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Standard and anomalous transport in incompressible flow is investigated using multiscale 
techniques. Eddy diffusivities emerge from the multiscale analysis through the solution of an 
auxiliary equation. From the latter it is derived an upper bound to eddy diffusivities, valid for both 
static and time-dependent flow. The auxiliary problem is solved by a perturbative expansion in 
powers of the P&let number resummed by Pad6 approximants and a conjugate gradient method. The 
results are compared to numerical simulations of tracers dispersion for three fows having different 
properties of Lagrangian chaos. It is shown on a concrete example how the presence of anomalous 
diffusion in deterministic tlows can be revealed from the singular behavior of the eddy diffusivity 
at very small molecular diffusivities. 0 199.5 American Institute of Physics. 

I. INTRODUCTION 

The problem of passive scalars diffusion in incompress- 
ible velocity fields has a theoretical and practica1 importance 
in many fields of science and engineering, ranging from 
mass and heat transport in geophysical flows to chemical 
engineering and combustion.’ The main interest is in the un- 
derstanding of the mechanisms leading to transport enhance- 
ment. Taking into account the molecular diffusion, the mo- 
tion of a fluid element can be described by the following 
Langevin equation: 

dx 
t ==vix,t) -I- tit), (1) 

where v(x,t) is the Eulerian incompressible velocity field at 
position x and time t, and v is a Gaussian white noise with 
zero mean and correlation function 

(ai(t)~jli(t’))=2D,Si~~(t-f’). (2) 

The coefficient D, is the (bare) molecular diffusivity. If 
e(x,t) denotes the concentration of tracers, the Pokker- 
Planck equation” associated to (1) is 

d,e+(v.d)e=D&x (3) 

The incompressibility condition d-v=0 is explicitly used in 
(3). Our interest will be mainly concentrated on the long- 
time behavior of (3). For time scales much longer than the 
characteristic microscopic time, the evolution of O(x,t) is 
dominated by long-wave disturbances. The equation for 
these slow modes can be obtained by the usual “hydrody- 
namic” analysis3 

Jt(@=D; & (@+**a, i,j=l,..., d, 
1 1 

(4) 

where (e) is the concentration field averaged locally over a 
volume of linear dimensions much larger than the typical 

length 1 of the velocity field and d is the space dimension. 
The corrections in (4) involve terms containing at least three 
derivatives of (8), which can be neglected in the weak gra- 
dients limit 1 a( @I/( 0) Q 1- ‘. Equation (4) then reduces to a 
diffusion equation, with an effective diffusion tensor Dt (the 
eddy-diffusivity tensor). The latter has a direct practical im- 
portance since it measures the spreading for very long times 
of a spot of tracers: 

i,j= 1 ,.*-, d. (5) 

where x(t) is the position of a tracer at time t and the aver- 
age is taken over the initial positions or, equivalently, over an 
ensemble of test particles. Note that the existence of the limit 
in (5) ensures that the transport is a standard diffusion pro- 
cess, at least for a very large time. This is the typical situa- 
tion, but there are also cases showing the so-called anoma- 
lous diffusion: the spreading of particles does not vary 
linearly with time but as a power law tY, with y#l (where 
r> 1 and r< 1 correspond to superdiffusive and subdiffusive 
behaviours, respectively). Transport anomalies indicate the 
presence of strong correlations in the dynamics, even at large 
time and space scales. An interesting possibility is the one 
discussed in Ref. 4. The flow is periodic, but the Lagrangian 
phase space is a complicated self-similar structure of islands 
and cantori. Particles are thus transported in a coherent way 
longer and longer as D, is decreased, linaIly leading to 
anomalous diffusion in the absence of any molecular diffu- 
sion. 

The aim of this paper is using multiscale techniques5 to 
study standard and anomalous diffusion. The multiscale for- 
malism is discussed in Sec. II, where the calculation of eddy 
diffusivities is reduced to the solution of an auxiliary equa- 
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tion. From the latter, upper and lower bounds for eddy dif- 
fusivities are derived in the general case of time-dependent 
flows. The calculation of the exact analytical expression of 
the eddy diffusivity for parallel flows and random flows 
&correlated in time is also reviewed. Random flows with a 
short correlation time are discussed more thoroughly in the 
Appendix. Numerical methods are generally needed to solve 
the auxiliary equation leading to the eddy-diffusivity tensor 
for a generic flow. Two possibilities are discussed in Sec. III. 
The first one is to perform a Pad& resummation of the series 
expressing the eddy diffusivity in powers of the P&let num- 
ber. The second is the use of a conjugate gradient algorithm. 
Both methods are used in Sec. IV to analyze three flows 
having a standard diffusive transport (the A BC,6-7*8 the BC, 
and a two-dimensional time-dependent flow). The results are 
compared to’numerical simulations of tracers dispersion, i.e., 
numerical integrations of (1). The flows have been chosen 
since they can be considered as prototypes for three very 
different situations with respect to Lagrangian chaos,‘.” i.e., 
the chaotic properties of the deterministic equation obtained 
from (1) suppressing the noise. If the latter equation is inte- 
grable, as for the BC flow, the diffusion process is expected 
to be strongly sensitive to the detailed geometric structure of 
the Eulerian field and to the presence of molecular diffusion. 
For a nonintegrable flow we expect a competition between 
coherent transport in the nonchaotic regions (which turns out 
to be dominant in the ABC flow) and random advection. The 
limiting case is the one of a strongly turbulent flow, like the 
time-dependent flow, where molecular transport can be ig- 
nored on a large range of scales and chaotic advection is 
dominant. The study of anomalous diffusion is presented in 
Sec. V, where the flow introduced in Ref. 4 is analyzed. A 
singular behavior of the eddy diffusivity at high P&let num- 
bers is shown to be a signature of anomalous transport. A 
reliable procedure for predicting the presence of anomalous 
diffusion is thus provided. 

