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The effect of the helicity on the dynamics of the turbulent flows is investigated. The aim is
to disentangle the role of helicity in fixing the direction, the intensity and the fluctuations of the
energy transfer across the inertial range of scales. We introduce an external parameter, α, that
controls the mismatch between the number of positive and negative helically polarized Fourier
modes. We present the first set of direct numerical simulations of Navier-Stokes equations from the
fully symmetrical case, α = 0, to the fully asymmetrical case, α = 1, when only helical modes of one
sign survive. We found a singular dependency of the direction of the energy cascade on α, measuring
a positive forward flux as soon as only a few modes with different helical polarities are present. On
the other hand, small-scales fluctuations are sensitive only to the degree of mode-reduction, leading
to a vanishing intermittency already for values of α ∼ 0.1 and independently of the degree of mirror
symmetry-breaking. Our findings suggest that intermittency is the result of a global mode-coupling
in Fourier space.

The direction of the energy transfer in a turbulent flow
is believed to be determined by the combined effects of all
inviscid invariants which depends on the embedding di-
mensionality and/or on the coupling with external fields
as in conducting or buoyant systems [1–3]. Among the
inviscid invariants, those have a definite sign are key, e.g.,
for fully homogeneous and isotropic turbulence (HIT) in
two dimensions the presence of two positive-definite in-
variants, energy and enstrophy, does not allow a station-
ary transfer of both quantities among the same window
of scales, i.e., there exists a split cascade with energy
flowing towards the large scales (inverse cascade) and en-
strophy to the small scales [4–9]. The three-dimensional
(3D) Navier-Stokes equations (NSE) possess two invis-
cid invariants, energy and helicity (the scalar product
of velocity and vorticity) [10–12]). At a difference from
the energy, helicity is not positive definite and it is ob-
served to be preserved by some energy dissipative events
such as anti-parallel vortex reconnection [13, 14]. As a
result, it is not possible to predict the direction of the en-
ergy and helicity transfers. On one hand, numerical sim-
ulations, phenomenological arguments, dynamical mod-
els, closures and comparison with the inviscid Gibbs-like
equilibrium distribution suggest that both energy and
helicity have a mean transfer to the small scales (direct
cascade) in HIT [12, 15–21]. On the other hand, it is
well known that the external mechanisms such as rota-
tion [22, 23], confinement [24], shear [25] or coupling with
the magnetic field [26] might revert the direction of the
energy cascade due to local or non-local inverse energy
transfer. Strikingly enough, such a reversal of the flux has
been predicted and observed also in 3D HIT with explicit
breaking of parity invariance, i.e., by restricting the dy-
namics to a subset of Fourier modes such that the helicity
becomes sign definite [27–29], suggesting that inverse en-
ergy transfer events are much broader than previously
thought and they are potentially present in all flows in

nature. In this letter we address further the latter obser-
vation by systematically investigating the effects of the
helical mode-reduction in 3D NSE; the aim is to explain
the role played by the helicity in fixing the direction, the
intensity, and the fluctuations of the mean energy flux.

The key new tool is based on a suitable projection of
the NSE allowing to disentangle, triad-by-triad, the prop-
erties of the energy transfer as a function of the percent-
age of negative helically polarized modes kept in the sim-
ulation. The existence of a control parameter is crucial
to address the problem in a quantitative way, tailoring
the degrees of freedom kept and removed, without any
modeling. We start with the helical decomposition [16]
of the velocity field u(x), expanded in Fourier series uk,
as

uk = u+kh
+
k + u−kh

−
k , (1)

where h±k are the eigenvectors of the curl, i.e., ik×h±k =

±kh±k . We choose h±k = ν̂k × k̂ ± iν̂k, where ν̂k is an
unit vector orthogonal to k satisfying the condition ν̂k =
−ν̂−k, e.g., ν̂k = z×k/||z×k||, with any arbitrary vector
z. In terms of such exact decomposition of each Fourier
mode, the total energy, E =

