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Turbulent systems exhibit a remarkable multi-scale complexity, in which spatial structures induce
scale-dependent statistics with strong departures from Gaussianity. In Fourier space, this is reflected
by pronounced phase synchronization. A quantitative relation between real-space structure, statis-
tics, and phase synchronization is currently missing. Here, we address this problem in the framework
of a minimal deterministic phase-coupling model, which enables a detailed investigation by means
of dynamical systems theory and multi-scale high-resolution simulations. We identify the spectral
power-law steepness, which controls the phase coupling, as the control parameter for tuning the
non-Gaussian properties of the system. Whereas both very steep and very shallow spectra exhibit
close-to-Gaussian statistics, the strongest departures are observed for intermediate slopes compara-
ble to the ones in hydrodynamic and Burgers turbulence. We show that the non-Gaussian regime of
the model coincides with a collapse of the dynamical system to a lower-dimensional attractor and
the emergence of phase synchronization, thereby establishing a dynamical-systems perspective on
turbulent intermittency.

Introduction. Turbulence is a prototypical non-
equilibrium phenomenon with a large number of strongly
interacting degrees of freedom [1–6], exhibiting strong de-
partures from Gaussianity on the smallest spatial scales.
In real space, non-Gaussian fluctuations can be related to
coherent, intense, and rare events in the velocity gradi-
ents – a phenomenon also dubbed as intermittency [7, 8].
Intermittency can also be studied from the complemen-
tary perspective of Fourier space. While Gaussian ran-
dom fields feature completely uncorrelated phases, phase
correlations can give rise to complex scale-dependent
properties, as the ones developed in the presence of coher-
ent shocks. Elucidating these connections is important
for both fundamental and applied aspects. In particular,
we currently miss a clear identification of which dynami-
cal degrees of freedom lead to such bursting and quiescent
chaotic alternations of temporal and spatial flow realiza-
tions. As a result, we lack optimal protocols to avoid
disrupting fluctuations in engineering turbulence [9, 10],
predict extreme events in geophysical flows [11, 12] and
control existence and uniqueness of the PDE solutions
[13], just to cite a few open problems with multidisci-
plinary impacts. Studying these issues in fully developed
three-dimensional turbulence is an extremely challeng-
ing task. The hope is to isolate the main aspects of this
problem in simpler, more tractable models. One popu-
lar way is to lower the complexity by mode reduction,
as in the case of sub-grid-scale modeling [14, 15], Fourier
surgery [16, 17], statistical closure [18], partial freezing
of some spectral degrees of freedom [19, 20] or asymp-
totic expansions [21, 22]. All attempts have merits and
deficiencies, the main common drawback being the com-
promised ability to describe simultaneously spatial and
temporal fluctuations on a wide range of scales. Notably,
only very few studies have addressed the connection be-

tween the emergence of coherent intermittent structures
in real space and phase correlations, connecting the pres-
ence of bursts of spectral energy fluxes (and dissipation)
with Fourier phase dynamics [23–27].
In this letter we combine theory and simulations to pro-
vide a dynamical systems link between real-space inter-
mittency and phase correlations in Fourier space. We
do so by means of a minimal deterministic description
of hydrodynamic turbulence derived from a PDE model,
preserving the whole richness of multi-scale spatial and
temporal statistics. The model is formulated in terms of
Fourier phases whose dynamical coupling resembles the
one in Navier-Stokes turbulence: specifically, it is Burg-
ers turbulence with the important distinction that the
amplitudes are kept at fixed values such that only the
phases evolve, obeying a deterministic system that sup-
ports a turbulent attractor.
By changing the energy spectrum slope we can tune the
coupling strength of the phases and study how the dy-
namics (intermittency) changes. We find that the system
transitions to non-Gaussian statistics as the spectrum is
gradually steepened. For slopes beyond a certain value,
the rare fluctuations become less extreme and return to
near-Gaussian statistics. Strikingly, the strongest devia-
tions occur in the intermediate range, within the range of
values attained by turbulent systems. Within this range,
the dimension of the strange attractor collapses to a min-
imum, indicating that non-Gaussian real-space statistics
are related to the collapse of the dynamical system onto
a lower-dimensional manifold.
Our analysis sheds light on the emergence of coherent
structures and the associated phase synchronization phe-
nomena [28], establishing connections between the statis-
tical theory of non-equilibrium systems and dynamical
systems theory.
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FIG. 1. Numerical simulations of (6) with k0 = 1 and N = 29,
with a Burgers-like steepness parameter α = 1. (a) Plot of the
real-space field u(t, x) displaying a shock near x = π/2 at the
time indicated by the blue line. The field u(t, x) is obtained
by solving the phase dynamics (6) and inserting the time-
evolving phases into (2) for prescribed amplitudes ak. (b)
Plot of individual phases ϕ2, . . . ϕN . The gray line marks an
instance of a relatively disordered regime while the blue line
marks a relatively synchronized regime. (c) Time-dependent
order parameterRT (α, t), cf. Eq. (10), for the synchronization
of the system (here with T = 0.0244). The peak corresponds
to a synchronization event related to a real-space shock. (d)
Snapshots of the real-space field u(t, x) in the disordered (top,
gray) and synchronized (bottom, blue) regimes. Red curves
show the gradient ∂xu(t, x) to illustrate the difference between
the two regimes.