II. THE MULTISCALE TECHNIQUE 

A powerful method for studying transport processes is 
the so-called multiscale technique (also known as 
homogenizatior?). The general idea is to exploit the scale 
separation in the dynamics. In the specific case of passive 
scalars the use of the technique was proposed in Ref. 11 and 
it is recalled here for the sake of completeness. Specifically, 
let v(x,t) be an incompressible velocity field, periodic both in 
space and time. (The technique can be extended to handle the 
case of a random, homogeneous, and stationary velocity field 
with some nontrivial modifications in the rigorous proofs of 
convergence.12) The scalar field O(x,tj evolves according to 
the Fokker-Planck equation (3). The units are chosen in 
such a way that the periodicities of v are O( 1). Note that by 
a Galilean transformation one can always reduce to the case 
with zero mean flow. Assume the original velocity field be 
v(x,t)=u(x,t) +U, where U is the mean velocity and u has 
zero mean. In the new frame of reference x’=x-Ut, the 
velocity field becomes u(x’+Ut,t). In particular, a flow 
which is static in the original frame becomes time dependent, 
possibly leading to nontrivial transport effects.i3 We shall be 
interested in the dynamics of the field 8 on large scales as- 

sumed to be 0( l/~) , where &l is the parameter controlling 
the scale separation. Because we expect the scalar field to 
have a diffusive dynamics, the associated time scale is 
O( l/2). 

The presence of tbe small parameter E naturally suggests 
to look for a perturbative approach. The perturbation is, how- 
ever, singular’4 since a constant field is a trivial solution of 
(3). The origin of this phenomenon can be grasped in the 
following simple situation. Let the large-scale field have a 
single wave number E, Because of the advection term in (3), 
a small-scale tield ?i is produced and the wave numbers 
spaced from those of v by multiples of E are generally ex- 
cited. The interaction between the latter modes and those of 
v, due again to the advection term, is responsible for the 
transport coefficients renormalization. The essential shift of 
order E in the wave numbers of 3 with respect to those of v is 
missed by regular perturbation expansions. Asymptotic 
methods, like multiscale techniques, are thus needed. 

In addition to the fast variables x and t, let us then in- 
troduce slow variables as X= ~3 and T= &. The prescrip- 
tion of the technique is to treat the two sets of variables as 
independent. It follows that 

di*dj+ EVi; dp d, + E2dT ) (6) 
where d and V denote the derivatives with respect to fast and 
slow space variables, respectively. The solution is sought as 
a perturbative series 

tY(x,t;X,T)= e(O)+ ee(‘)+ e2e@)+ . . . . (7) 

where the functions Otn) depend a priori on both fast and 
slow variables. By inserting (7) and (6) into (3) and equating 
terms having equal powers in E, we obtain a hierarchy of 
equations. The solutions of interest to us are those having the 
same periodicities as the velocity field. The first equation, 
corresponding to 0 ( E’) , is 

d,e(0)+(v.~)e(o)=Do~2e(O!. CS> 

By using Poincare inequality, one can show15 that for peri- 
odic solutions 

-d, f ( e(“))2dV=Do (de(“))2dV I 
27r 2 a~, L 

i )I 
(e(0)j2dv, (9) 

where L is the spatial periodicity length of v (supposed for 
simplicity to be the same in all directions) and the integral is 
over the periodicity box. The inequality (9) implies that the 
solution will relax to a constant with respect to fast variables, 
i.e., 

(10) 

It can be also easily checked that the transient has no effect 
on the large-scale dynamics. The equations at order E and 2. 
are 

(11) 
d,e(2)+(v.d)et2j-~od2e’2) 

, I 

= -dre(o)-~v.v)e~1)+~oV2e~0~+200d~V e(? (12) 
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Since Eq. (11) is linear, its solution can be written as 

e~l)(x,t;x,Tj=e~*)(x,T)+w(x,t).ve(o)(x,Tj, (13) 

where the first term on the right-hand side (RHS) is a solu- 
tion of the homogeneous equation and the vector field w has 
a vanishing average over the periodicities and satisfies 