∫
d3x |u(x)|2, and the total

helicity, H =
∫
d3xu(x) · ω(x) are written as

E =
∑
k

|u+k |
2 + |u−k |

2; H =
∑
k

k(|u+k |
2 − |u−k |

2), (2)

where ω is the vorticity. The nonlinear term of the NSE
can be then decomposed in terms of the helical content
of the complex amplitudes, uskk with sk = ± (see [16]).
In a triadic interaction within modes uskk , u

sp
p , u

sq
q , there

exist eight possible helical combinations (sk = ±, sp = ±,
sq = ±) falling into four independent classes because of
the symmetry that allows simultaneous change of the sign
of the helicity of each mode. We consider the dynamics
of an incompressible flow (∇ · u = 0) determined by
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RUN N kf α

RUN 1-8 256 [1, 3] 0− 0.999

RUN 9-13 256 [1, 3] 0.1− 0.9

RUN 14-19 512 [1, 2] 0− 0.9999

RUN 20 512 [42, 50] 1.0

RUN 21 1024 [10, 12] 1.0

RUN 22 1024 [1, 2] 0

TABLE I: N : number of collocation points along each axis.
kf : range of forced wavenumbers. RUN 1-8: decimation of
only negative helical modes with different probability in the
range α ∈ [0 : 0.9999]. RUN 9-13: same α-range of RUN
1-8 but with either positive or negative helical modes (with
50% probability) removed. RUN 14-19: similar to RUN 1-8
at higher resolutions. RUN 20-21: forced at small scales to
observe the inverse energy cascade. RUN 22: same as RUN 1
at higher resolution.

the decimated NSE in which a fraction α of the negative
helical modes has been switched off [30]. We introduce
the projector on positive/negative helical modes as

P±k ≡
h±k ⊗ h±k

h±k · h
±
k

, (3)

where • denotes the complex conjugate. We define an
operator Dα that projects each wavenumber with a prob-
ability 0 ≤ α ≤ 1:

uα(x) ≡ Dαu(x) ≡
∑
k

eikxDαkuk, (4)

where Dαk ≡ (1−γαk )+γαkP
+
k and γαk = 1 with probability

α or γαk = 0 with probability 1 − α. The α-decimated
Navier-Stokes equations (α-NSE) are

∂tu
α = Dα[−uα ·∇uα −∇pα] + ν∆uα, (5)

where ν is the viscosity and p is the pressure. Notice
that the nonlinear terms on the rhs of (5) are further
projected by Dα in order to enforce the dynamics on the
selected set of modes for all times. Despite of the fact
that the α-NSE break the Lagrangian properties of the
nonlinear terms [31], both energy and helicity:

E =
∑
k

(|u+k |
2 + (1− γk)|u−k |

2), (6)

H =
∑
k

k(|u+k |
2 − (1− γk)|u−k |

2), (7)

are still invariants in the inviscid limit, as one can read-
ily derive from (5). We can then identify two extreme
cases: when α = 0 we recover the original NSE, when
α = 1 helicity becomes a coercitive quantity with a def-
inite sign. It has been recently shown that in the latter
case the dynamics of (5) develops a double cascade char-
acterized by an inverse energy transfer with Kolmogorov
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FIG. 1: Evolution of energy at varying α. Notice that all
simulation reach a stationary state except for the case at
α = 0.999 where a constant increase of energy was observed
signaling the existence of a robust stationary inverse energy
transfer.

spectrum E(k) ∼ k−5/3 for wavenumbers smaller than
the forcing scale, k � kf , and a direct helicity cascade
with a k−7/3 spectrum for k � kf [27, 28]. In this letter
we address what happens in between, for 0 < α < 1.
Does there exist a critical value, αc, where the direction
of the mean energy transfer suddenly reverse as observed
in two-dimensional hydromagnetic systems at changing
the forcing mechanisms [32]? Or the helicity plays a
singular role? Are a few modes with opposite helical
sign enough to transfer energy to small scales (αc → 1)
as suggested in [29] from considerations based on abso-
lute equilibrium? What happens to small-scales intermit-
tency in the forward cascade regime? Does it depend on
the amount of negative/positive helical modes retained?
Is the residual small-scales vorticity mainly helical? In
order to answer all of these key questions we have per-
formed a series of numerical simulations at changing α
with a fully-dealiased, pseudo-spectral code at resolution
up to 10243 on a triply periodic cubic domain of size
L = 2π. The flow is sustained by a random Gaussian
forcing with

〈fi(k, t)fj(q, t′)〉 = F (k)δ(k − q)δ(t− t′)Qi,j(k),

where Qij(k) is a projector assuring incompressibility
and F (k) has support only for |k| ∈ [kmin : kmax] (see
Table. I for details of the simulations). In all cases we
have used a fully helical forcing with projection only on
h+
k in order to ensure a maximal injection of helicity h

independent of the degree of decimation α of negative
helical modes.

