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ABSTRACT
The effects of different filtering strategies on the statistical properties of the resolved-
to-sub-filter scale (SFS) energy transfer are analyzed in forced homogeneous and
isotropic turbulence. We carry out a priori analyses of statistical characteristics of
SFS energy transfer by filtering data obtained from direct numerical simulations
(DNS) with up to 20483 grid points as a function of the filter cutoff scale. In order
to quantify the dependence of extreme events and anomalous scaling on the filter,
we compare a sharp Fourier Galerkin projector, a Gaussian filter and a novel class of
Galerkin projectors with non-sharp spectral filter profiles. Of interest is the impor-
tance of Galilean invariance and we confirm that local SFS energy transfer displays
intermittency scaling in both skewness and flatness as a function of the cutoff scale.
Furthermore, we quantify the robustness of scaling as a function of the filtering type.

KEYWORDS
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1. Introduction

Understanding and predicting multiscale turbulent statistics are key challenges for
many modern applied and fundamental problems in fluid turbulence dynamics. Of
major interest is the existence of intermittency [1–3], i.e. the development of anoma-
lously intense fluctuations that depart more and more from gaussianity by going to
smaller and smaller scales [1]. Similarly, the statistics of velocity gradients becomes
increasingly intermittent by augmenting the turbulent intensity, generally expressed
by the Reynolds number, a measure of the relative importance of non-linear and linear
terms in the three dimensional Navier-Stokes equations. Anomalous multiscale fluc-
tuations are generic in three dimensional turbulence, being observed at small scales
in homogeneous and inhomogeneous flows such as wall-bounded flows [4–9] and also
in Lagrangian statistics [10–15]. The Reynolds numbers attainable in direct numerical
simulations (DNS) are still far below those occurring in nature and in most engineer-
ing applications. Hence modelling is often unavoidable, and one of the commonly used
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approaches is based on Large Eddy Simulation (LES) [2,3,16–18].
The basic idea of LES is to advance the turbulence dynamics on a coarse-grained
grid with resolution sufficient to capture a large percent of the turbulent kinetic en-
ergy (and variances in other key fluctuating variables). Thus, models are required to
capture dominant effects of the subfilter-scale (SFS) motions on resolved large-scale
dynamics. In this paper we focus primarily on the impact of the details of the filter
type on the statistics of the resolved-scale, both at the energy containing range and
close to the filter scale. We do this using only physical-space data from fully resolved
direct numerical simulations by analysing physical space subfilter-scale statistics with-
out introducing any modeling (a priori analysis [19]).
LES aims to predict large-scale variables, where kinetic energy is concentrated, to ac-
ceptable degrees of accuracy. In practice, the accuracy of the SFS model is generally
assessed in terms of its ability to achieve good agreement with empirical measure-
ments of one-point or two-point statistics such as mean profiles, energy spectra and
the Reynolds stress tensor. On the other hand, it is well known that LES has special
difficulties near solid boundaries, where key integral length scales are proportional to
on distance from the wall and integral-scale motions tend to become under resolved,
and where small-scale energy and vorticity injections/ejections directly impact the
mean flow [2,9,20–24]. The most common LES models replace the SFS stress tensor
with an eddy viscosity form that replaces the true inertial resolved-subfilter-scale dy-
namics with a form that is diffusive in momentum and dissipative in energy. Hence
the inertial (time reversible) contribution to the large-scale dynamics is everywhere
approximated as a dissipative loss [16]. It is increasingly common for LES to be ap-
plied at relatively high resolution with the filter scale well within the inertial subrange
[25,26]. In such cases, there is a need to go beyond first- and second-order statistics to
validate/benchmark the LES accuracy in relationship to the presence of strong non-
Gaussian fluctuations and of resolved-to-subfilter-scale interactions at the smallest
resolved scales [27], which might even lead to backscatter events [28–33]. Moreover,
the need to apply LES to study Lagrangian evolution of small particles or to the
advection/reaction of Eulerian fields (combustion, multicomponent flows etc..), calls
for refined control of the impact of the modeled SFS stress tensor on the multiscale
statistical properties of the predicted resolved velocity field. Furthermore, in many
important turbulent flows a global backward cascade, with a mean negative energy
transfer in the domain exists. This is the case with fast rotating flows [34–36] and
shallow fluid layers [37–41]. In certain circumstances of conducting flows [42,43], the
backward-cascading quantity is the magnetic helicity, which results in some energy also
being transferred from small scales to large scales if the magnetic helicity is nonzero.
The first goal of this paper is to present a systematic investigation of the key statistical
properties of SFS energy transfer that the modeled subfilter-scale stress tensor should
reproduce in order to capture intense non-Gaussian subfilter-scale fluctuations, includ-
ing those responsible of back-scatter. We do that by performing an a priori study of
the multiscale properties of SFS energy transfer from high-resolution DNS on up to
2048 collocation points per spatial direction. In particular, we aim to define a set of
benchmarks for future high-resolution LES of high Reynolds number turbulence where
an inertial subrange of turbulence scales exists and is well resolved, so that strong in-
termittency close to the SFS cutoff creates large departures from Gaussian statistics.
In LES where intermittency at the smallest resolved scales is of interest, benchmarking
the LES model will require evaluation of multi-point statistics of order higher than
second (i.e., beyond (co)variances, spectral properties, correlation functions, etc.). In
previous work [44] intermittency and non-Gaussian properties of the SFS energy trans-
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fer was analyzed at moderate resolution and by using Extended Self Similarity [45,46],
showing that SFS energy transfer statistics are affected by non-trivial anomalous de-
viations from the classical scaling as a function of the cutoff scale. Here we follow the
same approach but we focus here on the impact of the filter and extend the analysis
to much higher Reynolds numbers and by changing the filter properties (see below).
Another motivation for the current analysis is based on more fundamental aspects. It
is usually thought that inertial-range spectral properties in fully developed homoge-
neous turbulence are asymptotically independent of the ultra-violet cutoff, i.e. if the
Reynolds number is large enough, the inertial-range statistics of second-order velocity
correlation functions is independent of the mechanism by which energy is transferred
and absorbed at the small scales since the interactions distributing the kinetic energy
are mostly local in scale [47–49]. This is the main motivation behind the introduction
of hyperviscosity in many numerical studies [50].
However, in LES the statistics at the smallest resolved scales can certainly depend on
the details of the SFS model. Since higher-order moments have a non-local support
in Fourier space, one would expect that they might become progressively more sen-
sitive to the details of the model for the SFS stress tensor. A natural question then
arises, is it possible to devise a LES scheme which minimises the ultraviolet effects on
the resolved inertial range, achieving a scaling as extended as possible for high order
correlation functions too? Improved closures that also predict intermittency would be
helpful also to LES practitioners with a need to push the SFS cutoff to scales small
enough where intermittency effects are important.
Being interested in intense-but-rare statistical properties, we need first to define a set
of SFS observables which are statistically robust and not strongly affected by filter-
induced effects and/or fluctuations induced by coupling amongst the resolved scales.
To this end, we apply a filter formalism that isolates the terms that genuinely couple
resolved and unresolved scales from those that are affected by other contributions due
to self-coupling of the resolved fields. Moreover, we discuss in detail the importance
of focusing on Galilean invariant quantities, in order to avoid strong contamination
from unphysical fluctuations affecting the very intense events (and not the mean single
point properties) [48,49,51].
In what follows, we carry out an a priori analysis of the different components of the
SFS energy transfer by filtering DNS data with different filter thresholds. Since LES
results depend not only on the details of the SFS-model but also on the choice of the
filter and since the filter-induced fluctuations will vary, we are particularly interested
in sensitivity to different filtering types and procedures. Beside the standard sharp
Fourier Galerkin projector and a convolution with a Gaussian kernel we also devise a
novel class of Galerkin filters with a non-sharp probabilistic profile in Fourier space.
The set of new projectors offer multiscale filtering in Fourier space while maintaining
formal and practical advantages specific to projector filters.
The analysis is structured as follows. We begin in section 2 with a brief description
of the DNS database and the numerical methods applied to generate and analyse the
data. In sec. 3, we motivate and introduce the filtering formulation and investigate the
properties of different filter-dependent components of the SFS energy transfer under
Galilean transformations. We show that an apparent breaking of Galilean invariance
of the SFS-energy transfer term can be remedied by introducing a more refined dis-
tinction between the contributions to the SFS energy transfer which require modelling
and those which do not. The first results from the apriori analysis are presented in
sec. 4, where we measure the fluctuations of different components of the SFS-energy
transfer. We provide measurements of intermittent scaling of the SFS-energy transfer
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at high Reynolds numbers without using ESS. Section 5 is dedicated to an analysis
of different filtering procedures on the statistics of the SFS energy transfer and we
introduce a novel class of Galerkin filters with a non-sharp profile in Fourier space.
We summarise our results in sec. 6.