3,w+ (v-d)\v- Dod2\v= -v. (14) 

Due to the incompressibility of the velocity field, the average 
over the periodicities of the left-hand side (LHS) in (11) and 
(12) is zero. For the equations to have a solution, the average 
of the RHS should also vanish (Fredhohn alternative). The 
resulting solvability conditions provide the equations gov- 
erning the large-scale dynamics, i.e., the dynamics in the 
slow variables. From (12) we obtain 

ibility, the velocity field can be expressed using a vector 
potential as v=rot A. By taking the trace of (18) and inte- 
grating by parts, we obtain 

o~Do(~i~~i)=-(~~wi)=-(A.rot W). co 

Application of the Schwartz inequality leads to 

D0(~~~~~)~(A2)““((rot w)‘)I’~ 

=z(A2)1’2(~i.~i)1’2, (21) 

whence 

04: l,d+ (A2)-d+pe2, 
Do DO 

w 

dr(e(0~)=Dov2(e(o))-(v.ve~1)) , (15) 

where the symbol (e) denotes the average over the periodici- 
ties. The solvability condition for (11) is trivially satisfied, 
reflecting the absence of a-type effects.16’r7 By plugging (13) 
into (15) we obtain the diffusion equation 

The P&let number is denoted by Pe. The result (22), valid 
for time-dependent Bows also, generalizes a similar inequal- 
ity known for time-independent velocity fields.*2,20 The in- 
equality (22) also provides an upper bound for each eigen- 
value since the eddy-diffusivity tensor is positive definite. 

B. Two exactly solvable cases 

dTe’o)(x,Tj=D~v2e~o)(x,Tj , 

where the eddy diffusivity tensor is 

(16) 

D~=DoS,-~(Uiwi)+(Ujwi)]. (17) 

Remark that the structure of the eddy-diffusivity tensor will 
reflect the rotational symmetries of v and is, in general, 
nonisotropic. 

By using multiscale techniques, the calculation of eddy 
diffusivities has been reduced to the solution of auxiliary 
equation (14). Numerical methods are generally needed to 
solve it but there are a few cases where one can obtain the 
solution of (14) analytically. We shall briefly review here the 
case of parallel flows and random flows &correlated in time. 

A. Inequalities for the eddy diffusivity 

The peculiar property of parallel flows is that the veloc- 
ity is everywhere in the same direction, e.g., in three dimen- 
sions, 

Two important inequalities can be derived from auxiliary 
equation (14) and expression (17) of the eddy-diffusivity. Let 
us consider the i-th and the j-th components of (14) and 
multiply by wi and Wi, respectively. Taking the sum and 
averaging, the time derivative and the advective term vanish 
and we obtain 

v(x,Y,z;t)=[u,(Y,z;t),O,Ol, (23) 
and u, cannot depend on x because of incompressibility. The 
advective nonlinearity v.dv is thus vanishing. Thanks to the 
latter, we can easily obtain the solution of auxiliary equation 
(14) as 

-~(U~~~~)+(~~W~)]=D~(dw~~dw~). 

From (18) and (17) it follows that 

(24) 

D~=DolSii-t(du~i.dwj)]. (19) 

This expression of the eddy diffusivity clearly shows that the 
correction to the molecular contribution is positive definite. 
Large-scale scalar transport is therefore enhanced in the pres- 
ence of a small-scale incompressible velocity field. This is 
related to the property of the advection-diffusion equation 
(3) that integrals of even powers of B and the maximum of 
the field are decreasing functions of time. When the dynam- 
ics do not possess the latter property the large-scale transport 
can actually be depleted, rather than increased. For momen- 
mm transport in Navier-Stokes fiow, the depletion can be so 
strong that the eddy viscosity becomes negative, i.e., the av- 
erage flux is in the same direction as the large-scale 
gradient.‘8,‘9 

The Fourier transforms of u, and w, are denoted by fi and 6. 
If F(q,o)=(lt?(q,w)12), it follows that the eddy-diffusivity is 

; Of= Do. (25) 

Here, Df and Df are the components of the eddy-diffusivity 
tensor parallel and orthogonal to the direction of the velocity. 
Equation (25) is a simple generalization of a well-known 
result due to Zeldovich.21 

Let us now consider random flows having a short corre- 
lation time r. Neglecting the diffusion term in (14) we obtain 
a hyperbolic equation which can be formally integrated 
along the characteristics 

w[x(a,t);t]= - 
I 

‘v[x(a,s);s]ds+w(a;O). 
0 

The second inequality also is derived from (18) but it is Here, a denotes the Lagrangian initial position and the Eule- 
an upper bound to eddy diffusivities. Because of incompress- rian position at time t is 
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I t x(a,t)=a+ v[x(a,s);s]ds. (27) 
0 