We start by looking at the spectral properties of
the system following [17]. We define the total spec-
tra restricted to the positive/negative helical modes as
E+(k) =

∑
|k|=k |u

+
k |2;E−(k) =

∑
|k|=k(1 − γk)|u−k |2

and the corresponding quantity for the helicity, H±(k) =
k E±(k). In the case when both energy and helicity are
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FIG. 2: (a) Log-log plot of E+(k) =
∑
|k|=k |u

+
k |

2 vs k at changing α. (b) Log-log plot of E−(k) =
∑
|k|=k(1− γk)|u−k |

2 vs k at

changing α; Inset: rescaled E−(k) with factor (1−α). (c) Semi-log plot of flux of energy; Inset: flux of helicity, at changing α.

transferred forward with a rate ε and h respectively, we
expect the usual Kolmogorov 1941 scaling (K41) for both
energy and helicity spectra [12, 17]:

E(k) ∼ CE ε2/3 k−5/3; H(k) ∼ CH h ε−1/3k−5/3,

which reflects in the scaling for each component as

E±(k) = ε2/3k−5/3[1± C h (εk)−1], (8)

where C = CH/CE . In Fig. 1 we show the time evolution
of the total energy Eα, given in (6), starting from a null
configuration uk = 0 at t = 0 at varying the degree of
decimation from α = 0, for the non-decimated NS case,
to α ∼ 1. We notice first that the time needed to de-
velop the initial release of energy becomes longer with in-
creasing α and that the oscillations around the stationary
regime, for long times, are also larger when α ∼ 1. The
most striking phenomenon is that even for very high dec-
imation of negative helical modes, α ∼ 1, the system is
able to reach a stationary state transferring energy to the
small-scales. In other words, it is enough to have a very
few negative helical modes to develop a stable and sta-
tionary positive energy flux. This is quantified in Fig. 2
where we separately plot the spectra for the two helical
components for various α. The spectrum for the positive
helical modes (Fig. 2a) is almost unchanged and indepen-
dent of α with a clearly developed k−5/3 slope. Whereas
the spectrum for the negative helical modes (Fig. 2b)
tends to react back and become more and more energetic
as α increases; this can be explained by looking at the
behaviour of the energy flux. In Fig. 2c we show that
the energy flux is constant and independent of α for all
α < 1, it reverts only for α ∼ 1. The surprising efficiency
of the nonlinear transfer to find its way to small-scales
suggests that helicity plays a singular role in turbulence:
a tiny mixture of positive and negative helical modes, i.e.,
the existence of a few triads with mixed helicity signs, is
enough to sustain energy transfer across all scales. This
fact was suggested in [16] where the primary role of the
triads with two high-wavenumber modes of opposite he-
licity was realized as the main contribution to the vortex
stretching mechanisms. The constant energy flux must

be mainly carried by triadic correlations with only one
negative and two positive helical modes like

S(k|p, q) = 〈(k · u−q )(u+k · u
+
p )〉+ 〈(k · u+p )(u+k · u

−
q )〉. (9)

This is becasue such correlations are present with proba-
bility ∝ (1− α) while other correlations, with two nega-
tive helical modes, are present with probability ∝ (1−α)2

in the dynamics. Thus one can predict that

u−k → u−k /(1− α), (10)