The model. As a starting point, let us consider the
one-dimensional Burgers equation

∂tu(t, x) + u(t, x)∂xu(t, x) = ν∂2
xu(t, x). (1)

This simple prototypical PDE is reminiscent of the
Navier-Stokes equations, known to develop multi-scale
bifractal scaling properties, shocks, non-Gaussian statis-
tics and many other non-trivial statistical features [29–
38]. We consider a one-dimensional field u(t, x) on a 2π-
periodic domain with Fourier decomposition

u(t, x) =
∑
k∈Z

ak(t) exp (i [(ϕk(t) + kx]) . (2)

By inserting (2) into (1), we obtain the evolution for the

amplitudes and the phases

ak
dϕk
dt

=− k

2

∑
p∈Z

ap ak−p cos(ϕp + ϕk−p − ϕk), (3)

dak
dt

=
k

2

∑
p∈Z

ap ak−p sin(ϕp + ϕk−p − ϕk)− νk2ak.

(4)

This infinite set of coupled ODEs describes the full Burg-
ers dynamics of the Fourier phases and amplitudes. Re-
cently, we showed that the dynamics of the Fourier phases
ϕk(t) determine to a great extent the shock dynamics
and the associated non-Gaussian statistics when the am-
plitudes follow a Burgers-like scaling [27]. In order to es-
tablish a deeper dynamical systems understanding of the
role of Fourier phases in turbulence, we now follow a dif-
ferent approach, by introducing a minimal deterministic
model enjoying a turbulent attractor. Take equation (3)
as a starting point and set the amplitudes to prescribed
constants

ak = |k|−α, |k| > k0, ak = 0, |k| ≤ k0, (5)

where the steepness α is our new continuous control pa-
rameter and k0 > 0 is a large-scale cutoff leading to a
finite integral length scale, which destabilizes a single-
shock-like fixed point, allowing thus for a turbulent at-
tractor. The phase dynamics is obtained from (3) which
becomes a system of coupled oscillators ϕk satisfying

dϕk
dt

=
∑
p∈Z

ωk,p cos(ϕp + ϕk−p − ϕk), |k| > k0 , (6)

with coefficients ωk,p = −k |p(k − p)|−α |k|α when
|k − p|, |p| > k0 (ωk,p = 0 otherwise), and with ϕ−k =
−ϕk (reality condition). Compared to equation (3),
we have rescaled time in (6) to absorb the factor 1/2.
The triadic interaction term couples the phases with
wavenumbers k, p, and k−p, via the so-called triad phase
ϕkp,k−p := ϕp+ϕk−p−ϕk. It is important to note that this
phase-only model does not need an energy input/output
mechanism, as constant energy is maintained by the con-
stant amplitudes. Furthermore, it is formally fully time
reversible under the symmetry t → −t;ϕk → ϕk + π.
However, it will not come as a surprise that, like in a for-
mally reversible version of the Navier-Stokes equations
[39–42], the chaotic dynamics spontaneously break the
time symmetry leading to a non-Gaussian and skewed
velocity increment probability density function (PDF).
To study the model numerically, we further introduce
a discretization with grid spacing ∆x = π/N , effec-
tively setting ak = 0, |k| > N . The reality condition
ϕ−k = −ϕk leaves us with a set of phases evolving on
modes k0 < k ≤ N . We set k0 = 1 so a1 = a−1 = 0 and
thus the evolving variables are ϕ2, . . . , ϕN . Note that the
energy spectrum of the field is fixed and perfectly self-
similar: Ek ∼ a2