From (26) Taylor’s expression of the eddy-diffusivity tensor 
immediately follows 

& I y-r&(s) +r;(s)]ds, 
0 

where the Lagrangian correlation function is defined as 

r~(t-.s)=(u,[x(a,t);t]u.i[x(a,s);s]). (29) 

The operation (e) denotes either spatial or ensemble averag- 
ing which do coincide since the velocity field is supposed 
homogeneous, stationary and mixing. Note that the conver- 
gence of the integral (28) is not at all guaranteed. The role of 
a small, but nonzero, molecular diffusivity can be crucial in 
this respect.’ In the limit where 7 is small, the Lagrangian 
correlation rb tends to the Eulerian correlation 
(Ui(X,t)uj(X,s)). For a signal &correlated in time 

(Ui(X,t)Uj(X,s))=2Fijs(t-s), 

the expression (28) reduces to 

Do= Do~i,i~ Fij. 

(30) 

(31) 

The corrections to this result due to a small, nonzero, corre- 
lation time will be studied in the Appendix. 

ill. NUMERICAL METHODS 

Whenever the auxiliary equation (14) cannot be solved 
exactly, numerical methods are needed. In this section we 
shall discuss two different methods that we have used: a 
perturbative expansion and a conjugate gradient algorithm. 

In the perturbative method, the solution w of auxiliary 
equation (14) is sought as a power series in the P&let num- 
ber Pe-l/Do: 

w=Pe w(‘)+pe2 \~(~)_t... . (32) 

We shall concentrate on the time-independent case for sim- 
plicity. By inserting the expansion (32) into (14) the follow- 
ing recursive relation is obtained: 

V 
wt’)=d-’ - 

vdw”) 

Do Pe’ 
Ww=J-2 ___ 

Do Pe ’ 

. . . ,bj=~-2 
V.&k’) 

Dope “‘** 

(33) Ai,jXj=bi, i,j=l,...,V. 

Expressions (33) and the calculation of the average value in 
(17) are conveniently handled in Fourier space, leading to 

DE 

i34) 

Here, the c,‘s are numerical coefficients and the series turns 
out to be in Pe2, rather than in Pe. The contribution of order 
2n+ 1 in (viwj) is indeed antisymmetric, as can be easily 
checked by integrating n times by parts. The series (34) will 
in general converge for Pe<Pe* only, because of singulari- 
ties in the complex plane. A reliable analytic continuation 
beyond the disc of convergence can however be performed. 

In Ref. 22 it was indeed shown that the component of the 
eddy diffusivity in the arbitrary direction ii can be repre- 
sented as a Stieltjes integral 

(35) 

where p;(z) is a positive definite function, possibly singular. 
The Stieltjes integral representation was recently generalized 
to the time-dependent case in Ref. 23. The poles of the eddy 
diffusivity, considered as a function of a complex variable, 
are all on the imaginary axis. Moreover, it follows from (35) 
that Pade approximants of (34) have some interesting pecu- 
liar properties (.see, e.g., Ref. 14). Let us indeed denote by 
Pz(Pe) the diagonal Pade approximant of order n for the 
series (34) and by PE+ , (Pe) the Padi approximant having 
the numerator and the denominator of degree YI and p1+ 1, 
respectively. The following results hold for every value of 
the P&let number: (i) The diagonal sequence PE is mono- 
tonically increasing and has an upper bound; (ii) the se- 
quence PE,l is monotonically decreasing and has a lower 
bound; (iii) the exact value P* of the Stieltjes integral satis- 
fies 

lim PECP*=G lim Pz+, . (361 
n-+m n-m 

The difference (P,“, t - P:) decreases monotonically in n 
and provides an upper bound to the error due to the finite 
order. The quality of the resummation by a finite order ap- 
proximant can thus be checked self-consistently. Padd ap- 
proximants are very sensitive to the precision in the compu- 
tations when the series is extended well beyond its radius of 
convergence. For small values of the molecular diffusivity, 
the coefficients in the series (34) must be then known with 
very high precision. In our numerical calculations we used 
the FORTRAN multiple-precision package (MI’), written by R. 
P. Brent.“4 It should be noted, however, that very high preci- 
sion computations are quite expensive in computers memory 
costs (see the next section). 