E−(k) =
∑
|k|=k

(1− γk)|u−k |
2 → E−(k)/(1− α), (11)

because each u−k in (9) must be renormalized by a fac-
tor ∝ 1/(1 − α) in order to keep the triadic correlation
constant. As a result, negative helical modes retain more
energy in order to maintain a constant energy flux. This
prediction is shown to be well realized in the inset of
Fig. 2b, where we show that rescaling E−(k) by a factor
(1−α) leads to a good overlap except for α ∼ 1 where the
fluctuations due to the onset of the inverse energy trans-
fer becomes very large and the above argument possibly
breaks down. Negative helical modes play a singular role.
They act as ‘bridges’ for the energy transfer; they receive
energy from the large-scale positive helical modes and re-
lease it to the small-scale positive helical modes; fewer
they are more intense their amplitude must be to do it
efficiently. Moreover, negative helical modes can trans-
fer energy to other negative helical modes only if they
form a triad; an event that has a probability ∝ (1− α)2

to be present. When negative helical modes become too
rare or absent, i.e., for α ∼ 1, this bridging is not possi-
ble anymore and the energy flows up-scale [27]. Helicity
plays the role of a passive catalyst in the energy transfer.
This can also be seen in the behavior of its flux (see in-
set of Fig. 2c) which is independent of α except at very
high dissipative wavenumbers where the mismatch be-
tween energy of the positive and negative helical modes
induce an increase of the helicity transfer [17, 18]. Prov-
ing the existence of a unique αc for the inversion of the
energy transfer could be extremely hard and it may not
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FIG. 3: (color online) iso-vorticity surfaces for: (a) α = 0, (b) α = 0.5, (c) α = 0.9. Last plot (d) is obtained applying the
projection with α = 0.5 on the original NSE fields without any dynamical decimation. Color palette is proportional to the
intensity of the helicity.

be crucial. The observed value is so close to unity that it
might also be dependent on the realization of γk and/or
on the Reynolds numbers. This issue is left for more
detailed analysis in a future work.
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FIG. 4: Excess Kurtosis measured at the dissipative scale,
rx = η (a) and in the inertial range, rx = 20η (b). (�):
decimation of negative helical modes only; (©): decimation of
either positive or negative helical modes with 50% probability.
(4): aposteriori decimation of negative helical modes from a
velocity field of standard non-decimated NSE.

The second important problem addressed concerns
with intermittency, the presence of strong non-Gaussian
fluctuations at small scales, usually interpreted as a build
up of instabilities in the vortex-stretching mechanisms.
Here we want to understand how intermittency changes
under the helical mode-reduction. A visual inspection of
the vorticity field, in Fig. 3, shows a strong depletion of
filament-like structures, starting from the standard 3D
NSE (Fig. 3a), as a function of the degree of decimation
of the negative helical modes (see Fig. 3b and Fig. 3c).
In Fig. 4 we show the evolution of the excess Kurtosis,

K(rx) =
〈(δrxuαy )4〉
〈(δrxuαy )2〉2

− 3,

of the transverse velocity increments δrxu
α
y = uαy (rx) −

uαy (0) for two values of rx and at changing α, where the
selection of the x − y components is arbitrary because
of isotropy. We found that intermittency is very sensi-
tive to α-decimation; it is enough to remove, from the
dynamics, a small fraction of negative helical modes to
strongly deplete the non-Gaussian character as measured
by the fact that the excess Kurtosis is approaching 0.
We show in Fig. 4 also the results of another numerical
experiment, where we repeated the measurements in a
set of simulations (RUN 9-13) with random decimation;
this time either a positive or a negative helical mode is
decimated with a global probability α. The reduction
in the intensity of intermittency is comparable with the
previous case; suggesting that it is mainly due to the de-
crease in the total number of dynamically active modes
than due to their helical nature. This result is another
manifestation of the passive role of helicity in the energy
transfer mechanism. To further investigate the role of dy-
namic helical mode-reduction, we performed a projection
aposteriori, applying the operator Dalpha to the velocity
field obtained from a fully resolved non-decimated NSE
(α = 0). In this case, intermittency remains almost un-
changed, independently of α, suggesting that only the
dynamical mode-reduction is crucial to deplete the vor-
tex stretching mechanism. For the original NSE positive
and negative helical modes develop the same content of
intermittency (see Fig. 3d for a visual confirmation of this
fact). In conclusion, we have highlighted and quantified
the singular role played by the helical Fourier modes in
the energy flux reversal, showing that a forward transfer
is always preferred as soon as a very small percentage of
modes with opposite helicity are present. In contrast, the
leading intermittent fluctuations are very fragile to any
mode-reduction (helical or not helical) suggesting that
the origin of real-space intermittency must rely on highly
non-trivial and non-local correlations in Fourier space.
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