model with respect to the two hydrodynamical ap-
proaches just introduced, we can approximate the SGS
energy transfer from the ELBM as,

Π
E

LBM = −2δναSijSij , (21)

where Π
E

LBM stands for ELBM SGS energy transfer and
δνα = c2s∆t

2−α
2αβ is the mesoscopic fluctuating viscosity

depending on α(x, t). The strain rate tensor can be mea-
sured from the ELBM data after the calculation of the
macroscopic velocity in terms of the mesoscopic ones,
namely, u(x, t) =

∑q−1
i=0 fi(x, t)ci/ρ(x, t). A summary

of these SGS energy transfer definitions with their re-
spective SGS tensors, eddy viscosities is given in table I.
It is worth noting that the ELBM in the limit of small
Knudsen numbers is not equivalent to the entropic LES.
Indeed, as previously mentioned, the eddy viscosity term
appears in the Chapman-Enskog expansion at the third
order in Kn along with various extra terms that are not
contained in the entropic LES formulation.

III. NUMERICAL SIMULATIONS

All simulations performed in this work are intended to
model HIT on a three dimensional domain with periodic
boundary conditions. In the following we provide some
details about the sets of simulations performed with the
different modelling techniques. Concerning the lattice
Boltzmann simulation with entropic formulation of the
relaxation time, ELBM, we have conducted a set of 3d
simulations with a number of 512 collocation points along
each spatial direction. To reach stationarity the flow is
forced at large scales, 1 ≤ |k| ≤ 2 with a constant and

isotropic forcing. More precisely we have used in all sim-
ulations the same forcing, defined in Fourier space with
constant phases and amplitudes, added isotropically to
all wave-vectors at large-scales. To ensure incompressibil-
ity the forcing is projected on its solenoidal component.
The ELBM simulation uses a lattice with 27 discrete ve-
locities (see Fig. 1), the D3Q27 [22, 24, 48]. The spectral
forcing is implemented using the exact-difference method
forcing scheme [49] for a relaxation time τ0 = 0.5003 cor-
responding to β ≈ 0.9994. Considering the LES we have

x −1
0

1 y

−1

0

1

z

−1

0

1

D3Q27

FIG. 1: Schematic representation of the D3Q27 lattice stencil
used for the ELBM simulation.

performed two sets of pseudo-spectral fully dealiased sim-
ulations on a domain Ω = [0, 2π]3 with periodic bound-
ary conditions both at the resolution of 5123 grid points.
The first LES is equipped with the Smagorinsky model
(S-LES), see Eq. (18), and a second with the macroscopic
formulation of the entropic eddy viscosity, see Eq. (19),
(E-LES). As discussed above, all simulations are forced
with the same isotropic constant forcing mechanisms act-
ing only on the larger system scales (1 ≤ |k| ≤ 2). In the
expression of Smagorinsky eddy viscosity Eq. (18), we use
the standard value of CS = 0.16, while for the entropic
eddy viscosity Eq. (19), we use CE = 0.45, found to be
optimal values for the best compromise between the max-
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imization of inertial range extension and the minimiza-
tion of spurious effects produced by the model [50]. For
both we have ∆ = π/kmax ≈ 0.0184 with kmax = 171,
which comes from the 2/3 rule for the dealiasing pro-
jection [51]. Additionally, as a reference, we have run a
pseudo-spectral fully resolved DNS of the NSE with the
same forcing scheme on the same 3d domain Ω = [0, 2π]3,
using a number of 5123 (DNSx1) and 10243 (DNSx2)
collocation points. The resolution in both DNS is kept
such as ηα/dx ' 0.7, where dx is the grid spacing and
ηα = (ν3/ε)1/4 is the Kolmogorov microscale [52] with ε
denoting the mean energy dissipation rate. In order to
create ensembles of statistically independent data all the
ELBM, LES and DNS are sampled on time intervals of
one large-scale eddy turnover time after reaching a sta-
tistically stationary state. It is worth mentioning that
both the ELBM and E-LES simulations remain stable
even though their modeling terms are not purely dissipa-
tive being their eddy viscosities not positive definite. In
Fig. 2 we show the time-averaged energy spectra, E(k),
for all simulations. It is visible that all modelled simula-
tions have an extended inertial range with respect to DNS
at the same resolution (DNSx1) with an inertial range
slope close to the Kolmogorov prediction of k−5/3 [8].
Let us stress that the ELBM spectrum reaches a maxi-
mum wavenumber higher than the pseudo-spectral data,
this is because in the ELBM simulations there is not any
dealiasing operation. Anyway also in the ELBM case the
spectrum loses the Kolmogorov inertial range scaling at
wavenumber larger that the pseudo-spectral dealiasing
cutoff.