The second method that we have used to solve the aux- 
iliary equation (14) is a conjugate gradient algorithm.‘5 The 
components of the vector w are not coupled in Eq. (14), 
which is thus equivalent to a set of scalar equations. All of 
them can be written in Fourier space as 

(37) 

Here, V is the resolution, Xi and bi are vectors having the V 
components equal to the Fourier transform of the relevant 
components of w and -v, respectively. Conjugate gradient 
algorithms are widely used to minimize multidimensional 
functions when the number of dimensions is very large. The 
interested reader is referred to Ref. 26 for a comparison with 
other methods (Gauss-Siedel or Minimal-ResidueBj in an- 
other stiff numerical problem, the inversion of the propagator 
in lattice quantum chromodynamics. The solution of the 
problem (37) is sought by minimizing the quantity (Ax- b)2 
over a sequence of directions orthogonal to the matrix A. In 
all the applications of the method that we have considered, 
the matrix A in (37) is sparse (quasidiagonal). Each iteration 
of the minimization algorithm can be then performed in 
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O(V) operations, rather than O(V*). For a positive-definite 
matrix, the rate of convergence of the method can be shown 
to be exponentialD Our matrix A has actually one zero ei- 
genvalue, corresponding to a constant field. The problem is 
nevertheless well-posed, since both the velocity field and the 
solution w are orthogonal to constants, i.e., have zero aver- 
age. As in any other numerical scheme, the simulations are 
expected to become more and more demanding as the mo- 
lecular diffusivity becomes smaller. An increasing number of 
excited scales requires indeed a greater resolution and the 
rate of convergence of the method decreases when V and the 
P&let number are increased. It is also to be checked that no 
eigenvalue is equal to zero within the numerical accuracy 
because of round-off errors. In the next section it will turn 
out that the previous limitations are not very severe and do 
not forbid to perform high P&let numbers simulations. Note 
finally that Eq. (14) could also be solved by other techniques, 
e.g., those used in Ref. 13 and 27. 

We conclude this section by briefly describing the nu- 
merical scheme used for the numerical simulations of tracers 
dispersion. The latter are done by uniformly distributing N 
particles in the periodicity box and letting them evolve ac- 
cording to the Langevin equation (1). The ith diagonal ele- 
ment of the eddy-diffusivity tensor is then given by N 

u;(t) = lim L- 2 
I-+m 2Nt k=l 

08) 

The indices k and j label the N particles, whereas the index 
i denotes the spatial directions (x, y for the two-dimensional 
case and x, y, z for the three-dimensional case). The numeri- 
cal integration of the Langevin equation was performed by a 
Runge-Kutta algorithm, modified to take into account the 
white noise term.” The integration step was At = 0 .O 1 and 
the total number of integration steps was 106. This ensured a 
good convergence of the quantities (38) also for the lowest 
molecular diffusion coefficients Do used. The number of par- 
ticles used was 1000 for the three-dimensional case and 2000 
for the two-dimensional case. 

IV. STANDARD DIFFUSION 

The aim of this section is to apply the methods previ- 
ously discussed to three flows showing standard diffusion. 
The criterion in the choice of the flows is to have different 
mechanisms of diffusion enhancement, highlighting the in- 
fluence of Lagrangian chaos on transport at high P&let num- 
bers. Specifically, we have considered the following: 

0 The three-dimensional ABC fio~:~~~-’ 

i=.4 sin(z) + C cos(y), 

j=B sin(x)+A cos(z), (39) 

+=C sin(y)+B CO&K). . 

with A=B=C. The ABC flow is a Beltrami time- 
independent solution of Euler’s equations. Equation (39) 
shows Lagrangian chaos but the phase space is also 
made of regular regions, having roughly the shape of a 
tube parallel to one of the three axes (principal vortices). 
l The two-dimensional BC flow 

ii-= c cos(y), 

j=B cos(x), 

obtained by projecting the flow (39) onto the x-y plane 
and translating the x coordinate by r/2. Equation (40) is 
integrable and the streamlines form a closed structure 
made of four cells in each periodicity box. 
* The two-dimensional time-dependent flow 

X=cos(y) + sin(y)cos(tj, 

This flow is not a solution of Euler’s equations anymore 
but it is the superposition of the flow (40) with another 
flow of the same type oscillating with frequency w=l. 
The motivation for introducing a time dependency is to 
destroy all possible “regular islands,” like the vortices in 
(39). 
Note that both the flows (39) and (40) have an isotropic 

eddy-diffusivity tensor. Let us indeed consider the latter for 
simplicity and perform the following two operations: trans- 
lation by rr and mirror inversion with respect to one of the 
axes (e.g., .v-+‘TT-x and y-m-y). From auxiliary equation 
(14) it follows that, under the previous operations, one of the 
components of IV is odd and the other is even, in such a way 
that ( u,wY) = (u,,w,) = 0. The diagonal components are ob- 
viously equal because of the symmetry x-y. For (39) the 
proof is similar, exploiting the fact that the group of symme- 
tries of the flow is isomorphic to the cubic group.’ The flow 
(41) possesses the symmetry x-y, but it is not mirror sym- 
metric. ‘The diagonal components of the eddy diffusivity will 
then be equal but the nondiagonal component does not van- 
ish. For molecular diffusivity 2X 10e3 the components of the 
eddy-diffusivity tensor are, for example, D 1 1 = Dz2= 1.34 
and D r2= 1.27. This implies that the eigendirections are ro- 
tated by an angle of roughly rrl4 with respect to the axes, as 
clearly seen in Fig. 1. In Langevin simulations the previous 
symmetry properties are exploited to reduce the statistical 
fluctuations by averaging over the directions. 