k, with a power-law decay of Ek ∝ k−2α.
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The observed original Burgers case, where quasi discon-
tinuities (shocks) dominate the high-order statistics, cor-
responds to α = 1.
Numerical results on real-space and phase dy-
namics & statistics. We integrate numerically (6)
with a fourth-order Runge-Kutta method starting from
uniformly random initial conditions. The nonlinear term
can be written as a convolution, which we efficiently eval-
uate with a pseudospectral method. Figure 1 illustrates
the dynamics of our model, for the choice of steepness
α = 1 (Burgers case), revealing insights into the rela-
tion between non-Gaussianity of the real-space statistics
and Fourier phase synchronization. Panel (a) is a space-
time plot of the velocity field from this minimal model,
showing that shocks are the dominant structure. As time
evolves, shocks steadily merge and separate. Occasion-
ally, they merge into one dominating shock (horizontal
blue line). Panel (b) shows a time series of the indi-
vidual Fourier phases of the model. It shows that the
presence of this dominating shock corresponds to highly
ordered patterns in the phase plot. Away from these
events, the system is dominated by smaller shocks and
we observe a low coherence (gray line). To quantify this,
panel (c) shows the time average phase synchronization
(10), which reveals the synchronization of the oscillator
system locally in time. The time of the highest syn-
chronization corresponds to the dominating shock in real
space. Panel (d) shows that the presence of the dominat-
ing shock (blue line) yield extreme events in the gradient
field characterizing the small scales of the velocity field.
By changing the free parameter α in (6) we control the

multi-scale coupling among the phases and the hierarchi-
cal organization of typical time scales. In a local approx-
imation, i.e. supposing the dynamics at wavenumber k
is mainly driven by triads around the same wavenum-
ber, |k| ∼ |k − p| ∼ |p|, we can estimate the scale-
dependent eddy-turnover time as τk ∼ |k|α−1, indicating
that, within this approximation, we reach a regime where
small scales are faster than the large scales if α < 1 (and
slower if α > 1). The local-triad approximation is ex-
pected to be valid in the range 0.5 < α < 1.5 [43], where
the Fourier transform connecting the spectrum and the
two-point velocity correlation function does not diverge
neither in the UV nor in the IR. As a result, we expect
that in the above range and around α = 1 a non-trivial
balancing between spatial and temporal fluctuations will
set in.
In figure 2 we indeed observe that our model has non-
trivial scale- and steepness-dependent statistics. Here
we show the probability distribution functions (PDF) of
the velocity increments δru = u(x + r) − u(x) for two
different scales, r = L := π and r = η := π/N , de-
noting the largest and smallest distances in the periodic
domain, respectively. Real-space statistics are obtained
by inserting the phase dynamics into (2). For completely
uniform amplitudes (steepness α = 0) the phases evolve

under an all-to-all coupling with equal strength. Note
that this choice of spectral amplitudes corresponds to a
delta-correlated field in real space. In this case, all phases
become dynamically uniformly distributed and uncorre-
lated, leading to a Gaussian velocity field at all scales
(panel (a) in figure 2). In contrast, for steepness values
within the range [0.5, 1.5], where the local-triad approx-
imation is expected to be valid, heavy tails are observed
in the velocity increment PDF at small scales (panels
(b)–(d) in figure 2). For the smallest increment, the neg-
ative PDF tails are much heavier than the positive tails
and both are much heavier than Gaussian. Heuristically
(to be quantified later), this is the result of phase syn-
chronization leading to shocks (anti-shocks), i.e. extreme
negative (positive) gradients.
The presence of extreme events is maximal at α ∼ 1.25,
as evidenced in figure 2(c). For higher values of α the
PDF tails slowly regularize. In this limit, the large-scale
modes dominate the real-space velocity field, leading to
a dominant sinusoidal mode with superimposed smaller
fluctuations. As a consequence, the large α limit shows
close-to-Gaussian statistics throughout.
To quantify the steepness-dependent departure of the
small scales from Gaussianity we measure the skewness
and flatness:

S(r) =
〈(δru)3〉
〈(δru)2〉3/2

, F (r) =
〈(δru)4〉
〈(δru)2〉2

. (7)

Due to our frozen-amplitude condition the denominators
of both quantities do not fluctuate. Figure 3(a) shows a
clear transition at α ∼ 1.0. The peaks of skewness and
flatness at α ∼ 1.25 correspond to the presence of ex-
tremely intense negative gradients seen in figure 2(c).
As the steepness is increased further, the phases evolve
under a non-local and non-trivial triad coupling. This
gives rise to synchronization events, which underlie the
steepness-dependent transition observed in the real-space
statistics. Note, however, that when the steepness is too
large the timescales from the triad coupling can get too
separated, as the coefficients ωk,p in (6) become too small
when |p| and |k−p| are large. Thus we expect to see syn-
chronization over a finite range of steepness values only.
In the next sections we will quantify the dependence on
the α parameter, of synchronization, and of the structure
of the associated chaotic attractors.
Synchronization. We quantify the behaviour of triad
phases across a range of scales for (6) by defining the
scale-dependent collective phase θk:

eiθk =

∑
p∈Z apak−pe

i(ϕp+ϕk−p−ϕk)∣∣∣∑p∈Z apak−pe
i(ϕp+ϕk−p−ϕk)

∣∣∣ . (8)

This collective phase is dynamically relevant as the RHS
of (6) is proportional to cos θk. The fluctuations of θk
over time serve as a measure of the triad phase coherence
across scales. Thus, averaging over a causal time window
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FIG. 2. (a)-(f): Standardized probability density distributions (PDFs) of δru calculated at the smallest, η, and largest
increments, L. (a) For flat Fourier amplitudes α = 0 the velocity field is Gaussian across all scales. (b)-(e) Increasing α leads
to heavy tails at small scales. (f) For a steep enough spectrum the velocity field is dominated by the first few modes leading
to PDFs without heavy tails. Data for N = 215 and k0 = 1.

T from t − T to t, we get the following scale-dependent
Kuramoto order parameter:

RTk (t)eiΘT
k (t) =

〈
eiθk(t)

〉
T

(9)

As usual we have 0 ≤ RTk ≤ 1, and phase synchronization
is indicated by RTk values close to 1. Averaging addition-
ally over the spatial scales, we define the average phase
synchronization by

RT (α, t) =
1

N − k0

N∑
k=k0+1

RTk (t), (10)

which measures how the phase synchronization changes
as a function of the spectral slope. As discussed earlier,
we evaluated the time-dependent average phase synchro-
nization RT in Fig. 1(c) to establish the correspondence
between real-space structures and phase synchronization.
For very large T , we obtain the time and scale-averaged
phase synchronization R(α) = limT→∞RT (α, t).

Figure 3(b) shows the average phase synchronization
R(α) as a function of α for various system sizes N .
The relatively high synchronization seen for small N at
α > 2.0 decreases as N is increased. This is due to
the addition of faster and noisier oscillators to the sys-
tem causing a convergence towards a pronounced peak
for α ∈ [1.0, 2.0], indicating high phase synchronization
for this interval for large N . The synchronization peak
is remarkably coincidental with the flatness and skew-
ness peaks shown in figure 3(a), providing quantitative
evidence in support of the relation between synchroniza-
tion (a dynamical-system measure) and intermittency (a
real-space measure).
Chaos characterization. As an additional character-
ization of the dynamical system, we estimate the proper-

ties of the underlying strange attractor as a function of α
and for N = 64, 128, 256, 512 by examining the Lyapunov
exponents (LEs) [44]. For reasons of numerical complex-
ity we cannot reach the same resolution we used for the
statistical characterization of intermittency and synchro-
nization; however as we will see below the N = 512 case
shows strong indications of convergence to the large-N
limit.
Using the LEs we can calculate the dimension of the
attractor via the Kaplan-Yorke (KY) approximation
[45, 46]. Given the ordered LEs λ1 ≥ λ2 ≥ · · · ≥ λN−k0 ,
the KY dimension is defined as

