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We compute the continuum thermohydrodynamical limit of a new formulation of lattice kinetic
equations for thermal compressible flows, recently proposed by Sbragaglia er al. [J. Fluid Mech.
628, 299 (2009)]. We show that the hydrodynamical manifold is given by the correct compressible
Fourier—Navier—Stokes equations for a perfect fluid. We validate the numerical algorithm by means
of exact results for transition to convection in Rayleigh—-Bénard compressible systems and against
direct comparison with finite-difference schemes. The method is stable and reliable up to
temperature jumps between top and bottom walls of the order of 50% the averaged bulk
temperature. We use this method to study Rayleigh—Taylor instability for compressible stratified
flows and we determine the growth of the mixing layer at changing Atwood numbers up to At
~0.4. We highlight the role played by the adiabatic gradient in stopping the mixing layer growth in
the presence of high stratification and we quantify the asymmetric growth rate for spikes and
bubbles for two dimensional Rayleigh-Taylor systems with resolution up to L, X L,=1664 X 4400

and with Rayleigh numbers up to Ra~2 X 10'°. © 2010 American Institute of Physics.

[doi:10.1063/1.3392774]

I. INTRODUCTION

Lattice implementations of discrete-velocity Kkinetic
models have gained considerable interest in the last decades,
as efficient tools for the theoretical and computational inves-
tigation of the physics of complex flows."® An important
class of discrete-velocity models for ideal fluid flows, the
lattice Boltzmann models (LBMs),” " can be derived from
the continuum Boltzmann (BGK) equation,'2 upon expan-
sion in Hermite velocity space of the single particle distribu-
tion function, f(x,&,1), describing the probability of finding
a molecule at space-time location (x,7) and with velocity
§.4’13’15 As a result, the corresponding lattice dynamics ac-
quires a systematic justification in terms of an underlying
continuum kinetic theory. The state of the art is satisfactory
concerning isothermal flows, even in the presence of com-
plex bulk physics (multiphase, Inulticomponents)1’2’16 and/or
with complex boundary conditions such as roughness, non-
wetting walls and slip length.6’l7"19

The situation is much less satisfactory when temperature
plays an active role in the flow evolution due to complex
compressible effects which are present even in ideal fluid/gas
or to phase change in multiphase systems, or both. Only a
few years ago, one could frankly admit that not a single
known lattice Boltzmann approach could handle, in a realis-
tic way, thermal problems properly. The main difficulties be-
ing the development of subtle instabilities when the local
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velocity increases. In the last years, the situation has started
to improve, with different attempts being made to describe
active thermal modes within a fully discretized Boltzmann
approach.ls’mf27 These studies show that in order to recover
the right continuum descriptions with the correct symmetries
for the internal energy flux, one needs to enlarge the number
of discrete speeds [a possible choice, for space-filling
schemes following a Gauss—Hermite quadrature,ls’26 is 37
speeds in two dimensions (2D) (Refs. 28 and 26) and 107
speeds in three dimensions (3D) (Ref. 29)] or to add ad hoc
counterterms canceling spurious anisotropic 0perat0rs.2l’22
Otherwise, different hybrid attempts have been proposed,
where temperature evolution is solved using finite-difference
methods® or with lattice schemes able to reproduce thermal
van der Waals fluids in the continuum limit.** Boundary
conditions®™*" and stability issues®! are also much more in-
volved when thermal modes are present. It is fair to say that
not a single model emerged as the optimal choice, and only a
few explorative studies have been performed in order to
check potentiality and limitations of each proposed solution.

The aim of this paper is twofold. First, we intend to
further discuss a recent formulation, proposed by some of us
in Ref. 32 for a new way to incorporate the effects of
external/internal forces in thermal LBM. We provide here the
full explicit Chapman-Enskog expansion, whose results
where only anticipated without proof in Ref. 32, in order to
show the convergence of the model to the Fourier—-Navier—
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Stokes equations. We validate the method in a case where
thermal compressible effects play a major role, i.e., the tran-
sition to convection in a compressible Rayleigh—Bénard sys-
tem of height L, with an imposed temperature jump,
T,—T,=AT. For such systems, it is possible to calculate the
critical Rayleigh number amalytically33 at changing both the
stratification parameter (also known as the scale height),
Z=AT/T,, and the polytropic index, m=g/(RB)—1, where
R is the gas constant, g the gravity acceleration, and
B=AT/L, the temperature gradient. We show here that our
LBM scheme is able to handle temperature jumps as high as
AT/T,=2 for both positive and negative values of the poly-
tropic index (stable and unstable density stratifications).
Such systems are clearly very far from the classical
Oberbeck—Boussinesq approximation.y"35

Second, we study highly compressible Rayleigh—Taylor
(RT) systems, for the initial configuration where two blobs of
the same fluids are prepared with two different temperatures
(hot, less dense, blob below, cold, denser, blob above). We
show that the method is able to handle the highly nontrivial
spatiotemporal evolution of the system even in the develop-
ing turbulent phase. In this case, we could push the numerics
up to Atwood numbers At~0.4. Maximum Rayleigh
numbers achieved are Ra~4X10'" for At=0.05 and
Ra~2 X 10° for At=0.4. We present results on (i) the growth
of the mixing layer at changing the compressibility degree,
including the asymmetry in the quadratic growth of spikes
and bubbles dynamics; (ii) a new effect of stratification
which stops the mixing length growth when a critical width,
L4 is reached. We interpret this as due to the existence of the
adiabatic gradient: when the jumps between the two moving
fronts lead to a temperature gradient, AT/ L,q, of the order of
the adiabatic gradient, the dynamics stops and only thermal
diffusive mixing may further acts.

Technically speaking, the main novelty of the thermal-
LBM formulation proposed in Ref. 32 relies on the fact that
it is possible to incorporate the effects of an external and/or
internal force (gravity and/or intermolecular potential) via a
suitable shift of both momentum and temperature appearing
in the local equilibrium distribution of the Boltzmann colli-
sion operator. Doing that, the systems acquire an elegant
self-consistent formulation and a stable spatiotemporal evo-
lution also in presence of compressible effects, as demon-
strated by the examples anticipated before and detailed later.

The paper is organized as follows. In Sec. II we briefly
remind the details of the LBM formulation and we discuss
the first result of this paper: the continuum thermohydrody-
namical limit, given by the Fourier-Navier—Stokes equa-
tions, as obtained from a rigorous Chapman—Enskog expan-
sion of the discrete model. In Sec. III we show first the
validation of the discretized algorithm by studying the tran-
sition to convection in compressible Rayleigh—Bénard sys-
tems and comparing the results with exact analytical calcu-
lations, at changing the scale height and the polytropic index.
In the same section we also present validation of the method
against finite-difference methods, for the same setup but after
the transition, once convective rolls are present and station-
ary. In Sec. IV we show the investigations of another non-
trivial compressible case: RT system, for two different
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Atwood numbers At=0.05 and At=0.4. Conclusions and
perspectives close the paper in Sec. V.

Il. THERMAL KINETIC MODEL AND CONTINUUM
THEORY

The main goal of this section is to show how to use a
thermal-LBM to discretize continuum thermal kinetic equa-
tions in the presence of internal/external forces and how to
extract via a suitable Chapman—Enskog multiscale expansion
the relative hydrodynamical evolution, given in term of the
forced Fourier—Navier—Stokes equations. The first issue was
already discussed in Ref. 32: here we briefly recall it and
then discuss the second issue in details.

A thermal-kinetic description of a compressible gas/fluid
of variable density, p, local velocity u, internal energy, X
and subjected to a local body force density g is given in
the continuum by the following set of equations (repeated
indices are summed upon):

aip+ d(pu;) =0,
dpuy) + 9(Py) = pgs, (1)
K + %51‘% = pgilt;,

where P;;, and ¢; are momentum and energy fluxes (still un-
known at this level of description).

In Ref. 32 it is shown that it is possible to recover ex-
actly the above set of equations, starting from a continuum
Boltzmann equations and introducing a suitable shift of the
velocity and temperature fields entering in the local equilib-
rium: ﬂeq)(§;p,T,u) Hf(eq)(f;p,iﬁ). The new-shifted-
Boltzmann formulation being

1
%"‘f‘Vf:—;(f_f(eq)), @
F(&p,T,u) = ﬁe—f—ﬂlz/zr_ 3)

Where the shifted local velocity and temperature must take
the following form:

u=u+ g, T:T—ngz/D. 4)
The lattice counterpart of the continuum description (2)

can be obtained through the usual lattice Boltzmann
discretization,

A
fl(x + CZAI,I + At) —fl(x,t) = Tt[fl(x’t) _ﬁeq)L

where the equilibrium is expressed in terms of hydrodynami-
cal fields on the lattice, ﬁeq)(x,p(L),ﬁ(L),ﬁL)), and the sub-
script [ runs over the discrete set of velocities, ¢;. The super-
script L indicates that the macroscopic fields are now defined
in terms of the lattice Boltzmann populations,
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p
pH=2 1
]
{ PP =X eify, (5)
]

DpITH = X |e;—u®f,.
1
\

In Ref. 32 it was shown that the lattice version of the shifted
fields entering in the Boltzmann equilibrium (see Appendix
A for its detailed form) is

70 = 4@

T = 70 4 T(AID g’ + O(AD2.