2. Description of the datasets

Data id N Re` ε U ` ν α T0/Teddy

V 1024 2570 1.9 1.8 1.2 0.0008 1 25
H1 1024 8000 1.9 1.9 1.3 2× 10−8 2 7
H2 2048 26000 1.5 1.6 1.1 5.7× 10−20 4 6

Table 1. The identifiers V and H distinguish between hyper and normal viscosity, where α is the order

of the Laplacian. N denotes the number of grid points in each Cartesian coordinate, U the rms velocity,

` = (π/2U2)
∫
dk E(k)/k the integral scale, ν the kinematic viscosity, ε the dissipation rate and T0/Teddy

the steady-state run time in units of large-eddy turnover time Teddy = `/U . The values given for ε, U , ` are

time averages. The integral-scale Reynolds number is Re` = U`/ν for dataset V while for the hyperviscous

simulations it is defined as Re` = C(`/ld)4/3, where C is a constant estimated by comparing the two definitions
for dataset V and ld is the scale corresponding to the maximum of k2E(k), see Fig. 1 (b).

In order to generate the datasets for the a priori analysis, we numerically solved the
three-dimensional Navier-Stokes equations using both normal and hyperviscosity

∂tv = −∇ · (v ⊗ v)−∇p+ ν(−1)α+1∆αv + f , (1)

∇ · v = 0 , (2)

where v denotes the velocity field, p is the pressure divided the density, ν the
kinematic viscosity, f an external force and α the power of the Laplacian. The
density has been set to unity for convenience. As indicated in Table 1, data with
normal viscosity, α = 1 are denoted as (V), data with hyperviscous dissipation
α = 2 and α = 4 are identified through the labels H1 and H2, respectively. We use a
pseudospectral code on up to 20483 collocation points in a triply periodic domain Ω
of size L = 2π. Full dealiasing is implemented by application of the two-thirds rule
[52]. The homogeneous and isotropic external force f is defined via a second-order
Ornstein-Uhlenbeck process in a band of Fourier modes k ∈ [0.5, 1.5] [36,53]. The
resolution of the simulations quantified in terms of the grid spacing dx and the
Kolmogorov microscale ηα = (ν3/ε)1/6α−2 [50], where ε is the dissipation rate, is
ηα/dx ' 0.7 for all simulations.

Each dataset consists of a set of instantaneous velocity fields sampled after the simu-
lations have reached a statistically stationary state. The steady-state energy spectra
E(k) and the dissipation spectra k2E(k) obtained by averaging over the sampled data
for datasets V, H1 and H2 are shown in Fig. 1(a) and (b), respectively. As can be
seen from Fig. 1(a), the inertial range for the hyperviscous simulations extends over
a larger range of wavenumbers, and the bottleneck [54] which occurs in hyperviscous
simulations at high wavenumbers is clearly visible towards the end of the inertial range
for datasets H1 and H2.
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Figure 1. Kinetic energy spectra E(k) (a) and dissipation spectra k2E(k) (b) for datasets V, H1 and H2.

The dissipation spectra k2E(k) instead of their hyperviscous counterparts k2αE(k) are shown because the
former are connected to the (physical) velocity field gradients, which are used to estimate a Reynolds number

for the hyperviscous simulations in a consistent way compared to run V. See also table 1.

3. Background considerations

As said, in this paper we will focus only on a priori analysis of direct numerical sim-
ulations of isotropic turbulence. The main interest is to have a systematic benchmark
of key turbulent statistical properties to validate real applications of LES. In the fol-
lowing we briefly summarise the main subtleties connected to the definition of filter
in LES and on its impact on the multiscale statistics of the sub-grid energy transfer.
The governing equations for LES are derived by first applying a filtering operation to
the incompressible Navier-Stokes equations

∂tṽ +∇ · (ṽ ⊗ v) = −∇p̃+ ν∆ṽ (3)

where the filtered quantities are defined through a filter G∆, and ∆ indicates the filter
threshold. The filtered velocity field is then given by

ṽ(x, t) ≡
∫

Ω
dy G∆(|x− y|) v(y, t) =

∑

k∈Z3

Ĝ∆(|k|) v̂(k, t)eikx , (4)

with Ĝ∆ being the Fourier transform of G∆. The aim of LES is to describe the dy-
namics of the larger scales of the flow, hence the filtering operation given by G∆ is
a “coarse-graining” procedure which removes scales smaller than the given threshold
∆. In this paper we will use a Gaussian kernel Ĝ∆(|k|) = exp(−|k|2∆2/2). In order
to explicitly separate the terms depending on the resolved and sub-filter scales it is
useful to introduce the filtered SFS tensor (F-SFS):

τ̃∆
ij (v,v) ≡ ṽivj − ṽiṽj , (F-SFS) (5)

and to rewrite eq. (3) as

∂tṽ +∇ · (ṽ ⊗ ṽ) = −∇p̃−∇ · τ̃∆(v,v) + ν∆ṽ . (6)

Note that the definition of τ̃∆
ij comes from the exact application of a low pass filter

to each term of the Navier-Stokes equations. So, as long as the unclosed SFS-tensor
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is known, the filtering procedure is still exact and the equations (6) describe the
evolution of a filtered field at all time. In application, the filtering protocol would
be useless without the introduction of a closure model for τ̃∆(v,v) in terms of the
resolved-scale velocity i.e., τ̃∆(v,v)→ τ̃∆

mod(ṽ, ṽ), such that

∂tṽ +∇ · (ṽ ⊗ ṽ) = −∇p̃−∇ · τ̃∆
mod(ṽ, ṽ) . (F-LES) (7)

In the following we will refer to formulation (7) as the “Filtered LES” (F-LES). The
solution to eq. (7) leads to a break of the property of being a ‘filtered’ field, because
the product of two or more filtered quantities is not the result of the application of
a filter and both the advection term on the left-hand side (LHS) and the closure
for the SFS-tensor on the right-hand side (RHS) will introduce uncontrolled errors
in any defiltering procedure. More precisely, since the filter retains all scales it is
in principle invertible and one could recover the full field from the filtered data.
However, replacing the SFS stress tensor with a model would break this property
of the filter and lead to errors in the reconstructed data [2] (notice that defiltering
can be an ill-conditioned operation). As a result, any practical implementation of (7)
will need to evolve the equations on a numerical grid and make sure to introduce
some effective numerical dissipation scheme that will remove the energy transferred
subgrid. Moreover, the original exact filtered equations (6) do depend on the shape of
the filter, while in (7) we have lost any connection with the original filtering protocol,
opening the question about how to validate the closure. In principle, one should
reverse-engineer the procedure: given the results of a LES evolution, derive the filter
shape that would give the correct agreement if applied to a fully resolved evolution
[2]. Still, there are problems to define the set of observables that should be used to
follow this procedure.