DKY = J +

∑J
j=1 λj

|λJ+1|
, (11)

where the conditions
∑J
j=1 λj ≥ 0 and

∑J+1
j=1 λj < 0 de-

fine the index J . The KY dimension gives a measure
of the systems’ effective degrees of freedom. Figure 3(c)
shows a plot of the ratio between the DKY and the num-
ber of available degrees of freedom, as a function of α and
for several values of N . It is evident that as N grows a
clear pattern emerges, whereby DKY greatly diminishes
for values of α inside the interval [1.0, 2.0], a behaviour
that coincides, on the one hand, with the departure from
Gaussianity observed in figure 3(a), and on the other
hand, with the increase in phase synchronization shown
in figure 3(b).
Conclusions. Our minimal model sheds light into the
nature of coherent structures as low-dimensional objects,
establishing a dynamical scenario where real-space in-
termittency and phase synchronization are accompanied
by a reduction in the dimensions of the attractor. In
our model coherent structures are controlled by Fourier
phase dynamics only, as the energy spectrum is static and
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of α for various system sizes. (c): ratio between the Kaplan-
Yorke dimensionDKY andN−k0 as a function of α for various
system sizes.

plays a background role. Our results open new perspec-
tives concerning the possibility to connect turbulence in-
termittency with dynamical system tools based on phase
synchronization and chimera states [47].
On the quantitative side, our results provide insight into
the solution to the full inviscid Burgers equation, where
all amplitudes are allowed to evolve. There, for generic
initial conditions, a finite-time singularity develops char-
acterized by phase synchronization and a power-law spec-
trum with steepness 1.33 ≤ α ≤ 1.50 [48, 49]. We have
checked that this behaviour is robust, occurring even un-
der the constraint ak0 = 0 for k0 = 1. Because in the
full equations the spectrum evolves slowly, it is natural
to expect that in our frozen-spectrum constrained model
the phases must show high correlation in the same range
of imposed slopes.

A natural extension of this work would be an investi-
gation of the phase-only 3D Navier-Stokes dynamics by
fixing the amplitudes of all Fourier modes, including com-
parisons to Navier-Stokes equations with a fixed spec-
trum, either for all wavenumbers or for a subset of them
[19, 20]. Results in this direction would help to shed ad-
ditional light on the origin of extreme events and small-
scale intermittency.
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[9] J. Jiménez, Cascades in wall-bounded turbulence, Annu.
Rev. Fluid Mech. 44, 27 (2012).

[10] T. Duriez, S. L. Brunton, and B. R. Noack, Machine
learning control-taming nonlinear dynamics and turbu-
lence (Springer, 2017).

[11] F. Ragone, J. Wouters, and F. Bouchet, Computation
of extreme heat waves in climate models using a large
deviation algorithm, Proc. Natl. Acad. Sci. U.S.A. 115,
24 (2018).

[12] L. Biferale, F. Bonaccorso, I. M. Mazzitelli, M. A. T. van
Hinsberg, A. S. Lanotte, S. Musacchio, P. Perlekar, and
F. Toschi, Coherent Structures and Extreme Events in
Rotating Multiphase Turbulent Flows, Phys. Rev. X 6,
041036 (2016).

[13] C. L. Fefferman, Existence and smoothness of the Navier-
Stokes equation, The millennium prize problems 57, 67
(2006).

[14] C. Meneveau and J. Katz, Scale-invariance and turbu-
lence models for large-eddy simulation, Annu. Rev. Fluid
Mech. 32, 1 (2000).