+ 78,

As it is known, lattice discretizations induce nontrivial
corrections terms in the macroscopic evolution of averaged
hydrodynamical quantities. In particular, both momentum
and temperature must be renormalized by discretization ef-
fects in order to recover the correct thermal kinetic descrip-
tion (1) out of the discretized LBM variables. Density is left
unchanged, p(H)z p, while the first nontrivial correction to
momentum is given by the pre- and postcollisional

u =y 4 =g (6)

and the first nontrivial, correction to the temperature field
by32

At 2.2
7w, B8 7)
4D
Using this renormalized hydrodynamical fields, one re-
covers by a suitable Taylor expansions in At the thermohy-
drodynamical equations,3 2

ap + {pu™) =0,
a(pu™) + 3(PYY) = pgy, (®)
IR + 594" = pgui™.

The above equations are stlll unclosed. A closure ansatz
to express the stress tensor P ) and the heat flux q(H)
terms of lower order moments 1s needed. This ends our short
review of the backup material.

We proceed now with a systematic multiscale closure of
Eq. (8) in order to control the long wavelength limit where
the full Fourier—Navier—Stokes equations emerge. The main
added value with respect to previous similar calculations™ is
the explicit inclusion of the effects of the external force g in
the Chapman—-Enskog expansion.

In order to perform the calculations, we need to intro-
duce a hierarchy of temporal and spatial scales, via the in-
troduction of a small parameter e,

d,— €y, + €5, & — €0},
and the corresponding expansion for the Boltzmann distribu-
tions,
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F=fO4 efV 4 @D 4+ EF3) 4 D 4

together with a suitable rescaling of the forcing terms,
g~ O(e).”® The various rescalings immediately reflect in the
explicit expansion of the equilibrium distribution in terms of
Hermite polynomials H;")

1
IS, S v
. n!

where w; are suitable Weights.27‘28
(n)

different Hermite polynomials a
Appendix A.

After a long calculation, fully detailed in Appendix A,
one shows that the leading long wavelength limit coincides
with the continuum Fourier—Navier—Stokes equations of an
ideal compressible gas given by

dp+ apul™) =0,
)

The projections on the
are explicitly given in

% +pul(H)z?,-u —pg]+z90,, ) )

pde™ + puEH)éie(H) = aﬁf)ajuﬁﬂ) + 9(kae™),

with the ideal gas internal energy given by e(®)=(D/2)T".
The stress tensor is given by

0'1(.;1)=—pT(H)5 + V((?M(H)+ r?uH)+ (g— )&kuk ).
The shear and bulk viscosities are

H)
o3 (2) %)

and the thermal conductivity,

k=cp7{H)p<T—%t). (10)

These are therefore the equations for a compressible gas with
an ideal equation of state,

p=pT™, (11)
and ideal specific heats,
D D
CU=E, Cp=5+1. (12)

It is not difficult to show that in the case the external forces
are conservative, written in a potential form depending only
on the density, one may easily incorporate these effects in the
definition of an internal energy, opening the way to discuss
also nonideal equations of state. >

lil. TRANSITION TO CONVECTION
IN RAYLEIGH-BENARD COMPRESSIBLE SYSTEMS

A first nontrivial application of the above algorithm can
be found studying the behavior of Rayleigh-Bénard cells
both considering the effects of compressibility and stratifica-
tion to the transition from diffusive to convective
dynamic533’40‘4] or to the case of fully turbulent non-
Oberbeck—Boussinesq convection.” Here we concentrate on
the first issue (see top panel of Fig. 1 for a schematic view);

results on high Rayleigh turbulent convection will be pub-
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FIG. 1. Upper panel: Rayleigh-Bénard geometry and setup of the initial
configuration given by Eq. (14); two cases with m=+0.5 and m=-0.9. On
the horizontal axis we show the mean temperature and density profiles as a
function of the z-height (plotted on the vertical axis). The bold and tiny solid
lines represent the temperature and density profiles, respectively. Lower
panel: RT initial configuration given by Eq. (17). Bold and tiny lines as in
the upper panel.

lished elsewhere. First, let us rewrite the set of Egs. (9) in a
more transparent way, dropping for simplicity the superscript
H in all variables and using the explicit expression of the
iIrlternal energy in term of the temperature field,

Dip=— pdu;,

1
pDu;=— d;p — pgo; .+ vd;u; + <1 - —> vo;diu;,
CU

1
chD[T+p(?iu,» = k&iiT'i' V(z?,»uj + (7]’4[ - _511(9]{1/[](> (7,"/{1‘,
C
L v

(13)

where we have introduced the material derivative, D,=d,
+u;0;, and we have assumed constant viscous and thermal
conductivity coefficients.™*** The equation of state is p=pT,

i.e., it is given in terms of quantities normalized such that the
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gas constant is R=1. For a cell of height L, and with imposed
bottom and top temperatures, 7,; and T, the hydrostatic equi-
librium is easily found in terms of the temperature jump
across the cell, B=(T,—T,)/L.=AT/L,,

To(z)=(T;+T,)2- Bz,
po(2) = pLT()/ T, (14)
Ppo(2) = pLTo()/ TI™!,

where the two integration constants must satisfy p= pT, with

T a reference temperature, 7=(T,+T,)/2. In Eq. (14) we
have introduced also the polytropic index: m=g/B—-1. At
changing the polytropic index, one changes the hydrostatic
profiles of density and pressure. In order to be unstable, the
profile must obviously verify 8>0 (if g>0, as assumed
here), and therefore the interesting polytropic interval is lim-
ited to m=—1. Furthermore, unstable fluctuations may de-
velop only if the hydrostatic temperature gradient 3 is larger
than the adiabatic gradient, B,y=g/ Cps i.e., only when the
adiabatic transformation of a hot/cold spot of fluid moving
up/down induces a temperature variation that does not
exceed the hydrostatic change.43 This limits the interesting
interval excursion of the polytropic index from above,
m<c,— 1, which in our units, for an ideal gas in 2D, means
m<1. The limitation from above is a typical important ex-
ample induced by compressibility/stratification, i.e., by the
fact that a cold/hot fluid spots may contracts or expand dur-
ing their spatiotemporal evolution. Stratification can be also
measured by the scale height, i.e., a typical length scale L,
built in terms of mean hydrostatic quantities. In our case, the
most natural way to define it is by using the temperature
profile: L,=(T,/AT)L,=L./Z. Where we used the dimen-
sionless parameter Z=AT/T,, which is a direct measurement
of the stratification effects: for Z>1, the cell height L, is
much larger than the typical stratification length, i.e., the
fluid is highly stratified. On the other hand, the limit Z— 0
corresponds to the so-called Oberbeck—Boussinesq approxi-
mation, where both stratification and compressibility are
vanishingly small. The latter is, by far, the most studied con-
vection configuration, even though some important applica-
tions for astrophysics‘m’45 and recently also for laboratory

40=48 cannot neglect compressible modes. It is possible
to show™ that in the Boussinesq approximation, the depen-
dency from the polytropic index disappear (as it must obvi-
ously do) while it remains a possible effect induced by the
adiabatic gradient (usually small on laboratory experiments,
but not necessarily on atmospheric scales).

We use this complex setup to benchmark the thermal-
LBM algorithm proposed and probe its robustness at chang-
ing compressibility. This can be done directly against exact
results on the emergence of convective instability in the sys-
tem. It is possible to calculate, in a closed form, the stability
problem of the linearized system around the hydrostatic so-
lution (14), for both slip or no-slip velocity boundary condi-
tions and for any polytropic index:> these are just suitable
extensions of the well known Rayleigh calculation made for
the incompressible case.”’

Stratification makes the problem nonhomogeneous (in
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FIG. 2. Critical Rayleigh number, estimated at the center of the cell, ﬁa(,, at
changing the polytropic index m, the scale height Z, and the numerical
resolutions. For the smallest resolution, L, X L,=232 X116, the plotted val-
ues corresponds to (a) Z=0.22, AT=0.2, T,=0.9, m=-0.942; (b) Z=0.5,
AT=04, T,=0.8, m=-0.971; (c) Z=0.86, AT=0.6, T,=0.7, m=-0.9806;
(d) Zz=1.33, AT=0.38, T,=0.6, m=-0.9855; (e) Z=2.0, AT=1.2, T,=0.6,
m=-0.990. Theoretical values are obtained solving the linearized equations
as described in Ref. 33. Inset: time evolution of the total kinetic energy (in
arbitrary units) for Rayleigh numbers lower and higher than the critical one
for the parameter case (c). The unit of time corresponds to 10 000 LB
integration steps.

the vertical direction), and therefore it is not possible to de-
fine in a unique way the Rayleigh number. Anyhow, it turns
out that it is possible to introduce a height-dependent
Rayleigh number which rules the linearized problem,

[e/Ty@ILAB- Bu)
[k/po(2)e, [v/po(2)]

and one can express the whole bifurcation diagram in terms

the value of the Rayleigh number at a given height, say the

middle of the cell z=L,/2, for example, R~a=Ra(LZ/2). Dif-
ferent works have been devoted to the calculations of the