A natural way to avoid the above complications is to use a filter which is a projector, i.e.
a filter that produces the same results when operating multiple times on the same field.
In terms of its Fourier expression, a projector filter has the property that: (Ĝ∆(|k|))2 =

Ĝ∆(|k|) [2]. In what follows, the distinction between projector and non-projector filters

is reflected in the notation (·) for projected quantities, while (̃·) is used to indicate the
application of a filter which is not a projector. The most common projector widely used
in LES for both real and Fourier applications [2,3,17,55,56] is a Galerkin truncation
for all wavenumbers larger than a given cutoff kc= π/∆

v(x, t) ≡
∑

k∈Z3

Ĝ∆(|k|) v̂(k, t)eikx =
∑

|k|<kc

v̂(k, t)eikx . (8)

In order to define the evolution of v(x, t) properly, i.e. such that it is confined to the
same finite-dimensional vector space, we need to project the non-linear term of eq. (6),
resulting in:

∂tv +∇ · (v ⊗ v) = −∇p−∇ · τ∆(v,v) + ν∆v . (9)

In equation (9) the projected SFS stress tensor (P-SFS) is now given by:

τ∆
ij(v,v) = vivj − vivj , (P-SFS) . (10)
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Again, in real a posteriori [19] implementations the P-SFS stress tensor in eq. (10)
should be replaced by a model, i.e. τ∆(v,v)→ τ∆

mod(v,v), and one obtains

∂tv +∇ · (v ⊗ v) = −∇p−∇ · τ∆
mod(v,v) , (P-LES) (11)

which in the following is referred to as “Projected LES” (P-LES). Notice that we now
have a consistent definition of the ‘filtering’ protocol and we should have called the
unclosed tensor in (10) ‘subgrid’ differentiating it from the one called ’subfilter’ in (6)
[20]. The difference originates from the fact that the Galerkin truncation removes all
Fourier modes below the cutoff scale, while a non-projector filter does not necessarily
do so. Hence unlike for a non-projector filter, for a Galerkin projector there is an
exact correspondence between the finest grid scale and the cutoff scale. In order to
simplify the discussion, hereafter we will use subfilter everywhere,keeping in mind the
above difference. In the formulation (11) the inertial term is also a projected function,
and the evolution of v(x, t) is confined to a manifold whose dimension is specified by
the chosen threshold kc (see below for other possible definition of non-sharp Fourier-
projectors). It may be worth mentioning that in mathematical analysis, one can use
a sequence of decreasing filter scales of a Galerkin projector to converge to a weak
solution of the Navier-Stokes equations along a subsequence [57]. It is important to
realize that one might have used a formulation like eqs. (10) and (9) for filters which
are not projectors. This would not solve the dichotomy among filter-scale and grid-
spacing and, more importantly, double filtering the inertial term with a non-projector
filter breaks the Galilean invariance of the corresponding SFS stress tensor as shown
in Appendix A.1. Using a projected LES has also the advantage (in principle) that the
shape of the filter explicitly appears in the space-time evolution, because of the need
to further project the non-linear term (and the modelled SFS tensor) at each time step
in (9). In practise, any implementation of the F-LES procedure requires removal of
aliasing errors while no such errors occur in the P-LES procedure. In any case, aliasing
error does not play a role in the a priori data analysis carried out here, since all data
were obtained from fully dealiased DNS.

3.1. A priori definition of the energy transfer using the F-SFS or P-SFS
formulations

A key benchmark quantity to validate the accuracy of a LES is the ability to reproduce
the correct mean and fluctuating properties of the SFS energy transfer. In the smooth
filtering approach, the resolved kinetic energy evolves according to

1

2
∂t(ṽiṽi) + ∂jBj = −Π̃∆ (12)

where Bj = ṽi(
1
2 ṽiṽj + p̃δij + τ̃∆

ij ) is a spatial transport term that redistributes the
resolved energy among different spatial positions while

Π̃∆ = −τ̃∆
ij (∂j ṽi)) = −τ̃∆

ij s̃ij , (13)

is the instantaneous SFS energy flux, where s̃ij = (∂iṽj + ∂j ṽi)/2 denotes the resolved
strain-rate tensor. In the formulation based on a projector filter the local resolved
kinetic energy evolves differently, since from Eq. (9) we obtain the following evolution
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equation for the resolved kinetic energy

1

2
∂t(vivi) = −vivj∂jvi − vi∂jpδij − vi∂jτ∆

ij , (14)

where the first term on the RHS is no longer a total derivative, since

vivj∂jvi = ∂j(vivjvi)− (∂jvi)(vjvi) . (15)

The equation for the SFS energy transfer therefore becomes

1

2
∂t(vivi) + ∂jAj = −Π

∆
+ (∂jvi)(vjvi) (16)

with Aj = vi(vivj + pδij + τ∆
ij) as the flux term. Now the RHS of Eq. (16) consists of

the P-SFS tensor

Π
∆

= −τ∆
ijsij , (17)

and the additional term

π∆ = (∂jvi)(vjvi) (18)

which is not Galilean invariant. Note that in Eqs. (12), (14) and (16) we have not
explicitly written, for the sake of simplicity, the viscous contributions. We will omit
the viscous terms in the remainder of this paper.

The lack of Galilean invariance of π∆ does not break the global Galilean invariance
of the eq. (16) because of cancellations with terms on the LHS (see Appendix A).
Nevertheless, it is clear that adopting this formulation, the total SFS energy transfer
using the P-SFS stress tensor is:

P∆ = −Π
∆

+ π∆ = −(∂ivj)vivj (19)

is not pointwise Galilean invariant. The non-Galilean invariant term, π∆ is closed in
terms of the resolved fields and must not be considered a ’true’ SFS transfer. Indeed,
it is easy to realise that its mean value over the whole volume is always vanishing:

〈π∆〉 =
1

|Ω|

∫

Ω
dx (∂jvi)vjvi = 0 , (20)

where we have used the filter property 〈fg〉 =
〈
fg
〉
, the projector property G2 = G,

and incompressibility to write (∂jvi)vjvi as a total derivative. The net SFS energy

transfer P∆ consists of genuine subgrid-scale coupling term Π
∆

and a contribution π∆

due to self-coupling of the resolved scales which breaks pointwise Galilean invariance.
The pointwise lack of Galilean invariance of the ‘unsubtracted flux’ results in unphys-
ical large fluctuations as shown in [49] which might lead to different multiscale results

compared to those of Π
∆

and Π̃∆ (see below Sec. 4.2).
The lack of Galilean invariance can be solved by exploiting the freedom to add and sub-
tract a term that will make both the RHS and the LHS separately Galilean invariant.
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ID stress tensors energy transfers

F-SFS τ̃∆
ij = ṽivj − ṽiṽj Π̃ = −s̃ij τ̃∆

ij

P-SFS τ∆
ij = vivj − vivj Π = −sijτ∆

ij

P-SFS(nG) τ∆
ij = vivj − vivj P∆ = −sijvivj

Leonard τ∆,L
ij = vivj − vivj Π

∆
L = −sijτ∆,L

ij

Table 2. Summary of definitions of stresses and instantaneous energy transfers. The label “nG” indicates
that the corresponding SFS energy transfer is not Galilean invariant.

In particular, we rewrite the energy balance as:

1

2
∂t(vivi) + ∂jAj = −Π + (∂jvi)τ

∆,L
ij +

1

2
∂j(vjvivi) , (21)

where we have introduced the Leonard stress [58], τ∆,L
ij :

τ∆,L
ij ≡ vivj − vivj , (22)

plus another term which is a total derivative and that can be moved to the LHS of
eq. (16). Hence kinetic energy balance based on the P-SFS stress tensor becomes:

1

2
∂t(vivi) + ∂j

(
Aij −

1

2
vivivj

)
= −Π

∆ −Π
∆
L , (23)

where Π
∆
L = −τ∆,L

ij sij is the energy transfer corresponding to the Leonard stress. The

RHS and LHS of Eq. (23) are now separately Galilean invariant, and we have a way to
assess the properties of the energy balance without being affected by spurious effects.