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1 10 100

k−5/3

E
(k
)

k

ELBM

E-LES

S-LES

DNSx2

DNSx1

FIG. 2: Time-averaged spectra for the conducted simulations
at 5123 grid points, measured from the mesoscopic ELBM
simulation (empty squares, red color), the hydrodynamical
LES with entropic model (E-LES, empty circles) and with
Smagorinsky model (S-LES, empty triangles). The energy
spectra from fully resolved DNS at 5123 (DNSx1) and 10243

(DNSx2) are presented respectively with full triangles and
full circles. The curves are shifted vertically for the sake of
data presentation. The Kolmogorov predicted slope of k−5/3

is given as a reference [8].

IV. SGS ENERGY TRANSFER ANALYSIS

In this section we provide a statistical comparison of
the SGS energy transfers measured in the modelled simu-
lations together with the original SGS transfer measured
a priori from higher resolution DNS, see Table I. Before
staring the comparison between macroscopic and meso-
scopic simulations, we analyse the quality of the approx-
imation made in the Chapman-Enskog expansion to ob-
tain the macroscopic formulation of the ELBM eddy vis-
cosity [1]. In this direction, we have computed the SGS
energy transfer defined in Eq. (21) using the two different
definitions of the fluctuating viscosity. Namely, either the
correct definition, δνα, depending on the entropic param-
eter or its third order expansion in the limit of small Kn,
δνMα see Eq. (7). Their statistical comparison is shown
in Fig. 3, where on the left panel we show the probability
density functions (PDF) measured from the ELBM SGS
energy transfer using the two different formulations. Here
we can see that the PDFs once re-scaled by their stan-
dard deviations have almost an identical shape. From the
center and right panels of the same figure, we can qualita-
tively see two visualizations of the SGS energy transfers
measured by selecting the same plane of the velocity field.
From these visualizations we can appreciate that there is
a very high spatial correlation between them. These re-
sults suggest that the approximation of neglecting the
extra third order terms coming from Chapman-Enskog
expansion is a good approximation of the ELBM eddy
viscosity. Let us now analyse the statistics of the SGS
energy transfers, comparing them also with the statis-
tics of the real SGS energy transfer, see Eq. (17), mea-
sured a priori from fully resolved DNSx2. To obtain the

a priori Π
∆

we filter the velocity field with a sharp pro-
jector in Fourier space with a cutoff at the maximum
wavenumber allowed in the modelled simulations, which
corresponds to the dealiasing cutoff (kmax = 171). As
known, the presence of a forward energy cascade, as in
3d turbulence, reflects in a skewed PDF of the a priori

Π
∆

, see [46, 53, 54], see Fig. 4. Instead, the negative tail
describes the presence of intense backscattering events
with fluctuations up to two orders of magnitude larger
than the standard deviation. The main remarkable differ-
ence between the different models considered here is that,
as expected, the ELBM and E-LES produce backscatter
events, while the Smagorinsky model is positive definite
in its energy formulation and it produces a zero tail in
the negative region. Let us notice that ELBM mesoscopic
model shows qualitatively a better overlap with respect
to the DNS data.
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FIG. 3: Standardized PDFs of the ELBM SGS energy transfers measured from the correct fluctuating viscosity, δνα, and
its approximated formulation, δνMα (left panel). Visualization of a plane of ELBM SGS energy transfer measured using the
approximated (center panels) and correct definitions of eddy viscosity (right panel).
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FIG. 4: Standardized PDF of the SGS energy transfer mea-
sured from the a posteriori data obtained via the ELBM sim-
ulations (empty squares, red color), the LES with hydrody-
namical entropic closure (E-LES, empty circles) and from LES
with Smagorinsky model (S-LES, empty triangles). For com-
parison the PDF measured for the real SGS energy transfer
measured a priori by filtering data from higher resolution sim-
ulations is presented (DNSx2, full circles).