Ra(z) (15)

critical R~ac at changing the polytropic index, the scale
height, Z and the boundary conditions at the top/bottom
p1ates.33’50’51 A result of the stability calculation predicts that
there exists a critical Rayleigh number which depends only
on the polytropic index m, on the stratification parameter Z,
and on the wavelength a of the perturbation, Ra (m,Z,q).
The hydrostatic solution will therefore become unstable un-
der perturbation of a wavelength corresponding to the mini-
mum possible critical Rayleigh number. Compressibility and
stratification may have different effects, either stabilizing or
destabilizing the systems, depending on the hydrostatic un-
derlying equilibrium. For example, if the hydrostatic profile
has an unstable density profile, m <0, one gets that the criti-
cal Rayleigh decreases at increasing temperature jumps. The
opposite happens when density is stably stratified, m>0.
From the definition of Rayleigh given in Eq. (15), it is easy
to realize the importance of the adiabatic gradient,
Bua=g/c,, ie., if B<B,q, the control parameter is always
negative and the system will always be linearly stable. In
Fig. 2 we show the result of a numerical search of the critical
Rayleigh number (i.e., the onset of the transition to convec-
tion) using our LBM algorithm, obtained by exploring the
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long time behavior of the system, prepared with a small per-
turbation to its hydrostatic equilibrium, and monitoring the
successive temporal growth/decline of the total kinetic
energy (example in the inset). The LBM has been applied by
imposing no-slip impenetrable boundary conditions for
the velocity field at top/bottom walls, u,(z==L,/2)=0,
u,(z==*L,/2)=0, and with an imposed constant temperature
jump, T(z=-L./2)=T,, T(z=L,/2)=T,. Lateral boundaries
are fully periodic. Technical details on the way to implement
the given boundary conditions in the LBM algorithm are
given in Appendix B. In the same figure we also report the
critical Rayleigh numbers obtained from the LBM explora-
tion, compared with the exact analytical results obtained by
solving numerically the eigenvalue problem for the linear-
ized equations as given in Ref. 33. As one can see, the agree-
ment is good, even for large temperature jumps, up to
Z~2. Larger values of Z are difficult to reach because of
limitations imposed by numerical stability of the boundary
conditions and by the growth of unstable compressible
modes in the system. In order to overcome such limitation
one should probably extend the Hermite projections to
higher and higher orders.”’ The main error source in the de-
termination of the critical Rayleigh number out of our LBM
method stems from the presence of spurious, small, depar-
ture from the exact linear profile in the mean temperature
close to the boundary walls. This departure goes together
with the existence of small spurious transverse velocity for
two-three grid layers close to the wall and are due to the
existence of discrete velocities which connect up to three
layers in the lattice inducing nonlocal boundary conditions
effects (see Appendix B for details). Such effects can be
annoying for the investigation of highly turbulent regimes,
where the boundary layer dynamics becomes crucial to drive
the correct thermal exchange with the bulk.> This shortcom-
ing can be strongly reduced by moving from LBM algo-
rithms using exact streaming (as done here) to LBM based
on finite-volume schemes.> Details in this direction will be
published elsewhere. The small spurious oscillations close to
the boundaries do not prevent to get a very good quantitative
validation of the algorithms also when large-scale convective
rolls are present. For example, in Fig. 3 we make a one-to-
one comparison of the LBM numerics with a numerical
study using finite-difference scheme for incompressible
Rayleigh—Bénard systems.54’55 Again, the stationary profiles
are perfectly superposing, as shown for both temperature and
velocity in Fig. 3. This ends our validation section. In Sec.
IV we apply the new algorithm to study compressible dy-
namics, as it is the case of RT instabilities in thermal strati-
fied flows. In the latter case, the small spurious oscillations
close to the walls are obviously completely unimportant, be-
ing the bulk the only physically interesting region.

IV. RT SYSTEMS

Superposition of a heavy fluid above a lighter one in a
constant acceleration field depicts a hydrodynamic unstable
configuration called the RT instability49 with applications on
different fields going from inertial-confinement fusion®® to
supernovae explosions57 and many others.™ Although this
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FIG. 3. Comparison between one-dimensional vertical cut of the stationary
temperature and velocity profiles after transition to a convective two-rolls
configuration. Up: T(xy,z) at x, such that x,=0.69L,. Circles correspond to
the LBM; solid line corresponds to a finite-difference calculations (FDM)
(Refs. 54 and 55). Down: the same of above plot but for the streamwise
velocity, u,(x(,z). In the insets we show a gray-scale coded representations
of the convective stationary rolls in the whole 2D domain (up: temperature;
down: streamwise velocity).

instability was studied for decades it is still an open problem
in several aspects.59 In particular, it is crucial to control the
initial and late evolutions of the mixing layer between the
two miscible fluids; the small-scale turbulent fluctuations,
their anisotropic/isotropic ratio; their dependency on the ini-
tial perturbation spectrum or on the physical dimensions of
the embedding space.6O’61 In many cases, especially concern-
ing astrophysical and nuclear applications, the two fluids
evolve with strong compressible and/or stratification effects,
a situation which is difficult to investigate either theoretically
or numerically. Here, we concentrate on the large-scale prop-
erties of the mixing layer, studying a slightly different
RT system than what usually found in the literature: the
spatiotemporal evolution of a single component fluid when
initially prepared on the hydrostatic unstable equilibrium,
i.e., with a cold uniform region in the top half and a hot
uniform region on the bottom half (see bottom panel of Fig.
1). For the sake of simplicity we limit the investigation to the
2D case. While small-scale fluctuations may be strongly dif-
ferent in 2D or 3D geometries, the large-scale mixing layer
growth is not supposed to change its qualitative
evolution.>® A gray-scale coded snapshot of a typical RT
run is shown in Fig. 4 showing all the complexity of the
phenomena. Let us start to define precisely the initial setup.
We prepare a single component compressible flow in a 2D
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+L,/2

0 Ly

FIG. 4. Spatial configuration for a typical RT run with L XL ,=800
X 2400, T,=0.95, T,=1.05 at time /=47 (run A in Table I).

tank of size, L, X L,, with adiabatic and no-slip boundary
conditions on the top and bottom walls and with periodic
boundary conditions on the vertical boundaries. For conve-
nience we define the initial interface to be at height z=0, the
box extending up to z=L_/2 above and z=-L_/2 below it
(see Fig. 1). In the two half volumes we then fix two differ-
ent homogeneous temperatures, with the corresponding hy-
drostatic density profiles p, verifying64

d.po(2) == gpo(z). (16)

Considering that in each half we have py(z)=Tpy(z), with T
fixed, the solution has an exponentially decaying behavior in
the two half volumes, each one driven by its own tempera-
ture value. The initial hydrostatic unstable configuration is
therefore given by

To(2)=T,, po(z)=p,expl-glz-2)/T,], z2>0,
To(2) =T, po(z) = pyexpl—glz—2z)/T,], z2<O0.
(17)

To be at equilibrium, we require to have the same pressure at
the interface, z=z.=0, which translates in a simple condition
on the prefactor of the above expressions,

puTu= prd' (18)

Because T, <T, we have at the interface p,> p,. As far as
we know, there are no exhaustive detailed calculations of the
stability problem for such configuration, even though not too
different from the usual RT compressible case. 95 Ag said,
this is not the common way to study RT systems, which is
usually meant as the superposition of two different miscible
fluids, isothermal, with different densities.* %567 A far as
compressible effects are small, one may safely neglect pres-
sure fluctuations and write—for the case of an ideal gas,

b o 09

p T
and the two RT experiments are then strictly equivalent.
Moreover, in the latter case, if one may neglect the depen-
dency of viscosity and thermal diffusivity from temperature,
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TABLE I. Parameters for the two sets of RT run. Atwood number, At=(7,-T,)/(T,+T,); adiabatic length,
Ly=(T;=T,)c,/ g (c,=2); viscosity v; gravity g; temperature in the upper half region, 7,; temperature in the
lower half region, 7,; number of separate RT run N, normalization time, 7=+/L,/(gAt) [not to be confused
with the relaxation time of the lattice Boltzmann model (2)]. Given the parameters here used, the typical
resolution obtained is good enough to get an agreement better than a few percent on the global exact balance
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between kinetic energy growth and the sum of dissipation plus buoyancy force.

At L L L

x (4

Run A 0.05 800 2400
Run B 0.4 1664 4400

4%10° 0.001
1.6X10* 0.1

8 Tu Td Nconf T
510 095 1.05 50 1.8 x10*
1X107* 0.6 14 35 6.5x 103

the final evolution is indistinguishably from the evolution of
the temperature in the Boussinesq appr0)<imation.6]’62 Here
we will study both the case of small compressibility and
small stratification, where pressure is always close to its hy-
drostatic value, p~p,, and the case when compressibility
becomes dynamically relevant, changing the global large-
scale evolution of the mixing layer.