The transfer involving SFS quantities is given by Π
∆

alone because the Leonard stress
describes only a coupling among resolved scales and its the contribution to the mean
SFS energy transfer vanishes when averaged on the whole volume. In Fig. 2 we show
the joint probability density function (pdf) of the two contributions to the total SFS
energy transfer for a typical cutoff in the inertial range, kc = 30, from where it is clear

that Π
∆

and Π
∆
L are nearly uncorrelated.

In summary, the use of a projector to define the filtering operation results in a sharp
distinction between two SFS energy transfer contributions, one described by a genuine

correlation among resolved and sub-filter scales, Π
∆

, and another one due to a self-

coupling of the resolved scales, Π
∆
L . On the other hand, the total F-SFS energy transfer

Π̃∆ contains local contributions which are not strictly associated with the subfilter

scales, since it has the same formal structure as Π
∆

+ Π
∆
L . Only the global average

on the whole volume of the SFS energy transfer is correctly described by the F-SFS
approach, while its local values Π̃∆ are affected by contributions coming from self-
coupling of the resolved scales. A summary of all definitions of SFS stresses and energy
transfers is given in table 2.
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Figure 2. Joint pdf of the P-SFS energy transfer and the Leonard component for a sharp projector at cutoff

wavenumber kc = 30 from dataset H1.

4. Anomalous scaling properties of the SFS energy transfer

In order to build models which are able to describe higher-order statistical features of
a turbulent flow, it is important to distinguish physically relevant fluctuations from
unphysical fluctuations. Unphysical fluctuations can be induced by the filter, e.g. a
sharp Galerkin projector is discontinuous in Fourier space and therefore induces Gibbs
oscillations in physical space, which can contaminate the measured statistical signal
[59]. Fluctuations can also originate from the residual self-coupling of the resolved
scales and from a lack of Galilean invariance of the SFS energy transfer, as discussed
in further detail in the coming section. Obtaining a clear statistical signature of the SFS
energy transfer fluctuations is especially important for the assessment of backscatter
contributions. It is known that the pdf of Π̃∆ obtained using a smooth Gaussian filter
has large tails skewed toward the positive values, in agreement with the existence of
a direct energy cascade both in mean and for local intense events [17,44].
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4.1. Mean properties

Figure 3 shows a comparison between the total flux across a spherical shell of radius
kc in Fourier-space,

Π(kc) =

kc∑

k′=1

∑

|k|=k′

ikj ûi(k)∗
∑

p∈Z3

ûi(p)ûj(k − p), (24)

and the different contributions to the SFS energy transfer for a sharp projector 〈Π∆〉
and 〈Π∆

L 〉 as a function of the cutoff wavenumber kc = π/∆ and for different Reynolds
numbers. As expected, the contribution originating from the Leonard stress vanishes,

〈Π∆
L 〉 = 0, while the Fourier flux is exactly reproduced by 〈Π∆〉 due to the Parseval

identity. Here and hereafter we adopt the notation 〈·〉 to indicate an average over the
entire physical volume. For comparison, we also show the mean SFS energy transfer
obtained from the Gaussian filter as a function of kc = π/∆. The latter does not match
exactly the Fourier-space energy flux at small filter thresholds, indicating non-trivial
coupling among degrees of freedoms above and below the filter width. Deviations
between 〈Π̃∆〉 and Π(k) can indeed be expected, since the 〈Π̃∆〉 can be expressed as
weighted average in Fourier-space centered around kc = π/∆ [47,60], and there is no
a priori reason for Π(k) to match its weighted average.
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Figure 3. Comparison between the normalised Fourier-space energy flux and the normalised P-SFS (squares)

and F-SFS(dots) energy transfers and the Leonard component (triangles) as a function of the cutoff wavenumber
kc = π/∆ for datasets V (blue/dark gray), H1 (black) and H2 (red/light gray). The F-SFS energy transfer for

the smooth Gaussian filter is shown for dataset H1 only.

4.2. Effects of Non-Galilean invariance

According to Eq. (16), the Non-Galilean invariant definition of the P-SFS energy

transfer P∆ consists of two terms: Π
∆

, which is Galilean invariant and couples the
resolved and the unresolved scales and the non-Galilean invariant π∆, which is given
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only in terms of the resolved fields. In Figs. 4 we show the effects of breaking Galilean
invariance by comparing the pdf of the different contributions and of the ones obtained
by introducing the Leonard stress and therefore recovering the invariance term by
term. As one can see, the fluctuations of the ‘unsubtracted flux’ P∆ are much larger
than those of the invariant terms, confirming the importance of Galilean invariance
[48,49]. In order to quantify the difference between the fluctuations of P∆ and the
other components of the P-SFS energy transfer, we also show the standard deviations
of all components. In Fig. 4(b) we show that the non-Galilean invariant definition of
the P-SFS energy transfer P∆ is between one and three orders of magnitude larger
than those corresponding to the other terms.

Since the fluctuations of Π
∆

are orders of magnitude smaller than the fluctuations of

P∆ = Π
∆

+ π∆, the large tails of the latter must be connected to π∆. The question
now arises whether these large spurious fluctuations originate from a lack of Galilean
invariance or if they are due to the self-coupling among the resolved scales. The latter
can be quantified through the fluctuations of the component of the Leonard stress,

Π
∆
L . As shown by Fig. 4(a) and (b), both Π

∆
and Π

∆
L have similar fluctuations.

We therefore conclude that a lack of Galilean invariance has a drastic effect on the
fluctuations of the SFS energy transfer and that it becomes larger and larger by
decreasing the cutoff scale.
The properties of the non-Galilean invariant ‘unsubtracted flux’ P∆ obtained from a
sharp spectral projector were discussed in Ref. [49] also in the context of locality of

the energy cascade. Unlike Π
∆

+ Π
∆
L , which was rigorously proven to be pointwise

scale-local as nonlocal contributions from sweeping effects are removed, P∆ only
becomes scale-local in an average sense since the sweeping contributions cancel under
space averaging. We conclude that potential spurious fluctuations introduced by a
lack of Galilean invariance may be of concern in LES, and the unsubtracted flux P∆

will not be considered any further in this paper.
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of the P-SFS energy transfer for a sharp projector and of the F-SFS energy transfer for a smooth Gaussian

filter at ∆ = π/20.

13



Figure 5. Visualisations of the SFS energy transfer in a plane cut though the volume. Positive values indicate

forward energy transfer, while negative values correspond to backscatter. Left: F-SFS (Gaussian filter), right:
P-SFS (Sharp spectral projector) at kc = π/∆ = 20.

In Fig. 4(c) we show the normalised pdfs of Π̃∆ and Π
∆

at comparable filter thresholds.
Both pdfs are skewed towards positive values of the SFS energy transfer. Hence both
the Gaussian filter and the real subfilter component of the sharp projector have a
statistical signal correlated with the global forward energy cascade mechanism. This
is apparently not the case for the other components of the SFS energy transfer obtained

from a sharp projector, since the pdfs of Π
∆

+Π
∆
L and Π

∆
L shown in Fig. 4(a) are more

symmetric than the pdf of Π
∆

. Since Π
∆
L describes energy transfer among resolved

scales which vanishes on average, the negative tail in Π
∆
L and therefore to some extent

also the negative tail in Π
∆

+Π
∆
L cannot be a genuine backscatter signal. In summary,

the above results further support the role of Π
∆

as the most relevant component of
the P-SFS energy transfer. Figure 5 shows visualisations of the P-SFS energy transfer

Π
∆

and the F-SFS energy transfer Π̃∆ for dataset H1 obtained by a plane cut through

the volume. The filter thresholds for Π
∆

and Π̃∆ are the same as that of their pdfs
shown in Fig. 4(c). The data corresponding to the F-SFS energy transfer resolves
slightly smaller structures compared to the P-SFS data, which can be expected as
Gaussian smoothing does not result in a reduction of degrees of freedom in the same
way Galerkin truncation does.