In Figs. 2-4 we present the results for the diagonal com- 
ponent of the eddy-diffusivity tensor of (39)-(41), respec- 
tively. The curves in each figure correspond to numerical 
simulations of the Langevin equation, the Pad& method and 
the conjugate gradient algorithm. To attain the highest P&let 
number the order of Padi approximants used is 54, 115, and 
29 and the number of significant digits in the computations is 
83, 203, and 40, respectively. Concerning the conjugate gra- 
dient algorithm, in Fig. 5 it is shown the power spectrum of 
the auxiliary field w for the flow (41) at Do= 0.0 1. It can be 
seen that the field is resolved enough to ensure the presence 
of a conspicuous exponentially decaying tail. The conjugate 
gradient algorithm turns out to be much more efficient at 
high P&let numbers than the Padd method. The latter has the 
advantage of requiring the calculation of the coefficients of 
(34) only: once they are computed, the eddy diffusivities for 
all values of Do such that the method works are available. 
On the other hand, the memory costs for high precision arith- 
metics are a major drawback and practically restrict the 
method to moderate P&let numbers. 
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FIG. 1. A typical trajectory of a particle moving in the velocity field (41). 
Note the strong difference between transport in the P = j and f = - $ diiec- 
tions. 

From the high P&let number behavior of the eddy dif- 
fusivities in the figures it is clear that the three flows have 
very different dynamics. The main contribution to diffusion 
in the flow (39) comes from the particles in the vortices, 
where the transport is almost ballistic, leading to the ob- 
served l/Do dependence. This is a simple example of maxi- 

1 
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PIG. 2 The diagonal component Of1 as a function of the bare molecular FIG. 4. The diagonaf component Df, as a function of the bare molecular 
diffisivity Da for the three-dimensional ABC flow (39) with A = f3 = C= 1. diffusivity Do for the two-dimensional t ime-dependent flow (41). The con- 
The continuous line is the result of the Padi method. The black and white tinuous line is the result of the Pad6 method. The black and white squares 
squares are the results of the conjugate gradient method and direct simula- are the results of the conjugate gradient method and of direct simulations, 
tions, re.spectiveIy. respectively. 
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PIG. 3. The diagonal component OfI as a function of the bare molecular 
diEusivity Do for the two-dimensional BC flow (40) with B= C= 1. The 
continuous line is the result of the Pad& method. The black squares are the 
results of the direct simulations. 

mally enhanced diffusion, as discussed in Ref. 29. Because 
of the presence of closed cells, a nonzero molecular diffusiv- 
ity is needed to have an effective diffusion in the flow (40), 
as indicated by the I& behavior in Fig. 3. The transport for 
small molecular diifusivities indeed occurs by jumps from 
one cell to another due to the white-noise term in the Lange- 
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FIG. 5. Log-log plot of the energy spectrum of the auxiliary field w for the 
flow (41)at D,,=O.Ol. 

comparable (or even larger) to the typical length of the scalar 
field. Scale-separation breaks down and multiscale methods, 
heavily relying on this assumption, seem to become useless. 
However, a regularization procedure can be adopted in order 
to have standard diffusion. The anomalous behavior can then 
be captured by looking at the dependance of the eddy diffu- 
sivity on the regularization parameter. 

For random flows with long-range correlations, as (42), a 
convenient regularization is provided by an infrared cutoff. 
The singular part in the integral (2.5) is cut out by introducing 
a regularized velocity field vL , such that 

h(qj = i 
F(q), if q>L-‘, 
0, if q-a-1. (44) 

The eddy diffusivity is now finite and exhibits a dependence 

1 Iy 
D;(L)--L - , L%-1, (45) 

vin equation.30-32 The probability of jumping is controlled 
by the width of boundary layers located near the separatrices 
and gives the square-root law. The flow (41) is finally an 
example of strong Lagrangian turbulence. The particles can 
diffuse even in the absence of molecular diffusion, chaotic 
advection is dominant and the eddy diffusivity attains a finite 
value independent of the molecular diffusivity. The figures 
show that for all the flows considered, Langevin simulations 
and numerical solutions of auxiliary equation (14) do agree. 
Moreover, in the latter method no problem of finite statistics 
and simulation times must be overcome. We  conclude that 
multiscale techniques combined with an efficient numerical 
scheme for the solution of the auxiliary equation (e.g., a  
conjugate gradient algorithm or a pseudospectral codes3) 
provide a powerful tool for the calculation of eddy diffusivi- 
ties and transport properties. 