V. INERTIAL RANGE STATISTICS

In this last section we analyse the inertial range statis-
tics by measuring the longitudinal velocity increments
defined as δru = (u(x + r)−u(x)) · r/r. In this way we
can quantify the effects produced by the different models
at different scales, r = |r|, hence, we can get an accurate
estimation of the quality of the models in capturing the
correct intermittent properties of the NSE. We study the
scaling properties of the longitudinal structure functions
(SF) defined as,

Sp(r) ≡ 〈[δru]p〉 (22)

where the angular brackets indicate the ensemble av-
erage, that assuming spatio-temporal ergodicity can
be evaluated averaging over space and time, 〈(...)〉 =

1
V

1
T

∫
V

∫ t0+T

t0
(...) dxdt. In the limit of large Reynolds

number, where r can be taken arbitrarily small the
structures function follows a powerlaw scaling behavior,
Sp(r) ∼ rξp [8], where a p-th order scaling exponent that,
according to the phenomenological theory of Kolmogorov
(K41) [55], is ξp = p/3. Nevertheless, both experimen-
tal and numerical studies have highlighted as bi-product
of intermittency the presence of anomalous exponents in
turbulent data, with important deviations from the K41
predicted values [12, 44, 56, 57]. On the other hand,
to get an accurate measurement of these exponents is ex-
tremely difficult. The reason is twofold, first it is required
to have large scaling range (very well resolved simula-
tions) and second it is simultaneously required to have
large statistical ensemble. The first question we ask here
is connected to the first of the aforementioned problems,
namely whether those models are able or not to extend
the length of inertial range of scales in our simulations.
To answer this in the left column of Fig. 5 we show the
2nd and 4th order structure functions measured from all
modelled and fully resolved simulations. In the right col-
umn on the same figure we show the local scaling expo-
nents,

ξp(r) =
d logSn(r)

d log(r)
,

measured form the structure functions shown on the left
side. From these plots it is evident that all modelled sim-
ulations present an extension of the inertial range with re-
spect to the same resolution, similar to the inertial range
observed in the simulations with a number of grid points
two times larger along each spatial direction, DNSx2.
Which means that the models allows to save a factor
8 in terms of the number of degrees of freedom required
in the simulations. Considering that also the time-step
needs to be changed accordingly in the higher resolution
DNS to resolve the smaller time-scales, it means that the
modelled simulations are more than an order of magni-
tude cheaper than a DNS with the same inertial range.
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FIG. 5: Second-order longitudinal structure functions (left panels) and corresponding local slopes (right panels) for the con-
ducted simulations at 5123 grid points, using ELBM (empty squares, red color), E-LES with entropic inspired model (empty
circles), S-LES with Smagorinsky model (empty squares), DNSx1 at 5123 grid points (full triangles) and DNSx2 at 10243 grid
points (full circles). The straight line corresponds to the K41 prediction in the inertial range (ξp = p/3), while the dashed line
corresponds to the intermittent measure as reported from the literature [44, 56].

On the other hand, by measuring the local scaling ex-
ponents as reported on the right column of Fig. 5, we
can see that the inertial range extension produced by the
model is not as accurate as the fully resolved DNS. This
is a problem if we want the model to correctly describe
intermittency. Let us stress that the correction to the
K41 prediction at the level of the second and fourth or-
der exponents is very small, hence a model needs to be
extremely accurate to correctly capture the intermittent
scaling [44]. In both right panels of Fig. 5 we report with
solid line the ξp value of the K41 prediction, and with
dotted lines the values measured from DNS as reported
in [56, 57]. To highlight intermittency we can look at the
ratio between SF at different orders. In particular, any
systematic non-linear dependency of ξp vs p, will intro-
duce a scale-dependency in the Kurtosis, defined by the
dimensionless ratio among fourth and second order SF,

K(r) =
S4(r)

[S2(r)]
2 . (23)