4.3. Intermittency and anomalous scaling

An accurate LES should reproduce the correct multiscale properties of the SFS stress
tensor and energy transfer. It is well known that turbulence contains anomalous scaling
(intermittency) in the inertial range of scales [1]. Intermittency is typically measured
through the scaling properties of high order moments of the velocity increments as
a function of the separation scale or in terms of moments of velocity gradients as a
function of Reynolds number. More precisely, the longitudinal and transverse velocity
increments are defined as δvL(x, r) ≡ δv(x, r) · r̂ and δvT (x, r) ≡ δv(x, r)− δvL(x, r)r̂
respectively, where δv(x, r) ≡ v(x + r) − v(x) is the two-point velocity difference at
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separation vector r and r̂ is the unit vector along r. The nth-order moments of δvL(x, r)
and δvT (x, r) are the longitudinal structure function (LSF) and the transverse struc-
ture function (TSF),

S
(n)
L (r) ≡ 〈(δvL(x, r))n〉 , S

(n)
T (r) ≡ 〈|δvT (x, r)|n〉 , (25)

respectively, where 〈·〉 denotes space and time averages and we have assumed isotropy
for simplicity. At high Reynolds numbers both the LSF and TSF show inertial-range
anomalous scaling:

S
(n)
L (r) ∼ rζL(n); S

(n)
T (r) ∼ rζT (n); (26)

with scaling exponents that are multifractal [1] and different from the Kolmogorov
prediction n/3. We differentiate between longitudinal and transverse exponents be-
cause empirical measurements show a small difference between the two sets (see [61]
for a recent discussion on the Reynolds number dependency of the mismatch among
longitudinal and transverse scaling exponents and [62] for theoretical considerations).
A typical signature of intermittency is given by the growth of the flatness:

FL,T (r) =
S

(4)
L,T (r)

(S
(2)
L,T (r))2

∼ rζL,T (4)−2ζL,T (2). (27)

Because FL,T = 3 for Gaussian distributions, the empirical observation that ζ(4) 6=
2ζ(2) quantifies the departure from Gaussian statistics. More importantly, such non-
Gaussian fluctuations are present even at relatively small Reynolds numbers [45,46,63].
As a result, the problem of validating any SFS model beyond second-order (spectral)
properties is important, both for applications and fundamental studies.
Of interest is the connection between the scaling properties of the SFS energy transfer
as a function of the cutoff ∆ and the scalings of the LSF and TSF as a function of the
increment r. One approach is to treat the filter as a ’local’ operation in scale space and
to relate the SFS energy transfer at ∆ to the corresponding dimensional equivalent in
terms of velocity increments at scale r = ∆: Π̃∆ ∼ (δ∆v)3/∆. Indeed, at a given filter
scale the SFS-stress tensors τ̃∆ and τ∆ can be expressed in terms of averages over
velocity field increments at scales less than ∆ [64–66]

τ̃∆
ij (x) = 〈δrvi(x)δrvj(x)〉∆ − 〈δrvi(x)〉∆〈δrvj(x)〉∆ , (28)

where 〈f〉∆ =
∫
drf(r)G∆(r) denotes a weighted average over the displacement r.

The same expression holds for τ∆. For Hölder-continuous velocity fields with Hölder-
exponent h, i.e. if |δrv(x)| = O(|r|h), the following pointwise upper bound can be
derived for the SFS-energy transfer [65]:

Π̃∆ = O(∆3h−1) , (29)

provided the filter and its gradient are bounded and decrease sufficiently rapidly at
infinity. In order to account for the existence of a multifractal scaling with different
local Hölder exponents, the same approach leads to a global upper bound and hence a
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scaling estimate

〈|Π̃∆|n〉 = O(∆ζ3n−n) , (30)

where ζn are the anomalous exponents of the nth-order structure functions [47]
and where we have neglected the small empirically observed mismatch between
longitudinal and transverse increments (which cannot be captured by the above
estimate). As for the local upper bound given by the inequality (29), the derivation
of the rigorous global scaling result presented in Ref. [47] requires conditions on the
filter functions which are not satisfied by generic projector filters. However, as we
explain in Appendix B, Eyink’s [47] scaling estimates (and upper bounds) can also
be shown to apply to our P-SFS energy transfer in Eq. (17), if we use a smooth
filter. Such a smooth filter can be chosen to approximate a Galerkin projector with
arbitrary accuracy at the expense of the upper bound becoming arbitrarily large.
To supplement this, we show the scaling of the P-SFS flux in Fig. 6 using a sharp
Galerkin projector, which agrees with the scaling in Eq. (30), even though the rigorous
upper bound that can be obtained formally diverges for such a filter. This indicates
that the upper bound becomes less useful (less tight) even though the P-SFS flux still
scales as the F-SFS, that uses a smooth filter.

The intermittent scaling of the SFS energy transfer was first investigated in a priori
as well as a posteriori analyses in Ref. [44] at moderate Reynolds numbers using both
a Gaussian filter and a sharp cutoff in Fourier space, but without applying the double
filtering proposed here (10). By using Extended Self-Similarity (ESS) [45,46] it was
shown in [44] that the scaling of the SFS energy transfer is slightly more intermittent
than the longitudinal structure functions while being less intermittent than the trans-
verse structure functions. However, as pointed out in Ref. [44], the accuracy of the
measurements was not sufficient to warrant interpretation of the small differences in
the exponents.
In what follows, we intend to perform a similar analysis at much higher Reynolds
numbers, such as to avoid to use ESS, and by comparing different filtering strategies
and by analysing different components of the SFS energy transfer.
Figures 6 (a)-(c) presents the scaling of the SFS energy transfer compared to the
predictions from Eq. (30) for the different components of the P-SFS energy trans-
fer obtained through Galerkin truncation. and for the F-SFS energy transfer. In all
figures we superpose the multifractal prediction using either the longitudinal or the
transverse scaling. Indeed, the SFS energy transfer is a scalar quantity that cannot
distinguish among the two scalings and one has to interpret the mismatch between
the two sets of exponents as an estimate of the error in the scaling properties of mixed
observables. From Fig. 6 it can be seen that the scaling of all components is consistent

with Eq. (30) for n = 2, 3 and n = 4. The Leonard component 〈(Π∆
L )n〉 also scales in

agreement with Eq. (30) for the even orders n = 2, 4 as can be seen in Figures 6 (a)
and (c). The odd order n = 3 is very small in agreement with the symmetry in the
pdf already discussed.
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Figure 6. Dataset H1. Scaling of the nth moments of the different components of P-SFS and F-SFS energy
transfers: (a) n = 2, (b) n = 3, (c) n = 4. The solid lines indicate the scaling expected from the multifractal

model and Eq. (30) using the anomalous exponents for the longitudinal and transverse structure functions ζL3n
and ζT3n, values for n = 2 (a) and n = 3 (b) were obtained from Ref. [6]. In (c) for n = 4 the prediction from

the She-Lévêque model ζ3n = 2.74 [67,68] is shown. The data corresponding to Π
∆

+ Π
∆
L and Π̃∆ have been

shifted for presentational reasons.
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Figures 7 show the skewness and flatness of the P-SFS energy transfer Π
∆

, its combi-

nation with the energy transfer due to the Leonard stresses Π
∆

+ Π
∆
L and the F-SFS

energy transfer Π̃∆ obtained through Gaussian filtering. Both skewness and flatness

show similar scaling for Π
∆

, Π
∆

+ Π
∆
L and Π̃∆, however, the scaling range of the

skewness corresponding to the F-SFS Π̃∆ has a smoother transition when crossing
the viscous scales compared to that obtained by sharp Galerkin projection. This is an
indication of the importance of contributions from a wide range of scales affecting the
F-LES formalism. In other words, since the smooth Gaussian filter is less localized in
k-space compared to the sharp projector, it retains contributions from a larger number
of Fourier modes at different wavenumbers, see also [60] for an illustration. Concerning

the flatness, there appears to be little different between Π
∆

+ Π
∆
L and Π

∆
, the two

corresponding curves for the flatness nearly collapse in the intermittent scaling range
without any shift in the data.
In summary, the second, third and fourth-order moments as well as skewness and
flatness of the SFS energy transfer for the sharp filter show intermittent scaling for

both Π
∆

+ Π
∆
L and for the P-SFS definition Π

∆
alone, in agreement with the local-

estimates based on the bridge relation among the SFS energy transfer at filter width
∆ and velocity increments at scale r ∼ ∆.