A. RT instability in thermally active flows:
The role of the adiabatic gradient

The main novelty in the setup here investigated is due to
the presence of new effects induced by the adiabatic gradi-
ent, which in our case can be written as in Sec. III,
Baa=g/c,. In order to understand the main physical point, it
is useful to think at the RT mixing layer as equivalent to a
(developing) Rayleigh-Bénard system with an imposed
mean temperature gradient.ﬁs’69 Let us denote with L,,(r) the
typical width of the RT mixing layer at a given time as mea-
sured, for example, from the distance between the two eleva-
tions where the mean temperature profile is 1% lower or
higher than the bottom and top, respectively, unmixed tem-
perature values, L,;=z,—z4 where (T(x,z,)),=1.01T, and
(T(x,z4)),=0.99T,. It is well known that the temperature
tends to develop a linear profile inside the mixing region, the
resulting instantaneous temperature gradient is then given by
B(t)=(T,~T,)/L,,(t), and it decreases in time inversely to
the growth of the mixing length. As a result, soon or later (if
the box is tall enough) the instantaneous temperature gradi-
ent will become of the same order of the adiabatic gradient,
B(t) ~ B,a» and the growth of the mixing length will stop.
One can define an instantaneous Rayleigh number, driving
the physics inside the mixing layer, estimated as in Sec. III,

TNy 4
Ra(1) = (g/TO)LTz(t)[B(tz— Badl
(k! poc,,) (v Po)

. (20)

where (-) indicates quantities evaluated at the middle layer.
It is clear that for small times, B(r) <[B,q, the effective in-
stantaneous Rayleigh number is high: the system is unstable,
and the mixing length grows. On the other hand, as time
elapses, the vertical mean temperature gradient decreases,
until a point when, B(¢) ~ B, the instantaneous effective
Rayleigh number becomes Ra(r)~ (1) and the system
tends to be stabilized. We can then identify an adiabatic
length,

Lad = (Td - Tu)/:Bad = CPAT/g,

which determines the maximum length achievable by the
mixing layer, in our configuration. Let us notice that in the
absence of the adiabatic gradient, the Rayleigh number
would continue to grow indefinitely, being proportional to
the third power of L,,(), as it is the case for usual RT
systems. If the profile coinciding with the adiabatic gradient
is going to be fully stable depends on the top/bottom bound-
ary conditions imposed on the whole spatial domain. In any
case, when temperature matches the adiabatic profile, the
system strongly feel it, showing a sudden slowing down of
the mixing layer growth. To our knowledge, this effect has
never been predicted before, within this framework. We
show in Fig. 5 the evolution of temperature profiles when
adiabatic effects are important. It is clear how the mixing
layer growth is strongly slowed down when L, (t)~ L,g;
afterward only very slow relaxation process happens further,
mainly at the border between the edge of the mixing layer
and the fluids region with homogeneous temperature.

A possible way to estimate quantitatively when and how
the adiabatic gradient starts to play a role in the growth of
the mixing length is to use a simple phenomenological clo-

600

adiabatic gradicn“c

400

200

-200

-400

-600 ‘ ‘ ‘ : ‘
0.94 0.96 0.98 1 1.02 1.04 1.06

(T(x,251))z

FIG. 5. Temporal evolution of the mean temperature profile, (T(x,z,1)), at
changing time, r=ndt, with &t=1.57,4 n=1,2,...,7. Notice that the profile
approaches more and more the linear behavior dictated by the adiabatic
gradient, (T(x,z,1),=(T,+T,)/2—-zg/c,. Time is adimensionalized by using
a reference time based on adiabatic quantities, T,q=+/L,q/(§AT/T,).
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sure for large-scale quantities in the system. We start from
the self-similar scaling predicted by Refs. 70 and 71 for the
homogeneous not stratified growth,

(L0 =4a"g At L, (1) (21)

which has a unique solution (beside the trivial one, L,,;=0) in
terms of the initial value, L,,(%,),

—_—
Lml(t) = Lml(IO) + 2\/Lml(t0) a<L) At g(t - tO)
+a't At g(r— 1) (22)

Equation (21) offers the advantage to be local in time, i.e.,
one may extract the value of &) by a simple evaluation of

the plateau in the ratio (L,,;)?/L,,, time by time. In order to
minimally modify the above expression considering the satu-
ration effects induced by stratification, we propose to use

Lml(t) :|

[L‘mm]z:4a<”gAthz<r)w{ i (23)

ad

where ¢=i(x) must be a function fulfilling the condition
—1 as x—0 (that is, for L,q—o°), in order to recover Eq.
(21) for the not stratified case when the adiabatic gradient
goes to zero. We further add the requirement of reaching the
adiabatic profile with zero velocity and acceleration, enforc-

ing a strict irreversible growth, i.e., L,,;=0, as it must be for
the case of miscible fluids. Under these assumptions, it can
be shown that a simple form for the function ¢ is

ll,( l%) = C{ e TLLa)/Lyal _ ( 2Lad—_L) :| ) (24)

ad Lad

where the prefactor C must be set equal to 1/(e—2) to com-
ply with the prescribed boundary conditions. Equation (23)
must be considered as a zeroth order phenomenological way
to take into account of the adiabatic gradient in the mixing
layer evolution.

We integrated numerically Eq. (23) testing the result in
Fig. 6 where we show that it is possible to fit the global
evolution of the mixing length L,,(f), by using reasonable”
values of &P, for all times, including the long time behavior
where L,,(t) ~ L,y In the same figure, we also show the be-
havior of the time-dependent effective Rayleigh number
(20), estimated using the instantaneous mixing length, L,,().
As one can see, after the initial monotonic growth of the
turbulent intensity, there appear a sudden slowing down, as
identified by a strong reduction in the effective Rayleigh
number. We can therefore safely assume that the solution of
our Eq. (23) is a good generalization of Eq. (22) including
also the adiabatic gradient effects.

B. Compressible effects and mixing layer growth

As shown in Sec. IV A, effects induced by the adiabatic
gradient start to appear when the mixing length becomes of
the order of the adiabatic length L,/ (1) ~ L,4. It is neverthe-
less possible to study the limit L(z) <L,4 but still observing
important effects due to compressibility. Indeed, compress-
ibility due to stratification is controlled by the Atwood
number. From the expression of the instantaneous Rayleigh
number (20) one may compute the typical length scale at
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FIG. 6. Evolutions of the mixing layer L,,,(r) versus time with two different
adiabatic lengths: (a): L,=800, g=2.5X10"* (triangles); (b) L,4=400,
g=5X107* (circles); Both cases have At=0.05, v=0.001, and «=0.002.
Solid bold lines correspond to the theoretical prediction (23) with o)
=0.05. Continuous line corresponds to the evolution of the instantaneous
Rayleigh number (20) calculated for case (a), scale on the right y-axis.

which turbulence will be maximal, i.e., the largest extension
of the mixing layer up to which the Rayleigh number is still
growing, before decreasing because of the adiabatic gradient.

This is just given by the maximum of Ra() as a function of
time, which is reached at a characteristic time ¢*, such that

Lt) = 214= 2257 5)

4 4g

It is also possible to estimate the typical Mach number
reached at the maximal turbulent intensity, considering that
hydrodynamical velocities can be estimated as V.
~d/dtL,,(1*)=2a™ At gr* and that the minimal sound speed
is given, in our units, by v,= \r’Fd, we get for the Mach num-
ber at the maximal turbulent intensity: Ma~At\c"a(L)cp,
where we have used Eq. (22) to estimate r* at a given L,,(1").
As a result, dynamical compressibility is only driven by the
Atwood number at fixed c,. Using the typical values of
a') ~5x 1072, as reported in the literature,”’ and plugging
the correct prefactor, we estimate Ma~ 0.4, for the largest
Atwood we could achieve At~ 0.4.

It is well known that compressibility effects break the
up/down symmetry in the mixing layer propag:{ation,m’71
downward spikes (cold fluid blobs) move faster than upward
bubbles (hot fluid blobs). Such effect is completely missing
in Boussinesq approximation where there is a perfect up/
down symmetry, by definition.

Neglecting slowing down effects induced by the adia-
batic gradients, i.e., limiting the study of the mixing layer
growth up to L, (1) <L,4, we may investigate the symmetry
breaking in our setup at changing the Atwood number. To
give an idea of the effects of compressibility, we show in
Fig. 7 a few instantaneous mean profile of temperature, den-
sity, and pressure for the two Atwood numbers here investi-
gated. From the density and temperature profiles it is easy
detectable, already by naked eyes, the asymmetry present for
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FIG. 7. Temperature (T(x,z;1)),, density {p(x,z;?)),, and pressure {p(x,z;)),, instantaneous mean profiles at different times during the RT evolution. Left
column: At=0.05, times r=37,67,77 (run A, Table I); right column: At=0.4, times r=37,4.57,67 (run B, Table I). Initial hydrostatic profiles are depicted by
solid bold lines. Notice the asymmetry for the mixing layer growth in the latter case. Notice also the appearance for high Atwood of hydrodynamical pressure
fluctuations superposed to the hydrostatic pressure profiles. Both effects are absent in the small Atwood case.

the high Atwood case At=0.4 in the growth of the mixing
layer, with the colder and denser front moving faster. Also,
the appearance of nontrivial fluctuations in the pressure
around the hydrostatic profile, for the case at At=0.4, are the
clear evidence of compressible effects at play. Both the
asymmetry and the pressure fluctuations are completely ab-
sent for the case at small Atwood (left panels of Fig. 7, an
evidence of Boussinesq-like thermal fluctuations). All nu-
merical experiments have been performed by preparing the
initial configuration in its hydrostatic equilibrium (17) plus a
smooth interpolation between the two half volumes in order
to have a finite width of the initial interface. The initial tem-
perature profile is therefore chosen to be

T,+T, T.,-T,
+ =

TO(Z) = B 3

w

where with w we define the initial width of the interface and
Z, its unperturbed height (z.=0 in our frame of reference).
Initial density py(z) and pressure py(z) are then fixed by solv-
ing the hydrostatic equation (16) in order to get the hydro-
static solution corresponding to the smoothed temperature
profile.