V. ANOMALOUS DIFFUSION 

We shall discuss here how the multiscale formalism pre- 
sented in the previous sections can be used for the problem 
of anomaIous diffusion. At a first sight it would seem that 
multiscale techniques cannot be used anymore. Consider in- 
deed a two-dimensional static parallel flow (23). If the power 
spectrum F(q) defined in Sec. II B is such that 

F(q)-qa, cuG1, for 441, (42) 
then the integral in (25) diverges and the eddy diffusivity is 
not defined. The divergence is actually reflecting the fact that 
the transport in the direction of the flow is 
superdiffusive,34-38 i.e., 

(2(t))-P, v> l/2, (43) 
and it is not a standard diffusion. The particles are indeed 
coherently swept by large-scale modes having wavelengths 

on the cutoff length L. A standard diffusion is however ob- 
served only for spatial and time lengths larger than L and 
t*-L2/Do, respectively. For t-t* the system has indeed a 
crossover, 38 and for times shorter than t* it shows the same 
behavior as in (43). By matching at t* the two different 
regimes, we obtain 

3-a 
v= Ta112. i46) 

For (Y=O, i.e., a  velocity field which is a white noise in 
space, (46) leads to v=3/4, the well-known result of 
Matheron and De Marsily.34 Equation (46) had been rigor- 
ously obtained in Ref. 39. 

In the previous example, the origin of superdiffusion was 
related to the spatial structure of the velocity field. We  shall 
turn now to the interesting case of deterministic velocity 
fields with very long Lagrangian correlation times. The inte- 
gral defining the eddy diffusivity in Taylor’s expression (28) 
may then diverge, indicating the presence of anomalous 
transport for Do= 0. Note, however, that for any Do>0 the 
transport is, in general, a  standard diffusion [see (25) for an 
exampIe of the role of a small molecular diffusivity]. The 
molecular diffusivity can be thus used as a regularization 
parameter, similarly to the cutoff length for parallel flows. As 
in the latter case, by studying the behavior of the eddy dif- 
fusivity close to the critical point (small Do) one should be 
able to have some insights into the anomalous behavior at 
the critical point (Do=O). Specifically, the examples of Sec. 
IV show that in the presence of ballistic channels the eddy 
diffusivity varies as the inverse of Do for small Do, while for 
a system with strong Lagrangian chaos it tends to a constant. 
If Df denotes the eddy diffusivity in the arbitrary direction 
i, we are thus led to interpret a small Do behavior, 

D;-DOp, O<p<l, (47) 

as a mark of anomalous diffusion in the direction i? for 
D,=O. 

For a practical application of the previous argument, we 
have considered the velocity field4 
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.t=$,*+ E sin z, 
y=-d,$+E cosz, 
i= *t 

where 

(48) 

$(x,y)=2[ COS x+cos(*) +,,,i xqq]. 
(49) 

Numerical simulations of (48) have led the authors of Ref. 4 
to conclude that the flow exhibits anomalous diffusion in the 
x-y plane for some intervals of E values in the range (0,5). In 
particular, E= 1 and e=2.3 are such that the diffusion is stan- 
dard and anomalous, respectively. In the anomalous transport 
case, the Lagrangian phase space is a complicated self- 
sin&r structure of islands and cantori. Particles are thus 
transported in a way similar to Levy flights (see Fig. 6). 

Let us now introduce a small molecular diffusivity and 
calculate the eddy diffusivity of the flow (48). The auxiliary 
equation is solved by the conjugate gradient method and the 
results for D,, are presented in Figs. 7 and 8. It is evident 
that for E= 1 the eddy diffusivity tends to a constant for small 
Do, while for ~=2.3 it is observed the behavior Dxx-DOp 
with pzO.7. This value is in rough agreement with the nu- 
merical results of Ref. 4 using the dimensional relation 
p=2v- I obtained by matching the diffusive behavior with 
the anomalous behavior (43) at the typical diffusive time 
0( l/Do). The criterion (47) is thus confirmed and we con- 
jecture that its validity is not restricted to the flow (48) only. 
For a generic deterministic how, anomalies in the zero- 
diffusivity dynamics could then be captured by introducing a 
small molecular diffusivity and looking for a singular behav- 
ior of transport coefficients. As shown in the previous sec- 
tion. the advantage with respect to simulations of the Lange- 

1100 

FIG. 6. A typical trajectory of a particle moving in the velocity field (48) for 
e=2.3 and 0,=0.0003. 
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FIG. 7. The diagonal component IIf1 as a function of the bare molecular 
diffisivity Do for the three-dimensional flow (48), (49) with e= 1 (standard 
diffusion). 

vin equation is that no problem of statistical fluctuations 
must be tackled. The previous procedure should then allow 
to make robust predictions on the presence of anomalous 
transport. 
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APPENDIX: EDDY DIFFUSIVITY FOR 
INCOMPRESSIBLE FLOWS WITH SHORT 
CORRELATION TIME 

We shall derive here the expression of the eddy diffttsiv- 
ity for incompressible flows having a short correlation time. 
Specifically, the ratio rc/~* between the correlation and the 
sweeping time (defined precisely later) is supposed to be 
small. We shall be particularly interested in three- 
dimensional isotropic flows. By the latter we mean velocity 
fields invariant under rotations, but not, in general, under 
parity transformations. When the correlation time tends to 
zero, we recover the case of flows &correlated in time. For a 
Gaussian flow, the first two corrections are shown to be pro- 
portional to (Q-~/Q-~)‘: one of them is related to the correlation 
length of the flow and the second is due to helicity. The 
former reduces, while the latter increases the eddy diffusiv- 
ity, in agreement with Ref. 40. 