4.3.1. Reynolds number dependency

In the remainder of this section, we assess the results for Π
∆

by extending the analysis
to both a larger and smaller inertial range using the two additional datasets V and

H2 described in table 1. Results for the scaling of 〈(Π∆
)n〉, obtained from datasets

H1, H2 and V are presented in Figs. 8(a-c) for n = 2, 3 and n = 4, respectively. In
Fig. 8(a) we observe that the intermittent scaling extends to a larger range of scales
for the higher Reynolds number dataset H2 and to a shorter range for dataset (V).
We note that the effect of the bottleneck [54] in hyperviscous simulations is visible
in the statistics of the SFS energy transfer. As can be seen in Figs. 8(b-c), the two
hyperviscous simulations H1 and H2 consistently display a much larger deviation from
intermittent scaling towards the end of the inertial range compared to the Newtonian
viscous simulation V. In other words, scaling-wise there is not such a big gain by
moving from normal to hyperviscosity (compare data sets V and H), unlike for the
extension of the range where the total energy flux is constant (see Fig. 3). Similar
observations have been made in Refs. [48,49,69].
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for the longitudinal and transverse structure functions ζL3n and ζT3n, values for n = 2 (a) and n = 3 (b) were
obtained from Ref. [6]. In (c) for n = 4 the prediction from the She-Lévêque model ζ3n = 2.74 [67,68] is shown.
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5. Comparison of different projector filters

As pointed out in the Introduction, different filters introduce different fluctuations and
the two traditional filters, Gaussian smoothing and sharp Galerkin projection, each
have their own limitations. Although the Gaussian filter results in a positive definite
SFS stress tensor [66] and does not induce Gibbs oscillations, it has the important
limitation of not producing a clear distinction between resolved and unresolved scales.
In the attempt to improve on the drawbacks of both traditional approaches of sharp
Galerkin truncation and Gaussian smoothing, we introduce a new family of projec-
tor filters for which the truncation operation is carried out in a probabilistic way
[70]. Specifically, the truncated modes are chosen randomly according to a probability
density which decreases either linearly with increasing wavenumber:

Ĝ∆(k) =





1 for |k| < kc

1 with probability P (k) = λ−k/kc
λ−1 for kc < |k| 6 λkc

0 for |k| > λkc ,

(31)

where kc = π/∆ and λ > 1, or according to a Gaussian probability density as

Ĝ∆(k) = 1 with probability P (k) = e−k
2∆2

. (32)

Two-dimensional graphical representations of all filters in Fourier space are shown in
Fig. 9.
The SFS-energy transfer obtained through the linear probabilistic projector acting at
a given threshold kc leads to a ‘band-averaged’ Fourier-space flux

〈Π∆〉 =
1

(λ− 1)kc

∫ λkc

kc

dk Π(k) . (33)

The ‘band-averaged’ Fourier flux had been introduced in Ref. [71] in order to study
the locality of triadic interactions and can be obtained through a filter G∆ whose
Fourier-space profile Ĝ2

∆(k) is a linearly decreasing function of k [65]. The introduction
of (31) must be seen as a way to reproduce the same spectral properties of the filter
proposed in [65] but with the added feature of being a projector.
The proof of Eq. (33) for the linear projector follows from minor modifications of the
corresponding proof of the linear filter in Ref. [65]. In the remainder of this work, the
linear projector is applied with λ = 2 unless specified otherwise.
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Figure 9. 2D illustration of different filters in Fourier space. From left to right: Sharp Galerkin projector

above kc, Galerkin projector with a linear profile (in probability) between kc and 2kc, Galerkin projector with

a Gaussian profile (in probability), Gaussian filter.

We now proceed to investigate the new projectors in comparison with the sharp
Galerkin projector using only dataset H1, where for all projectors we consider the
SFS-tensor corresponding to the P-SFS approach. The energy spectra obtained
by different filtering procedures are presented in Fig. 10(a) alongside the original
unfiltered data. As can be seen, the linear projector results in a smooth roll-off of the
spectrum between kc and 2kc. The energy spectra obtained through Gaussian filtering
and probabilistic Gaussian projection are indistinguishable, as expected. The mean
SFS energy transfers obtained using the different projectors are shown in Fig. 10(b)
as functions of kc = π/∆, in comparison with the Fourier-space energy flux Π(k).
The mean SFS energy transfer obtained from the linear projector agrees well with
Π(k) in the inertial range, as expected. The agreement is still good in the beginning
of the viscous range, where Π(k) decreases linearly and thus should coincide with

〈Π∆〉 obtained using the linear projector if plotted against k = 3kc/2 as is the case in
Fig. 10(b). Deviations between the two fluxes become visible only at relatively high
wavenumbers where the Fourier-flux Π(k) decreases exponentially. The SFS energy
transfer obtained from the Gaussian projector shows significant deviations from
Π(k) at low wavenumbers, while being in reasonable agreement in the inertial range.
Proceeding towards the viscous range again we observe deviations from Π(k). Similar
to the deviations between the SFS energy transfer obtained by smooth Gaussian

filtering, deviations between Π(k) and 〈Π∆〉 can indeed be expected for non-sharp
projector filters.
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Figure 10. Dataset H1. (a) Energy spectra obtained by different filtering procedures. (b) Comparison be-

tween the Fourier-space energy flux and the SFS energy transfer as a function of the cutoff wavenumber kc for

the sharp projector (squares), as a function of 3kc/2 for the linear projector (diamonds) and as a function of
π/∆ for the Gaussian projector (triangles). The SFS energy transfer obtained through Gaussian smoothing is

shown for comparison (black dots).
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expected from the multifractal model and Eq. (30) using the anomalous exponents for the longitudinal and
transverse structure functions ζL3n and ζT3n. Values for n = 2 (a) and n = 3 (b) were obtained from Ref. [6]. In

(c) for n = 4 the prediction from the She-Lévêque model ζ3n = 2.74 [67,68] is shown.
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expected from the multifractal model and Eq. (30) using the anomalous exponents for the longitudinal and
transverse structure functions ζL3n and ζT3n, values for n = 2 and n = 3 were obtained from Ref. [6].