To destabilize the initial configuration, we follow Ref.
72 and shift randomly the center of the interface by adding
horizontal perturbation at different wavelengths in the range
ke [kmin:kmaxl
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k=kmax
€
Ze— z.(x) = N > cos2mkx/L, + ¢, (26)
k=k

min

where ¢, are random phases and N= \s”kmax—kmin, in order to
have a total amplitude for the initial width almost indepen-
dent on the number of modes. We have tried different ranges
of wavelengths, without observing quantitative differences
in the large time growth of the mixing layer. The ratio
W=¢€/w gives the “wiggling” of the interface, i.e., how much
the perturbation of the interface position is important with
respect to the interface width.

Below, we present results in different geometries, up to a
resolution of L, X L_=1664 X 4400 with different choices of
W. For each parameters set we made typically O(50) sepa-
rate RT evolution, starting from different random phase ini-
tial configurations.

In the sequel, we show a summary of the results from
two typical numerical series of runs, one with At=0.05
(small compressibility) and a second one with At=0.4 (large
compressibility). It is useful to adopt a different definition for
the mixing length in terms of a bulk mixing percentage, in-
troducing the characteristic function (tent-map),

xé]=2¢, 0=£&=1/2, @)
x€l=2(1-9, 12=¢=1,
and defining the mixing length as’!
1 T(x,z) =T,
H)=— f dxdzx[%] (28)
X d— tu

It is easy to realize that if the temperature is fully homog-
enized in the fluid, T(x,z)=(T,+T,)/2, then the mixing
length coincides with the full vertical extension of the box:
H=L if we have two perfectly separated hot and cold re-
gions we have H=0. In the intermediate situation when we
have a mean linear temperature profile for z €[z,,z,] be-
tween two unmixed regions (T=T, if z>z, and T=T, if
7<z,) the mixing length estimated by Eq. (27) is exactly
given by half of the linear region, H=(z,,—z,)/2. The defini-
tion of the mixing length (27) must be preferred with respect
to more common definition of L,,; based on thresholds on the
linear profile, as adopted in Sec. IV A. The former, being
based on a bulk measure, is not affected too much on the
highly fluctuating properties of the interface between mixed
and unmixed fluids. This is particularly important in 2D,
where the averaged profile, being a one-dimensional cut,
may fluctuate a lot (see also Fig. 7). Anyhow, in the case of
a perfectly linear temperature profile the two lengths are ob-
viously related by the relation H=1/26L,,, where & is the
percentage threshold used to identify the mixing front (in
Sec. IV A, 6§=0.99).

Moreover, because here we want to distinguish the
downward growth of the front due to cold spikes from the
upward growth of bubbles, we introduce two different inte-
gral mixing lengths,
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FIG. 8. Growth of H,,(t), run by run, for the two Atwood numbers of run A
and run B. The mixing length width is normalized by the total box width L,.
Notice the evident asymmetry between spikes and bubbles for the high
Atwood case (run B).
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where of course, H(t)=H,(t)+H,(1). Clearly, the o value
ruling the long term quadratic growth of the integral mixing
H is not necessarily the same of L,,;. Typically one expects
the same relation a*=0.58a'Y valid for the definition of the
two mixing lengths, at least for times long enough.

As one can see in Fig. 8 there is a wide scattering of the
mixing length evolution from run to run, where the only
difference between them is the realization of the initial ran-
dom phases. Due to the intense local temperature and density
fluctuations, averaging over horizontal direction is not very
efficient to smooth down statistical fluctuations, and one ob-
serves high variations from sample to sample: many realiza-
tions are needed to extract stable quantitative results on the
long time evolution. In order to have an insight on the typical
fluctuations we decided to analyze run by run and following
two fitting procedures. First, we start from the equivalent of
Eq. (22), written for bubbles and spikes separately,
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Hb(f— to) H;,(O) + H;,(O)t+ a(H) At glz,
H (1 — to) = Hy(0) + H,(0)r + o\ At g2,

with H, (0)=2\H,, S(O)a(H) At g, where 7, must be under-

stood as the time when the initial perturbation is fully en-
tered in its nonlinear regime. In other words, 7, must be
larger than the typical characteristic time of the slowest un-
stable mode. It can be estimated from linear stability analysis
as fy~+L,/(2mg At). A brute force way to extract the
growth rate is to evaluate the ratio a&b —hm,ﬂw H, (1)1
Even, neglecting possible contamination due to stratification,
this is of course valid, only asymptotically, when both depen-
dencies on the initial time #; and on the initial mixing length
H, ,(to) become negligible. As a matter of fact, taking into
account also the maximum time achievable due to numerical
limitations, it is very difficult to extract stable statistical re-
sults on the o fluctuations starting from the brute force
analysis of Eq. (29). For instance we found that a parabolic
fit to our data, taking o . iree, is very sensitive to the initial
time #, and/or the initial distance H, (1y), without allowing
for a systematic assessment of the asymptotic behavior. To
give an idea of the importance of the initial condition versus
statistical fluctuations, we show in the bottom panel of Fig. 9
the results of the asymptotic ratio Hy ,(¢)/#* for two different
series of runs with different initial conditions. As one can
see, even if asymptotically there is a clear tendency to forget
the initial separation, in agreement with Eq. (29) there is not
a well developed plateau, up to the time achievable in out
numerics, indicating the existence of important subleading
effects. The existence of such terms is highlighted in the
inset of the same panel, where a log-log plot clearly shows
the lack of a plateau even for large times.

Another alternative, and more robust way, to extract a®)
relies on the differential equivalent of Eq. (29) given by Egq.
(21) or Eq. (23) when stratification becomes important. Us-
ing Eq. (21), one may directly assess the nonlinear growth
rate, without spurious contamination from initial conditions.

In the upper panel of Fig. 9 we show the same data
plotted in the lower panel but for the ratio

(29)

o =[H, ,(0P[4g AtH, (0], (30)

ie., we address time by time the part depending on
asymptotic growth rate only. It is evident the net improve-
ment in both the extension of the range where o' coeffi-
cients are constant and the clear disentanglement of effects
coming from the initial conditions. Out of the data for

[I-'I&h(t)]z/ 4[g At H ()] we may estimate the statistical
fluctuations of aslz , by making a fit to a constant in a given
time windows. In Fig. 10 we plot the results of fitting the
evolution (30) independently for bubbles or spikes (upward
or downward fronts). From this we learn a few interesting
facts: (i) at small Atwood (upper panel) bubbles and spikes
travel almost with the same statistics, even though a small
asymmetry can be observed in the shape of the whole histo-
gram. The asymmetry is so small, that if averaged quantities
are measured, the differences between them fall within error
bars; (ii) there are no important effects from initial
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FIG. 9. Run A. At=0.05. Analysis of the asymptotic growth rate for spikes,
aim. Bottom panel: mixing length evolution normalized by #* for two dif-
ferent sets of initial width, W=e€/ w=2 (circles) and W=38 (triangles), where
€ is the intensity of the initial perturbation and w is the width of the regu-
larizing tanh initial profile. Data refer to N,.,;=50 for both cases. Notice the
long relaxation time before the two evolution forgets the initial conditions.
This is due to the presence of the prefactor proportional to L,,(z,) in the
subleading linear term of Eq. (22). Inset: the mean value of the data shown
in the body but in log coordinate-same symbols. Upper panel: mean value of
the instantaneous growth rate of spikes extracted from Eq. (30) for the two
initial setup with W=2,8. Average is performed over N_,,=50 separate
Rayleigh-Taylor evolution for the two cases. Error bars are estimated out of
root mean square fluctuations. Notice the more extended range where the
two setups superpose and the extended time interval where aiH) stays con-
stant (notice the different y-scale between lower and upper panels). Results
for bubble evolution are similar and not shown. Both cases are summarized
in Fig. 10.

conditions—compare the two upper panels obtained with
two different classes of initial conditions—at least when data
are fitted using Eq. (30), confirming that the observed spa-
tiotemporal evolutions are dominated by strongly nonlinear
fully developed dynamic; (iii) at large Atwood (lower panel)
the asymmetry becomes evident, spikes are systematically
faster then bubbles, the two evolutions give different mean
vales for aE,H) and a(H) parameters Our measure of the aver-
age global growth rate a™ can be estimated by summing up
the growth rate in the two half cells: a(H)—a(H)+ab

~0.02 is agreement with values typically found in
literature.”’*"" For instance, in Ref. 59 a detailed overview
of numerical results gives for the growth rate of bubbles,
measured on the 99% width, a ~0.025£0.003, in agree-
ment with a(H)—O 0095 = 0. 002 we found for our integral
growth rate (see caption of Fig. 10) taking into account that
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FIG. 10. Top: Run A, At=0.05; histograms of a(fg (multiplied by 103 for the

sake of clarity) as extracted from Eq. (30), at fixed initial width W=2 (left)
and W=8 (right). The fit is done over 50 and 35 different configurations,
respectively. In order to test dependency on the fitting window we
have summed results from two different ranges, te[1.57:4.57] and
t €[2.27:47] in both cases the maximum time is such that the front did not
reach more than 80% of the total vertical extension of the physical domain.
Bottom: Run B, At=0.4. Results from two fitting ranges ¢ € [2.37:5.47] and
t € [37:4.57]. Notice the asymmetry developing for At=0.4, with spikes
traveling faster. An estimate of the mean value for the growth rate in the two
cases gives aiH)=(10i2)X 1073 and aﬁ)”’=(9.5t2)>< 1073 at At=0.05,
while o”'=(14+4)x 107 and o=(9+5)x 1073 for At=0.4.

by definition one expects a factor of 2 between the measure-
ment made on the integral quantity o) and the measure-
ment made on the 99% level set, ™.