Let v(x,t) denote a random, homogeneous, and station- 
ary incompressible velocity field. We shall suppose the flow 
to be isotropic, Gaussian, and the correlation function 

(ui~x,tjuj(y,s))=CiIt-sl)Bij(x-Yj. (Al) 

The mean velocity is equal to zero. The temporal correlation 
function C(t) decays on a time scale of order rc. The spatial 
correlation function is defined via its Fourier transform as 

II E(k) i H(k) Bij(k) = Pia( k) y- - eijlkl - 
4rk 2 4rrk4’ (Aa 

where Pij= Si,- kikjlk2 is the solenoidal projector and eijk 
is the fundamental antisymmetric tensor. The functions E(k) 
and H(k) will be called the energy and the helicity spectrum, 
since 

; (u’)=C(O)/ E(k)dk; {v.w)=C(O)/ H(k)dk. 

iA3) 

The helicity is a pseudoscalar and it is thus vanishing for 
flows having a center of symmetry (parity invariancej. The 
helicity spectrum satisfies the inequality (see Ref. 41): 

IH(kjl~2kE(kj. (A4) 

We shall be interested in the calculation of eddy diffu- 
sivities for very high P&let numbers. The eddy diffusivity is 
given in this limit by Taylor’s expression (28) 

Let us now suppose the correlation time rc of the veloc- 
ity field to be much smaller than the sweeping time rS. The 
latter is defined as 

1 
C(O)J k2E(k)dk (-46) 

and it is roughly the average time it takes for a particle to 
travel a distance equal to the correlation length X. The domi- 
nant contribution in (A5) will be given by Eulerian positions 
x(a,t) close to a: 

x(a,tj=a+ ‘ds v(a,s)+ 
I I 

t 

ddVd(a,s) 
0 0 

I 

s 
X ds’ ul(a,s’)+*-- , 

0 

and the velocity v[x(a,t>, t] in (A5) is 

v(x(a,t),t)=v(a,t)+(Vlv)(a,t) 
I 

dds ul(a,s)+(Vlvj(a,t) 

X 
I 

ids’ u,(a,dj 

+ i (V,V,vj(a,t) ‘ds vl(a,s) 
s 0 

x ‘ds’ u,(a,s'j+-.. . 
J‘ 0 

L48) 

Equation (A8) can now be plugged into Taylor’s expression 
(A5), leading to 

+ $ ids 
J J 

~ds’((V,V,uj)(a,t)ui(a,O)) 

t 
X(ul(a,s)u,(a,s’))+ 

I J 0 
ds zds’{(V,ui)ia,tj 

xu,(a,s’j)((V,u~j(a,sju~(a,Oj) +i++j, (A9) 1 
where homogeneity, incompressibility, and the properties of 
Gaussian statistics have been exploited. Equation (A9) is 
valid for a generic Gaussian random flow and the next terms 
in the expansion are O(Q-~/~,>“. Let us now specialize (A9) 
to the isotropic case. The eddy-diffusivity tensor is then pro- 
portional to Z?ij and its trace can be calculated by using (Al) 
and (A2): 

Tr D$=2/ E(k)dkJidtC(t)- f (1 E(k)dk) 

x( 1 k%(k)dk)/;dt Cir)/otdsi,tds’ C(ls-~‘1) 

+; (1 H(k,dk)21,,dt/;ds C(s) j;ds’ C(t--s’j. 

(AIO) 
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in order to estimate the order of magnitude of the various 
terms in (AlO) it is convenient to consider the case 
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When r,-+O a flow &correlated in time is obtained. In this 
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one, which coincides with (31). Both corrections in (AlO) 
are proportional to ( TJ~~)~, as can be checked by using (A4) 
and the Schwartz inequality. If the correlation function C(t) 
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magnitude, provided the condition J C(t)&= 1 is kept 
fixed. 

Note that for the correlation function (All) the helicity 
contribution in (AlO) is clearly positive while the one related 
to the correlation length is negative. These results have a 
simple physical interpretation. It is convenient to consider 
the Lagrangian correlation time which is proportional to the 
eddy diffusivity. The first correction in (AlO) is due to the 
fact that the presence of a spatial correlation length obvi- 
ously reduces the Lagrangian correlation time. The second 
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longer time for a particle to escape a strongly correlated re- 
gion; the Lagrangian correlation time is longer and the eddy 
diffusivity is increased. An equivalent remark is that a path 
following a helix is discriminated against tightly bending 
back on itself?’ 

A Gaussian flow has been considered but the results can 
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