Concerning the multiscale statistics of the P-SFS energy transfer Π
∆

for the different
projectors, the non-sharp projectors scale differently compared to the sharp projector

for the symmetric part 〈(Π∆
)2〉 as shown in Fig. 11 (a), while all projectors display

similar scaling for the asymmetric part 〈(Π∆
)3〉 and for 〈(Π∆

)4〉 as shown in Figs. 11

(b-c). In particular, the scaling of 〈(Π∆
)2〉 obtained using the Gaussian projector de-

viates significantly from the intermittent scaling displayed by 〈(Π∆
)2〉 obtained by

sharp Galerkin projection. The difference in the scaling of 〈(Π∆
)2〉 between the differ-

ent projectors propagates into the scaling of skewness and flatness as shown in Figures
12(a) and (b)
The deviation from intermittent scaling of skewness and flatness of the SFS energy
transfers for the linear and Gaussian projectors may be connected to their higher
degree of discontinuity in Fourier space. Previous studies [70,72,73] showed that a
removal of degrees of freedom results in a decrease in intermittency. Such removal
of degrees of freedom can be carried out either by a dynamic procedure where the
corresponding projection operation is carried out at each iteration step, or by one-off
projection carried out on the DNS data obtained by evolving the full Navier-Stokes
equations. The latter is referred to as static decimation. The dynamic fractal projec-
tion operation generally leads to a drastic decrease in intermittency, where a removal
of a small percentage of Fourier modes already results in near-Gaussian statistics at
all scales. Intermittency is also decreased by static decimation [72], however, com-
pared to the dynamic procedure a much larger percentage of modes must be removed.
The probabilistic filtering applied here could be seen as a static decimation carried
out in logarithmically spaced Fourier bands, where at least towards the middle of the
wavenumber band a significant percentage of Fourier modes will have been removed. A
non-sharp projector has also the disadvantage to increase the frontier in Fourier space
among resolved and unresolved modes and it induces further discontinuities in Fourier
space through the probabilistic projection operation. As such, Gibbs oscillations in
real space are enhanced, perhaps one of the reasons for the reduction in intermittency.
These properties might not necessarily be detrimental for the implementation of a pos-
teriori SFS stress models on such a non-traditional Fourier support. The effects of the
SFS stress tensor on the dynamical evolution of the resolved scale can be summarized
in a multiscale correlation function among velocity increments δrv and the SFS tensor
τ(∆) with r > ∆ (see [27] for a discussion concerning the evolution of second order
correlation functions of the resolved field), and it remains to be checked by explicit
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LES performed on different Fourier supports how to minimise the feedback in order
to enhance the extension of the inertial range. Work in this direction will be reported
elsewhere.

6. Conclusions

In this paper we have studied the statistical properties of the SFS energy transfer in
the inertial range of scales with particular emphasis on the effect of the filtering proce-
dure using approaches based on Gaussian smoothing, sharp Galerkin projections and
new multiscale projectors. We discuss formal and practical advantages/disadvantages
of projector filters and we discuss a LES formalism which is Galilean invariant and
mathematically well-defined. In order to assess the multiscale statistics and the re-
lated scaling estimates, we carried out an a priori analysis of the SFS energy transfer
obtained through the different filtering procedures using high-resolution DNS datasets
with normal as well as hyperviscosity on up to 20483 collocation points. We extend
known results for the scaling properties of the SFS energy transfer using Gaussian
smoothing [47,65] to the case of sharp projector filters relating the scaling exponents
of the SFS energy transfer to the anomalous exponents of the velocity structure func-
tions. We find that the SFS energy transfer is sensitive to intermittent effects. Al-
though the intermittent scaling of SFS energy transfer appears to be sensitive to the
additional oscillations induced by the probabilistic projectors, the effects of different
filtering protocols on a posteriori LES simulations remain to be studied. It may even
be conceivable that a filter which induces more oscillations in physical space results
in a decorrelation effect between the resolved scales and the scales close to the filter
threshold which are most affected by the choice of filtering strategy. Our results can
be regarded a systematic assessment of the impacts of using projectors or filters on
the multiscale properties of turbulence at high Reynolds numbers and prompt for the
need to perform suitable LES a posteriori studies to benchmark the validity of different
subgrid models to reproduce those properties.
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Appendix A. Galilean invariance

We consider a Galilean transformation

xi → xi − u0
i t , (A1)
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such that

vi → vi + u0
i , (A2)

with a spatially uniform and time-independent u0
i . The aim is to establish (i) the

breaking of Galilean invariance of the SFS stress tensor induced by additional filtering
of the inertial term by a non-projector filter, and (ii) the pointwise global Galilean
invariance on the level the kinetic energy for the P-SFS approach.

A.1. Breaking of Galilean invariance of the SFS stress tensor for
non-projector filters

We consider the momentum balance for the resolved field ṽ with a filtered inertial
term

∂tṽi + ∂j(˜̃viṽj + p̃δij + τ̃∆
ij ) = 0 . (A3)

Under the Galilean transformation given by eqs. (A1) and (A2), this equation becomes

∂t[ṽi(x− u0t, t) + u0
i ] + ∂j

(︷ ︸
(ṽj + u0

j )(ṽi + u0
i ) +p̃δij + τ̃∆

ij (v + u0,v + u0)

)
= 0 .

(A4)

The subgrid tensor τ̃∆
ij , which, unlike in the main text, in this appendix originates

from the filtered inertial term, i.e., τ̃∆
ij = ṽivj− ˜̃viṽj is now not Galilean invariant since

τ̃∆
ij (v + u0,v + u0) =

︷ ︸
(vi + u0

i )(vj + u0
j )−

︷ ︸
(ṽi + u0

i )(ṽj + u0
j )

= ṽivj + ṽiu
0
j + ṽju

0
i + u0

iu
0
j − (˜̃viṽj + ˜̃viu

0
j + ˜̃vju

0
i + u0

iu
0
j )

= ṽivj − ˜̃viṽj + (ṽj − ˜̃vj)u
0
i + (ṽi − ˜̃vi)u

0
j 6= τ̃∆

ij (v,v) . (A5)

Eq. (A4) is still globally Galilean invariant, since

∂tṽi − u0
j∂j ṽi + ∂j(˜̃vj ṽi + u0

j ṽi + u0
i ṽj + ˜̃viu

0
j + ˜̃vju

0
i + p̃δij + τ̃∆

ij

+ (ṽj − ˜̃vj)u
0
i + (ṽi − ˜̃vi)u

0
j ) = 0 , (A6)

where we recover eq. (A3) because −u0
j∂j ṽi cancels with ∂j(u

0
j ṽi), ∂j(u

0
i ṽj) = 0 by

incompressibility of ṽ and the double-filtered terms cancel out. For projector filters
we can see directly from eq. (A5) that τ∆

ij is Galilean invariant since terms of the form

v − v vanish identically because G2 = G.

A.2. Global Galilean invariance of the P-SFS energy balance

The balance equation for the total resolved energy in the P-SFS approach is:

1

2
∂t(vivi) + ∂j

(
vi(vjvi + pδij + τ∆

ij)
)

= −Π
∆

+ (∂jvi)(vjvi) . (A7)
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Under the Galilean transformation given by eqs. (A1) and (A2), eq. (A7) becomes

1

2
∂t[vi(x− u0t, t) + u0

i ]
2 + ∂j

(
(vi + u0

i )
[
(vj + u0

j )(vi + u0
i ) + pδij + τ∆

ij

])

= −Π
∆

+ (∂j(vi + u0
i ))(vj + u0

i ))vi + u0
i ) , (A8)

where we used the fact that Π
∆

and τPij are Galilean invariant. We now calculate the
remaining terms in eq. (A8) explicitly. The terms on the LHS are

1

2
∂t[vi(x− u0t, t) + u0

i ]
2 = (vi + u0

i )∂tvi(x− u0t, t) = (vi + u0
i )(∂tvi − u0

j∂jvi)

= vi∂tvi + u0
i ∂tvi − viu0

j∂jvi − u0
iu

0
j∂jvi , (A9)

and

∂j

(
(vi + u0

i )(vj + u0
j )(vi + u0

i )
)

= ∂j(vivjvi) + 2u0
iu

0
j∂jvi + u0

j∂j(vivi)