In Fig. 6 we see that in all simulations, at large scales
the increments are Gaussian (K ∼ 3), while the Kurtosis

quickly increases, decreasing the scale. This observation
shows non-self similarity in the statistics of all data. It
is interesting to observe that at this level the inertial
range of scale observed in the DNSx2 simulation are well
captured by all closures up to the dissipative scales r ≈
0.1 where deviations from the DNSs and models arise.
Going further, we measure the most refined quantity we
can observe to quantify intermittency, namely the local
scaling exponent in Extended Self-Similarity [58],

ζ(r) =
ξ4
ξ2
. (24)

A linear K41 behavior would recover in the inertial range
a plateau value of ζ equal to 2. The correction, account-
ing for intermittency, measured in both experimental and
DNS data gives the plateau for ζ at the value of 1.86
[44, 56, 57]. As we can see in Fig. 7, all models show
deviations from the K41 self-similar prediction meaning
that they all capture the non-self-similarity of the tur-
bulent inertial range. However none of them is really
accurate enough to extend the length of the plateau dis-
played, hence to improve the prediction obtainable from
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E-LES with the entropic inspired model (empty circles), S-
LES with Smagorinsky model (ampty triangles), DNSx1 at
5123 grid points (full triangles) and DNSx2 at resolution of
10243 (full circles). The dashed horizontal line at 3 corre-
sponds to the value of a Gaussian distribution.
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FIG. 7: Extended Self-Similarity, ζ(r), for the simulations at
5123 grid points, using ELBM (empty squares, red color), the
LES with entropic inspired model E-LES (empty circles), the
LES with Smagorinsky model S-LES (empty triangles), the
fully resolved DNSx1 (full triangles) and the fully resolved
DNS at 10243 grid points DNSx2 (full circles). The straight
line corresponds to the K41 prediction in the inertial range
equal to 2, while the dashed line corresponds to the intermit-
tent measure as reported from numerical [56] and experimen-
tal data [57].

the DNS at the same resolution. Indeed, if we compare
the modelled data with the fully resolved simulations we
can see that former are not showing any flat plateau in
the inertial range and we cannot estimate precisely the
correction to K41 of the structure function scaling expo-
nents. It is interesting to point out that the models show
a very similar accuracy up to this last analysis. This
suggest the backscatter events of energy introduced by

the entropic closures are not accurate enough to improve
quantitatively the statistics of the Smagorinsky model.
This results supports the observation that intermittency
in turbulent flows comes as a result of highly non-trivial
correlations among all degrees of freedom at different
scales [59–61]. The observation that for all models we
have a very similar inertial range statistics goes in agree-
ment with the common property of these models to have
the same scaling, proportional to the strain rate tensor.

VI. CONCLUSIONS

In this paper, we performed a quantitative assessment
of the ELBM capabilities in the modelling of 3d homoge-
neous isotropic turbulent flows by comparing the inertial
range statistics of ELBM data with the one of high res-
olution DNS of the NSE. We also compared the quality
of ELBM with respect to the hydrodynamical Smagorin-
sky model, popular in the realm of LES. Furthermore,
in this work we have proposed and investigated for the
first time, a new hydrodynamical closure for LES simula-
tion inspired from the macroscopic approximation of the
ELBM model introduce by [1]. We found that ELBM
extends the length of the inertial range with respect to
the fully resolved DNS, allowing to reduce the compu-
tational cost by an order of magnitude and at the same
time preserving the simulation stability. Results showed
that, in both the macroscopic and mesoscopic formula-
tions, ELBM is able to reproduce an inertial range with
a non self-similar dynamics. ELBM captures the correct
deviations from the large scales Gaussian statistics as ob-
served in the fully resolved DNS, with an accuracy com-
parable to the one produced by the Smagorinsky model.
From the measure of the structure functions scaling ex-
ponents in ESS, we have highlighted the limitations of
these models to get with high accuracy the turbulence
corrections to the Kolmogorov scaling. In this context
we found that the modelled data are not producing the
same inertial range plateau as observed in the fully re-
solved DNS and experiments. To conclude, we found
that ELBM suffers in the modeling of extreme and rare
intermittent fluctuations, while on the other hand it is
very efficient in modeling the mean properties of 3d tur-
bulence. Which makes ELBM a good candidate for the
modeling of 3d turbulent flows in complex geometries.
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