The last issue we want to discuss concerns with homog-
enization inside the mixing layer. It is easy to show that in
the Boussinesq approximation for a convective stationary
cell with a mean linear temperature profile, all deviations
from the mean profiles are homogeneous. The case of RT
evolutions investigated here is slightly different. First, when-
ever stratification is important, there is no reason to expect
exactly homogenization inside the mixing length. Second,
and more importantly, homogeneity must be expected only
well inside the mixing layer, far from the up and downside
fronts, where clearly strong nonhomogeneous effects for
both mean and fluctuating quantities must appear. It is inter-
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FIG. 11. Bottom: second order moment of temperature fluctuations [see
Eq. (31)] as a function of the height at times 1=(2.2,3.3,4.4)7. The z-height
has been normalized with the total cell extension L. Top: Flatness
0W(z,1)/[QP(z,1)]* at the same three instants of time as in the bottom
panel. The z-height has been normalized with L,,(¢) in order to show the
self-similarity of the mixing process (the three curves collapse onto each
other by rescaling). Parameters refer to run A in Table 1.

esting therefore to test how homogeneous the statistics is and
also to quantify the degree of mixing. In order to do that, we
introduce the pth order moments of temperature fluctuations,

0P(z,1) = ([T(x,2) = (T(x,2)), ), (31)

In Fig. 11 we show the root mean square fluctuations around
the vertical mean temperature profile 0%(z,1) (bottom
panel) and the flatness, F(z,1)=0"(z,1)/[0P(z,0]% i.e., the
ratio between fourth and squared second order moments of
fluctuating quantities (top panel). As one can see, the root
mean square fluctuations tend—very slowly—to develop a
flatter and flatter plateau inside the mixing region, demon-
strating that if the mixing layer is wide enough, there will be
a larger and larger region where statistics is pretty homoge-
neous. On the other hand, if we plot the flatness as a function
of a normalized mixing length width, it converges toward a
self-similar profile, for any time, where the effects coming
from the two boundaries of the mixing regions are felt inside
the whole layer, without showing any trend toward homog-
enization. This second finding is a clear indication that if
normalized with the total mixing length extension, the region
where the statistics may be considered homogeneous does
not increase with time.

V. CONCLUSIONS AND PERSPECTIVES

We have explicitly computed the continuum thermohy-
drodynamical limit of a new formulation of lattice kinetic
equations for thermal compressible flows, recently proposed
in Ref. 32. We have shown that the hydrodynamical manifold
is given by the correct compressible Fourier—Navier—Stokes
equations for a perfect fluid. We have validated the calcula-
tions against exact results for transition to convection in
Rayleigh-Bénard compressible systems and against direct
comparison with finite-difference methods. The method is
stable and quantitatively reliable up to temperature jumps
between top and bottom walls (stratification) of the order of
AT/T,~?2. We have also applied the method to study RT
instability for compressible stratified flows and we deter-
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mined the growth of the asymmetric mixing layer at chang-
ing Atwood numbers up to At~ 0.4 and to Rayleigh Ra~2
X 10'°. We determined the distribution of the growth rate for
bubbles and spikes, at changing At and we discuss its depen-
dence on the initial perturbation.

We also discussed the importance of the adiabatic gradi-
ent for the growth of the RT mixing layer in strongly strati-
fied systems. In the latter case, we showed the existence of a
maximal width, the adiabatic length L, for the mixing re-
gion. The high flexibility—and locality—of LB algorithm
makes them the ideal playground where to push the reso-
lution, having perfectly scalable performances as a function
of the number of processors in the parallel architecture. In
particular, it is simple to extend such algorithm to deal with
fully 3D systems for ideal, nonideal, and/or even immiscible
two fluids systems. High resolution studies of RT systems
meant to investigate short wavelengths scaling properties of
velocity, density, and temperature fields for high Rayleigh,
with and without surface tension,*® and using a highly opti-
mized LBM algorithm for the cell broadband engine7 are
under current investigation and will be reported elsewhere.
The thermal LBM here proposed still suffers of small spuri-
ous oscillations of temperature and perpendicular velocity
close to the solid boundaries, making it still not appropriate
to study high Rayleigh numbers stationary convection. A
possible way to overcome this difficulty consists in abandon-
ing numerical schemes based on exact streaming and to de-
velop the proposed thermal LBM on a finite-volume scheme.
Results in this direction are out of the scope of this paper and
will be the subject of forthcoming publications.
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APPENDIX A: CHAPMAN-ENSKOG EXPANSION

In this appendix we detail the steps of the Chapman—
Enskog expansion leading to the thermohydrodynamical
equations under the effect of a general forcing term pg. Simi-
lar analysis (without the effect of the forcing) can be found
in Ref. 39. We start from the shifted equilibrium formulation,

At -
fl(x"'clAt’t"'At)_fl(xat)=_7[fl(x’t)_fl]9 (A1)
where, for the sake of simplicity, in the notation of this ap-
pendix we have renamed the equilibrium distribution func-

tion with shifted fields, £°V=7),
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cl 25 18 24

— 32 20 33

FIG. 12. Scheme for the D2Q37 model used for the simulation of thermo-
hydrdoynamics. The “lattice constant” is 7~ 1.1969 as reported in Ref. 28.
The velocity set is such that every projection of the velocity is an integer
multiple of » which is chosen to enforce the unitarity of Hermite polynomi-
als [Eqgs. (A2) and (A3)] up to the fourth order. The relationship between
real and velocity lattices is set by Ax=rAr with Ax and Ar space and time
discretizations. Based on the Hermite-Gauss quadrature procedure (Refs.
15, 28, and 26), the D2Q37 can be regarded as the minimal on grid square
lattice giving with accurate Hermite polynomials up to the fourth order. This
quadrature ensures that the Navier—Stokes thermodynamics is recovered
with full Galilean invariance. Lattice D2Q37 first appeared and was shown
to be minimal for 2d fourth order models in Ref. 26, where the authors
formally showed the equivalence between the condition of norm preserva-
tion and the preservation of the orthogonality property.

fi=filpu? + x, TV +\)

and where x and N\ are general momentum and temperature
shifts for the equilibrium distribution with #®, TV the lat-
tice velocity, and temperature hereafter denoted simply with
u and 7. Central to our analysis is the expansion of the
equilibrium distribution in Hermite polynomials,ls’%’39

- 1
fi= w,E ;a(()")(p,u +ex, T+ ez)\)H;”),
!

with w; suitable weights whose values are reported in Refs.
26 and 28 for the D2Q37 model here used (see also Fig. 12).
For the purposes of our investigation a fourth order approxi-
mation proves to be enough to recover the correct equations
with the right isotropic properties for all hydrodynamical
fields and tensors up to the eighth order.”® The Hermite poly-
nomials are given by the following relations:

HO=1, HV=¢, HP=¢l-4, (A2)

HP =c} - bc,, HY=c}- et + 66, (A3)

and the projection coefficients af)") by
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(o
a,

)= p,
=
0 =pu+ Epx,

af) = p[u® + (T - 1)8] + epxu + €(px* + poN),
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a§ = p[u® + (T — 1) du] + e(pxu’ + p(T - 1)6x) + €(px’u + pu) + €(px’ + pASY).
ag” =plu + (T = 1) 6u® + (T - 1)267] + elpyu’ + p(T — 1) 6xu) + E(px*u’ + phéu® + p(T - 1)8x%) + € (px’u + phéyu) + € (px* + préx?),

where the shorthand notations of Grad'>" for fully symmet-
ric tensors are adopted. A possible set of on-site space-filling
lattice velocities can be found in Fig. 12 and fully detailed in
Refs. 15, 26, and 29. If one gives up the requests to have
lattice velocities only on grid points and allows also for out
of lattice discretized velocity sets, the number of vectors
needed to recover isotropy for moments up to order eight can
be reduced.”” We next introduce™ a small separation of scale
parameter € and consider the expansion in € for the distribu-
tion function

{Al = (3,11 + cjoy,a,\")At,

fi=fO+ efV s @7+ EfV + 1V 4 - (A4)
and the rescaling of the time-space derivatives,
d,— €y, + €dr+ O(€); 9 — €d;. (A5)

This allows to rewrite the streaming term in the lattice
Boltzmann equation as

filx+c At t+Af) —fix,1) = €A + EAr + EA3+ -+,

where for our purposes it is enough to consider terms up
to A2,

Ay = (000 + 0,0 + claf) At + 3 (ciclaia f10 + cioidr £ + ciaion £ + 01,01 V)AL

If we further rescale the shifting36 fields as

u—u+ex, T—T+éeN, (A6)

the shifted equilibrium can be further seen as a power series
in €,

7

wi

(

1)

filpu+ex.T+EN) =f+ eV + €72 + 7% + 1Y

+...’

with

1 1 1
= pH” + puH(V + Ep[u2 +(T-1)61H? + gp[lﬁ +(T=-1)oulH® + Zp[u4 +(T=1)éu+(T-1)28THY,