+ u0
i vj∂jvi + u0

i ∂j(vivj) , (A10)

using incompressibility of v. The remaining term on the RHS of eq. (A7) is

(∂j(vi + u0
i ))(vj + u0

j )(vi + u0
i ) = (vjvi + viu

0
j + vju

0
i + u0

iu
0
j )∂jvi . (A11)

By substitution of the relevant terms with their explicit expressions given in eqs. (A9)-
(A11), the kinetic energy budget eq. (A7) becomes

vi∂tvi + u0
i ∂tvi − viu0

j∂jvi − u0
iu

0
j∂jvi

+ ∂j(vivjvi) + 2u0
iu

0
j∂jvi + u0

j∂j(vivi) + u0
i vj∂jvi + u0

i ∂j(vivj)

+ ∂j(viτ
P
ij ) + u0

i ∂jτ
P
ij + ∂j(vipδij) + u0

i ∂jpδij

= vjvi∂jvi + viu
0
j∂jvi + vju

0
i ∂jvi + u0

iu
0
j∂jvi −Π

∆
, (A12)

which can be rearranged to

1

2
∂t(vi)

2 + ∂j
(
vi(vjvi + pδij + τ∆

ij)
)

+ u0
i

(
∂tvi + ∂j(vivj + pδij + τPij )

)

= vjvi∂jvi −Π
∆
, (A13)

where we observe that u0
i

(
∂tvi + ∂j(vivj + pδij + τPij )

)
= 0 from the P-SFS momen-

tum equation. Hence we recover eq. (A7)

1

2
∂t(vi)

2 + ∂j
(
vi(vjvi + pδij + τ∆

ij)
)

= vjvi∂jvi −Π
∆
, (A14)

and conclude that the P-SFS kinetic energy evolution equation is globally Galilean
invariant.
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Appendix B. Scaling estimates for projector filters

In this appendix we show that Eyink’s proof of Eq. (30) in Ref. [47] for the F-SFS
energy flux extends to the P-SFS flux by approximating the sharp Galerkin projector
with a smooth filter to arbitrary accuracy. This statement will be made more pre-
cise below. For convenience we work in Rn. First we establish that Eq. (30) holds in
approximation for the F-SFS formulation and then extend the result to the P-SFS
formulation. Let S(Rn) the Schwartz class of all smooth functions whose derivatives
tend to zero faster than any power. The elements of S(Rn) themselves also decrease
sufficiently fast at infinity. Schwartz functions therefore satisfy all the regularity re-
quirements for filters which were necessary in the proof of Eq. (30) carried out in
Ref.[47]. The Schwartz class also has the useful property that the Fourier transform
maps S(Rn) to itself (it is an automorphism on S(Rn)). In order to find a smooth filter

that approximates the sharp projector Ĝ∆, it suffices to use a standard result from
functional analysis, namely that S(Rn) ⊂ Lp(Rn) as a dense subspace for 1 6 p <∞.
Hence if f ∈ Lp(Rn) for 1 6 p < ∞ then we can always find a function f ε ∈ S(Rn)
such that

‖f ε − f‖p < εp for 1 6 p <∞ , (B1)

for any εp > 0. For the standard projector Ĝ∆ = θ(kc − |k|), where θ is the Heaviside

step function, it is immediately clear that Ĝ∆ ∈ Lp(Rn) for 1 6 p 6∞, and its inverse
Fourier transform satisfies G∆ ∈ Lp(Rn) for 2 6 p 6 ∞. This implies that we can
always find Gε∆ ∈ S(Rn) such that

‖Gε∆ −G∆‖p < εp for 2 6 p <∞ . (B2)

Hence we can always approximate the projector filter with a smooth filter which
satisfies the scaling estimate Eq. (30) for the F-SFS fomulation.

The only difference between the P-SFS and the F-SFS formulations is in the definition
of the SFS stress tensor

τ∆(v,v) = v ⊗ v − v ⊗ v = v ⊗ v − v ⊗ v − (v ⊗ v − v ⊗ v)

= v ⊗ v − v ⊗ v︸ ︷︷ ︸
F-SFS

−(v ⊗ v − v ⊗ v) + (v ⊗ v − v ⊗ v)︸ ︷︷ ︸
Leonard stress

, (B3)

where the Leonard stress has been decomposed into two components, the last of which
does not vanish in the present case since (·) here refers to the filtering by Gε∆ which is
not a projector. According to Ref. [47] eq. (81), the F-SFS component satisfies

‖v ⊗ v − v ⊗ v‖p = O(∆2ζ2p/p) . (B4)

The term v ⊗ v − v ⊗ v has also been considered in Ref. [47] in connection with the
infrared locality of the F-SFS stress tensor. In particular, Eq. (99) of Ref. [47] implies

‖v ⊗ v − v ⊗ v‖p = O(∆2ζ2p/p) . (B5)

Hence two out of the three terms on the RHS of Eq. (B3) have the desired scaling
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properties. In order to obtain the scaling for τ∆(v,v) we must consider the Lp-norm
of the remaining term v ⊗ v − v ⊗ v for the filter Gε∆

‖v ⊗ v − v ⊗ v‖p =
1

2

(
‖(v − v)⊗ (v + v) + (v + v)⊗ (v − v)‖p

)

6 ‖(v − v)‖2p‖(v + v)‖2p
6 ‖Gε∆ − (Gε∆ ∗Gε∆)‖2‖Gε∆ + (Gε∆ ∗Gε∆)‖2‖v‖2r , (B6)

where in the last step we used Young’s inequality with r = 2p/(p+1) combined with the
fact that Gε∆ ∈ S(Rn), since this implies that (Gε∆ ∗ Gε∆) ∈ S(Rn) and Gε∆ ∈ Lp(Rn)
for 2 6 p 6 ∞. The same holds for (Gε∆ ∗ Gε∆). The term ‖Gε∆ − (Gε∆ ∗ Gε∆)‖2 =

‖Ĝε∆ − (Ĝε∆)2‖2 can now be further estimated

‖Ĝε∆ − (Ĝε∆)2‖2 = ‖Ĝε∆ − Ĝ∆ −
(
(Ĝε∆)2 − Ĝ∆

)
‖2 6 ‖Ĝε∆ − Ĝ∆‖2 + ‖(Ĝε∆)2 − Ĝ∆‖2

6 ‖Ĝε∆ − Ĝ∆‖2 + ‖Ĝε∆ − Ĝ∆‖2‖Ĝε∆ + Ĝ∆‖∞
6 ‖Ĝε∆ − Ĝ∆‖2

(
1 + ‖Ĝε∆‖∞ + ‖Ĝ∆‖∞

)
. (B7)

where in the third step we used the Hölder inequality and the projector property
Ĝ2

∆ = Ĝ∆. Combining Eqs. (B6) and (B7) results in

‖v ⊗ v − v ⊗ v‖p 6 ‖Ĝε∆ − Ĝ∆‖2
(

1 + ‖Ĝε∆‖∞ + ‖Ĝ∆‖∞
)
‖Gε∆ + (Gε∆ ∗Gε∆)‖2‖v‖2r

6 Cε , (B8)

with C ≡ ‖Gε∆ + (Gε∆ ∗ Gε∆)‖2‖v‖2r
(

1 + ‖Ĝε∆‖∞ + ‖Ĝ∆‖∞
)

, where we set ε ≡ ε2.

Since ε can be made arbitrarily small, the P-SFS formulation is expected to satisfy
the same scaling estimate as the F-SFS formulation, provided the scaling suggested
by the bounds in Eqs. (B4) and (B5) holds. While the bounds in Eqs. (B4) and (B5)
formally diverge as Gε∆ approaches G∆, we find numerically in Figs. 6 and 8 that the
scaling of these bounds remains true when using a sharp Galerkin projector. After all,
Eqs. (B4) and (B5) are upper bounds and are not necessarily tight (sharp) bounds. The
Lp-norm of the SFS stress tensor can (and does) still scale according to the estimate
above.
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