[15] R. Stevens, M. Wilczek, and C. Meneveau, Large-eddy
simulation study of the logarithmic law for second- and
higher-order moments in turbulent wall-bounded flow, J.

mailto:michael.wilczek@ds.mpg.de
https://doi.org/10.1017/jfm.2014.510


6

Fluid Mech. 757, 888–907 (2014).
[16] L. Biferale, Shell models of energy cascade in turbulence,

Annu. Rev. Fluid Mech. 35, 441 (2003).
[17] T. Bohr, M. H. Jensen, G. Paladin, and A. Vulpiani,

Dynamical systems approach to turbulence (Cambridge
University Press, 2005).

[18] M. Lesieur, Turbulence in fluids, Vol. 40 (Springer Sci-
ence & Business Media, 2012).

[19] Z.-S. She and E. Jackson, Constrained Euler system
for Navier-Stokes turbulence, Phys. Rev. Lett. 70, 1255
(1993).

[20] L. Biferale, F. Bonaccorso, M. Buzzicotti, and K. P. Iyer,
Self-Similar Subgrid-Scale Models for Inertial Range Tur-
bulence and Accurate Measurements of Intermittency,
Phys. Rev. Lett. 123, 014503 (2019).

[21] V. E. Zakharov, V. S. L’vov, and G. Falkovich,
Kolmogorov spectra of turbulence I: Wave turbulence
(Springer Science & Business Media, 2012).

[22] S. Nazarenko, Wave turbulence, Vol. 825 (Springer Sci-
ence & Business Media, 2011).

[23] M. Buzzicotti, B. P. Murray, L. Biferale, and M. D. Bus-
tamante, Phase and precession evolution in the burgers
equation, The European Physical Journal E 39, 1 (2016).

[24] J. Reynolds-Barredo, D. Newman, P. Terry, and
R. Sanchez, Fourier signature of filamentary vorticity
structures in two-dimensional turbulence, EPL (Euro-
physics Letters) 115, 34002 (2016).

[25] M. Wilczek, D. G. Vlaykov, and C. C. Lalescu, Emer-
gence of Non-Gaussianity in Turbulence, Progress in Tur-
bulence VII , 3 (2017).

[26] J.-A. Arguedas-Leiva, Phase coherence and intermit-
tency of a turbulent field based on a system of coupled
oscillators, Master’s thesis, Georg-August-Universität,
Göttingen (2017).

[27] B. P. Murray and M. D. Bustamante, Energy flux en-
hancement, intermittency and turbulence via Fourier
triad phase dynamics in the 1-D Burgers equation, J.
Fluid Mech. 850, 624 (2018).

[28] In this paper, synchronization is understood as a tran-
sient state whereby the phases of the Fourier modes over
an extended range of spatial scales evolve following sim-
ilar patterns, showing strong correlations during finite
time intervals. This is similar to the definition used in
classical phase models [50, 51], although our work is the
first, to our knowledge, to study synchronization in a
Fourier phase model based on a system with quadratic
nonlinearity.

[29] O. Zikanov, A. Thess, and R. Grauer, Statistics of turbu-
lence in a generalized random-force-driven Burgers equa-
tion, Phys. Fluids 9, 1362 (1997).

[30] E. Balkovsky, G. Falkovich, I. Kolokolov, and V. Lebe-
dev, Intermittency of Burgers’ turbulence, Phys. Rev.
Lett. 78, 1452 (1997).

[31] J. Bec and K. Khanin, Burgers turbulence, Phys. Rep.
447, 1 (2007).

[32] G. Da Prato, A. Debussche, and R. Temam, Stochastic
Burgers’ equation, in Nonlinear Differential Equations
and Applications NoDEA, Vol. 1 (Springer, 1994) pp.

389–402.
[33] A. Chekhlov and V. Yakhot, Kolmogorov turbulence in a

random-force-driven Burgers equation, Phys. Rev. E 51,
R2739 (1995).

[34] G. L. Eyink and T. D. Drivas, Spontaneous stochasticity
and anomalous dissipation for Burgers equation, J. Stat.

Phys. 158, 386 (2015).
[35] Z.-S. She, E. Aurell, and U. Frisch, The inviscid Burgers

equation with initial data of Brownian type, Commun.
Math. Phys. 148, 623 (1992).
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