1 1 1
= pxHW + —pyuH? + g(p)(u2 +p(T-1)8)H® + ﬂ(pxu3 +p(T-1)xu)HY,

wy 2
2)
1 1 1
< vi/_ = E(p,\/2 +pONH? + g(pxzu +phéu)H + g(p)(zu2 +phéu’ + p(T-1)8x)HY,
!
3)
1 1
== —(px* + PN XYM} + ——(px’u + pA&xu) Y,
w, 6 24
4)
Y
== (px* + Ao H; Y,
wy 24

where, upon dimensional considerations, we have requested that when the forcing rescales as e, the temperature shifting term
is rescaling like € (see also Ref. 36 for a more detailed discussion). Using the Taylor expansion of f)(x+c;At,t+At), we can
impose the consistency in Eq. (A1) order by order in e,
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p
OE):A” =",
; 1
) 0(61):&1£f§0) + cﬁ&iﬁo) =— ;(ﬁl) —]751)),

\

Taking the momenta at the zeroth order in € we can find
some constraints for the higher terms in the expansion in of

the distribution function. Since we know that £i”=7, it

follows from the definition of macroscopic fields that

> Av=0, D=0, D=0, n=1.
1 Ui 1
1 1 1

1. Zeroth order

At the zeroth order in € we can find some constraints for
the higher terms in the expansion of the distribution function.
We know that

FO=FO

It follows that, since we define our macroscopic variables as

2

>

. 1
p=211; pui= 2 fich: PT=BEf1|¢'1—u
/ / /

we immediately recover that

S =S =S e —uPf0 =0, n=1.
1 l l

(A8)

The last equation leads to (we take the convention that
double indexes are summed upon)

(SLJE (Cfc{+uiuj—uic{—ujc;) ln):o’ n= 1
1

that, combined with the constraints for the momentum
(E,ciﬁ")=0), is equivalent to

> Efm=0, n=1.
]

(A9)

2. First order

We first evaluate and also remind the values of some
useful quantities that can be easily obtained knowing the
relation between Hermite polynomials and the velocity set
(A2) and (A3) and also the constraints coming from Egs.
(A8) and (A9),

2afi"=0. X’ =px.
! 1

> clelfi” = pu; + pTsy;,
1
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(A7)

4 1 1. 1. 1 1
O():0,1 + 01,1V + clofiD + <§c;d,aiajf§°> + Ec;a,»alﬁ(” + Ec;a,»a“ﬁ(” + Eal,alﬁ°>)Az = ;(f§2> -7,

1 1
VIS L
1 1

IS i 240 (1 , D )
—E ; =\ zpu”+ —pT |u; + pTu,.
24 €1 2P“ ZP up+ plu;

With this, using the momenta of O(e) in Eq. (A7), we can
easily arrive to the following set of equations:
4

dyp+ di(pu;) =0,

_Xi_,
< o \pu) + 9(puu; + pT ;) = ;8 (A10)

1
K + 3 Ku;+ pTu;] = ;pXiui = p8iltis
\

where we have introduced the total energy of the system,
K ( Lot 4 2 T)
=|- +— s
TP

and where we have recovered the Euler equations for a
forced fluid with the choice

Y=12. (A11)

The last equation can also be written as an equation for the
temperature (using the momentum equation) in the following
form:

s

(01,+uj07j)T+ c T(&lu,)z(), Cy= (A]Z)

S

3. Second order

Using the second of Eq. (A7) and the constraints found
at the first order it is easy to derive

‘ 1
> o)+ chaf) =~ —TE (i =) = pg;.
1 [

(A13)

Furthermore, let us write other useful quantities that can be
derived from the explicit expression of the expansion of the
equilibrium distribution, f;, and from the hydrodynamical

constraints on the distribution f; reported in Egs. (A8) and
(A9),

2 Cjcfclff}O) = [Pui“j“k + pT(aijuk + Syt + 5]/%‘)],
I

(A14)
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clf(z) = cf(z) = (A15)
1 ) 2y, DoTx:
—E clzcﬁ Zl)z ¥ Xi +uipXjuj+pT)(i+—p Xl, (A16)
275 2 2
12 2 iCJ‘]—((O)_l 2
crecify = S puuju + 22 5 i +2pTu
25 2
1 D )
+ EDpTu,-uj+ E+ 1)pT"5;, (A17)
1 vy Lo, 01
= =—px~+ —Dp\. Al8
2; i 2PX 2 p ( )

We next proceed to evaluate some expressions in terms of
the known results obtained at the previous order. In particu-
lar, for the momentum equation, we will have to evaluate the
term

31:(2 Cﬁdﬁo)) = dipuju; + pT ;).
1

If we use the results obtained at order O(e€) in Eq. (A10) we
obtain
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Mjﬁi(PT) - Miﬁ‘(PT)
+pug;+ puigj+ 8,;pd, T + 6;Td,,p.
(A19)

hlpuu;+ pT ;) = = I puuju) —

Next, for the momentum equation, we also have to consider
—_ oy
51:(2 cieify )> + (9k(2 cererfi )>
! I

= 0y (puu; + pT ;)
+ il pu g + pT (S + Sy + Sju;) ]
that can be simplified (with results of the previous order) as

il pui; + pT ;) + Il puiujuy + pT(Sjjuy + Syu; + ;)]

= pTou;+ pTou; + pu;g; + pu;g; — 1] (akuk)
(A20)

For the energy equation we will have to consider

an< —cf ) (91,[<2pu +§pT)u +pTu}

that, again, can be evaluated using the results at previous
order as

1 , D 1 , D 1 , D
1 EP“ +EPT u;+ pTu; | = p(gup)u; + pTg; + EPM +5PT 8i— 0j| uiu; EP“ +5PT =29 (pTuuy)

1, D 1
-0 EpTu + pTu;du; - 5+1 To(pT) - —pTu (Fpy,) + pu;du;.

Finally, we have to consider
2
Sl i
31:(2 Eczﬁo)> + (9}(2 _Clczlf(o )
!
a (1 2, 2 T) T
= - + — i+ i
1t 2pu 2P u;+ plu;
! 2
+9; Epu,-uju + 5 u +2pTuu

+0 lDT b 1]pT?6,
g 2 P Miuj‘l' 2+ pP ij

that gives

dyp+ 1123/pg;Ar) =0,

P8 At
dhpu;) + d(Tpgu;+ TpgU;) + (91,( TIAI) = (7’— 7>z?j(pT(9,-u/ +pTou;+ pug; + pu;g; —

(A21)
U
[
c? c?
L i Lij
S L) S Leetr)
1 1
1 , D
=+ plgu)ui+pTgi+| Spu+ —pT g
D
+ E +1 pT&lT‘l' pT(Ml(QJMj + ujo'?,uj)
1
= —pTu(Guy). (A22)

v

We are now ready to write down the equations at this order
using results in Egs. (A14)—(A22),

pT
5;,"__ (i) ) ,

pgil; At D 1 (1 , 1
00K + [ K7gp+ Tougy + pTg] + 0y, TAI -\ 3 9| p(guu)u; + pTg; + Kg; + B +1)pTd,T + pTu;dju; + pTu;du; — — pTudpuy) | = = EpTZg‘ + EDp)\ .
¢, T



055101-17  Lattice Boltzmann methods for thermal flows

Phys. Fluids 22, 055101 (2010)

Summing up all orders, we note that we can freely add at order O(€?) all the gradients of terms ()(g?) and also double gradients
of terms O(g) because they would be O(€%). Also, defining the hydrodynamic velocity as uEH)=u,-+ giAt/2, we reconstruct the

following equations:

daip+ d(pu™) =0,

At pT
a(put) + (?j(pui.H)u}H)) =—0d(pT) + g; + (’r— 7)(9j[pT(?iu}H) + pT{?juf-H) - 5ij73kuiﬁ>:| s
v

1 At
G + g [KDu + pTu™ = pgruy + 2—(p72g2 +Dp)) + (T_ ?) ﬂi[(
T

with
1 D
K =1 ~p(u™)?+ —pT|.
2;o(u ) 5P

In order to recover the correct thermohydrodynamical evolu-
tion we need to obtain the correct forcing in the equation for
the total energy in terms of the hydrodynamical velocity
fields, i.e.,

1 Atgk
pgin+ 5~ (pT 8"+ DpN) = pgiar” = pgk<uk + T)

that leads to

_ 1Ar-17g’
- e

N (A23)
In conclusions, expressing everything in terms of the hydro-
dynamical fields, it is easy to realize that the final expression
(A23) coincides with the one given in the body of the article
(9). Notice that up to now we have used a single-time relax-
ation LBM, as given by Eq. (Al). Therefore, the final
Fourier—Navier—Stokes equations are constrained to describe
fluids with unit Prandtl numbers, Pr=v/(k/c,)=1. It is pos-
sible to generalize the approach by using a multirelaxation
time version of the same algorithm.28 Even though, in the
latter case, there exists a small mismatch in the viscous dis-
sipation term appearing in the energy balance.

APPENDIX B: BOUNDARY CONDITIONS

In this appendix we detail the technical steps leading to
the desired hydrodynamical boundary conditions for the
physical systems analyzed in the paper, i.e., an ideal gas
under the effect of gravity g=(0,—g) acting along the nega-
tive z direction (i.e., g is positive). Similar ideas can be ap-
plied to the case of a generic volume or internal force acting
also in the streamwise x direction. For the sake of concrete-
ness we explicitly report the case of the lower boundary con-
dition with the upper boundary condition being a straightfor-
ward generalization. Let us call the poststreaming
populations f; while keeping ff*”’ " to identify the pre-
streaming populations. Moreover, all the populations will
also undergo collisions and therefore there will be a net gain
of momentum so that the hydrodynamic fields will be the
average of pre- and postcollisions. For a given computational
boundary, there are three layers of points labeled by x* from
now on (see also Fig. 13), where some unknown populations

1 1
-D+ 1>pT(9,-T+ pTuf»H)&ju;H) + pTu;H)ﬂiu}H) - C—PMEH)(ﬁkuch)) s

v

have to be set soon after the streaming step. We use the
freedom to set these populations in such a way that the
measured hydrodynamic quantities such as the streamwise
(uiH)) and vertical (uiH)) velocities and also the temperature

(1) are fixed to some given boundary conditions on those
lattice layers. The conditions to be fulfilled up to the second
order in the Chapman—-Enskog expansion (see also Appendix
A) are

1
W) = ——2 fi(x")e], (B1)
p(x®) /
(1)) — ) oo A
uy (x") = p(x*)EZﬁ(x )ci 58 (B2)
gT(H)(x.v;) + %[(M(H))2+ (U(H))z:l(x.v;)
1
EGR 3

In the following we show how to determine the unknown
populations on the first three layers (those coming—after
streaming—from node outside the domain) in order to set the
vertical velocity to zero on layer 3, with any temperature and
streamwise velocities:

u(z=3)=0,
u(z=3) = u,
T‘(H)(Z = 3) = T3.

Similarly we can fix any desired profile for temperature and
velocity on layers 1, 2,

ugH)(Z:2):v2; uiH)(zz 1)=v,,
wMz=2)=uy uz=1=u,
T (z=2)= T,; TH(z=1)= T,.

We will define only the case of homogeneous boundary con-
ditions along the streamwise component but the method is
general and can deal also nonhomogeneous cases. Imposing
a given set of boundary conditions means defining the set of
unknown outgoing populations in the first three layers in
terms of the set of in-going and outgoing known populations
such that mass is conserved and the hydrodynamical fields
defined above are the wanted ones.
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FIG. 13. Scheme for the lower boundary layer for the simulation of thermal flows under the effect of gravity. The relationship between real and velocity
lattices is set by Ax=rAt with Ax and Az space and time discretizations, and r the lattice constant whose value is r~ 1.1969. The locations at r and 2r indicated

in this figure correspond to the locations z=2 and z=3 discussed in the text.

In this way, if the computational boundary extends from
the mesh point z=1 up to z=L_, the real physical domain is
between mesh points z=3 and z=L_ -2, i.e., it is in these
points that we exactly verify the condition of no-slip,
no normal velocity and given temperature for the hydrody-
namical fields on the solid walls. Fields at points z=1,2 and
z=L,—1, L,—2 may be used to better stabilize the algorithm
close to the boundaries. All details refer to the 37 speed
model D2Q37.

1. Layer 1

As evident from Fig. 13 we have to determine some
“outer” poststreaming populations (/=2,10,18...), whereas
other poststreaming populations (/=4,12,20...) are known.
To keep a compact notation, let us also introduce the subsets
1V, U", and [\ which are identified by the following
conditions:

1Y ={c,.c;<0}, UD={c,ci>0},

1 () = {C 1C = 0}
We choose to define the outer populations in the layer 1 as

T S—)
S >¢“>

with N a constant and qﬁ]l
choose in the form

e UM (B4)

a suitable population that we

d);') =1+c¢;-pV+ %c,zE(”

where pil), pgl), and EV are unknown at this level and must

be chosen in such a way that the hydrodynamical tempera-
ture and momentum exactly reproduce the desired values on
this layer, T ,u;,v;. Also, mass conservation should be ful-
filled. This latter condition is naturally imposed by setting

(B5)

N= S fee,

1erM

The requirement that 7 ,u;,v, are exactly reproduced leads
to the following system of equations:

( 1

=—2> fic,

M,!
1 At

< 01=Vp21ﬁc§—?g, (B6)

=2,/
L M,D !
where we have defined the poststreaming mass as

E fgl,*).

1
/elg)

1
+—(ui+v
D(‘ .

M,=N+

In the 2, of system (B6) we have known populations com-
ing from the bulk but also outer populations to be determined
with Egs. (B4) and (B5). The resulting system is therefore an
algebraic system for p)((l), pgl), and EV. We have solved the
system whose final solution is

m_~ C3d2+ C2d3

pz 2
—aszCr,+a)cy

p(l) _ 612C3d1 - a2c1d3 - Cl3Czd1 - C3a1d2 + Cld3d2 + 01C2d3

! 51(4302 - azcs) '
E(l) _ - a3d2 + a2d3 ’
azCy = drC3
where
a,=26(p,—0)r, b,=-40Nr,
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Cl=47(ﬁx_0x)r2’ dlzls(ﬁx_ox),

a,=26(p.— 0.)r—54Nr*, ¢, =47(p.— 0.)r* = 9INr,

dy=15(p,- 0,) = 26Nr, ay=26(E—-0,)r-9INr,

~ 367 ,,
c3=41(E-0,)r* - TNr“, dy=15(E-0,) - 4TNr?,

with

1
ﬁ:(vl)=MpM1, 15<ZI)=MPU1+EM[7gAt’

(7 IN2 L (#DN2
E= T1M+2M[<px) +(@)7)

and

i

0x= E Cfﬁl’*), OZ: E
rer) rer!

_CIJA1 )

,<1)

In the above r is the lattice constant whose value for the
D2037 model is r~1.1969.%®

2. Layer 2

Situation goes similarly with respect to the previous
layer. We new have to define the subsets 1?, U@ and 182) as

={Cl,C7<—r}, U(2)={c,,cf>r},

1§ ={epci=r}.
We then identify some coarse grained quantities as

N= 2 f* M,=N+ X £

el 1)
and define some local momentum and energy fields,

~(2) =M Mz

1
PP =M, + S Mpght,

EY=T,M, +2—[(i5‘2))2 ()21

We next define

0= 2 cfi?™. 0.= X cif?”,

1el? lel?

1o
Oe_ 2 Ecl 2 ),
1el?

a;=19(p,— 0)r, b, =-12N7?,
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59 _ _
_?(px_ox)rza d1=8(px_0x)’
a,=19(p.— 0.)r — 4TINr?,

59 147
= ?(pz - Oz)r2 — TNr3,

~ 147
d,=8(p.— 0,)—19Nr, a3=19(E-0,)r- 71\7#,
59 ~ 475 ~ 59
3= ?(E— 0,)r* - TNr4, dy=8(E-0,) - ?er.

In terms of these constants and parameters we can set

C3d2 + C2d3
pgz) 372 " %

—asCy + anCs ’
2 _ (12C3d1 - 02C1d3 — (13C2d1 - c3a1d2 + C1(13d2 + 01C2d3
X - b
b(azcy = axcs)
E(z) _ - a3d2 + a2d3
9
a3Cy = dxC3

construct suitable populations,
=14 ep-p 1B,

and define the outer populations in the layer 2 as

f(2 k) —¢(2)
S T S

that is enough to set the hydrodynamic velocity to u, and v,
while keeping the hydrodynamic temperature to 7.

l e U(z),

3. Layer 3

As also evident from the Fig. 13, only three populations
are unknown on the third layer (they are populations [
=24,25,18). In this way we do not have enough freedom to
choose the desired hydrodynamic velocities and temperature.
It is anyhow possible to require a zero vertical hydrodynamic
velocity (v3=0) with a generic streamwise hydrodynamic ve-
locity and temperature (u3,T3). Again, let us introduce the
following sets:

U = {e),¢i > 2r}, I ={c;c; = 2r}.

The boundary condition for the unknown populations is set
as

o=

d) s leU(3),
I >¢“> :

1
¢§3) =1+ cfpj(j) + ECIZEG),
and we choose pf) and E® to set the desired hydrodynami-
cal streamwise velocity (u3) and temperature (73) while
keeping the vertical hydrodynamical velocity to zero. The
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resulting algebraic system is solved with the solution

b 5 _bidy—diby

E(3)_ ) - k)
bz px albz
with
_ 2 _ 29/~ 2
a;=-2Nr", =3[P, —-0Jr,
d=3(p,- 0., by=F(E-0)r - 4N,

d,=3(E-0,) - 3N,

where
_ z xjﬁ.*) 0. = z 1 2 A3,%)
= CJr s e~ 26‘[ [
1el® 1e1s)
0

ﬁ'i?)) = MI,M?,,
E®=T:M, + —[(“W + (),

%3)—3Nr+ 2 cf<3*)

lelgo)
M,=N+ E f“*
IEI
A
———1+l&gAt,
3r 23r
A= E el 13’*)’ Ay= E f<3>{ + 2 f“’*’pre
1e1?) rer) I,i==3r

(B7)

This whole algorithm for layer 3 now is ensuring a zero
vertical hydrodynamical velocity and arbitrary u; and T;.
Still, mass conservation is not fulfilled and to do that we
need to redefine the rest population as

ff)S,*) =ff)3,*,pre) “N+ E ﬁﬁ%,*,pre).

Lej==3r
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