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We report on a combined theoretical and numerical study of counterflow turbulence in superfluid
4He in a wide range of parameters. The energy spectra of the velocity fluctuations of both the
normal-fluid and superfluid components are strongly anisotropic. The angular dependence of the
correlation between velocity fluctuations of the two components plays the key role. A selective
energy dissipation intensifies as scales decrease, with the streamwise velocity fluctuations becoming
dominant. Most of the flow energy is concentrated in a wavevector plane which is orthogonal to the
direction of the counterflow. The phenomenon becomes more prominent at higher temperatures as
the coupling between the components depends on the temperature and the direction with respect
to the counterflow velocity.

Introduction

Below a critical temperature Tλ ≈ 2.17K liquid 4He
behaves as a quantum fluid1,2, consisting of an invis-
cid superfluid, associated to the quantum ground state,
and a gas of thermal excitations which make up the vis-
cous normal fluid. Quantum mechanics 4 constrains the
rotational motion of the superfluid in 4He to discrete
Ångström-width quantum vortex lines of fixed circula-
tion. The thermal excitations scatter on a dense tangle
of these vortices, thus inducing a mutual friction force
between the normal fluid and the superfluid.
Turbulent superfluid Helium in a channel with a tem-

perature gradient is a subject of extensive research for
many decades1–10. In such a setting, so-called “coun-
terflow”, the normal fluid flows from the hot end of the
channel to the cold end while the superfluid flows in the
opposite direction. Most attention was devoted so far to
the measurement and the analysis of the density of vortex
lines and to the mutual friction between the components.
Recent advances in the visualization techniques of-

fer for the first time a direct access to the statistics
of the velocity fluctuations of the normal fluid11–13 and
the superfluid14–16. It was shown that the large scale
statistics of the normal fluid in the counterflow is very
different11–13 from the statistics of classical fluids. The
theoretical analysis17–19 highlighted the importance of
correlations between the superfluid and the normal fluid
components, which lead to the energy spectra of both
components being steeper than their classical counter-
parts. Moreover, we have recently shown19 that the di-
rection of the mean relative velocity plays an important
role; The correlation between the 4He components decays
slower for eddies stretched along the counterflow velocity.
In contrast, the correlation of eddies, which are elongated
in the orthogonal direction, decay faster, leading to their
enhanced energy loss. As a result of this directionally
preferred energy dissipation, the velocity fluctuation con-
sist mostly of the streamwise components, while most of

the flow energy is concentrated in the wavevector plane
orthogonal to the counterflow.

Here we consider this phenomenon further and study
its consequences in further detail. The paper is organized
as follows: in the Sec. I we provide a sketch of a theory
of counterflow turbulence with a stress on its anisotropy.
In Sec. I A we introduce the basic set of coarse-grained
equations for the counterflow. These are used for the
theoretical analysis and for the numerical simulations.
In Sec. I B we clarify how various approaches to the sta-
tistical description of the anisotropy energy surface are
related. Next, in Sec. I C, we discuss the physical origin
of the strong spectral anisotropy in counterflow turbu-
lence. In Sec. II we present the results of the direct nu-
merical simulations (DNS) of the two-fluid coarse-grained
Eqs. (1a). The main conclusion is that the analytical pre-
dictions are confirmed. In the first subsection Sec. II A
we discuss the simulation parameters and the numerical
procedure. Next, in Sec. II B, we use standard statisti-
cal characteristics: one-dimensional (1D) energy spectra
and cross-correlation functions, averaged over a spheri-
cal surface of radius k (i.e. over all directions of vector
k) to provide an overview of spectral properties of 4He
counterflow. We find that at the small-k regime, the
normal-fluid and superfluid velocity components are in-
deed well correlated. As expected, mutual friction plays
secondary role and the spherically-averaged spectra are
similar to the spectra in the 4He-coflow turbulence 20, be-
ing only slightly steeper than the Kolmogorov-1941 (K41)
spectra of classical hydrodynamic turbulence. On the
other hand, at relatively large k the fluid components
are practically uncorrelated; mutual friction provides a
leading contribution to the energy dissipation and the
counterflow spectra are similar to those in 3He superfluid
turbulence with the normal-fluid component at rest21,22.
The spectra become strongly suppressed in comparison
to K41 energy spectra.

The similarities between the inherently anisotropic
counterflow energy spectra and the isotropic spectra in
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the turbulent 4He-coflow and 3He are, however, super-
ficial. To expose the differences, we discuss in Sec. II C
the two-dimensional (2D) energy spectra which depend,
besides the wavenumber k, upon the angle θ between the
wave-vector k and the counterflow velocity Uns. Here we
find that the spectra become more and more anisotropic
with increasing k, being confined in k-space to a small
range cos θ < 0.1, i.e. near the wavevectors plane which is
orthogonal to Uns. This effect becomes stronger with in-
creasing temperature. The tensor structure of the energy
spectra, considered in Section IID, is also temperature
dependent: the small-scale turbulent velocity fluctua-
tions are dominated by only one vector component, paral-
lel to Uns, becoming more so at higher temperature. Fur-
ther, we compare several variants of differently averaged
1D spectra ( Sec. II E) and structure functions (Sec. II F)
to expose other aspects of the spectral anisotropy in con-
nection with possible experimental observations.
In Sec. III we summarize our findings: Counterflows

exhibit strongly anisotropic energy distributions. The
energy spectra are localized near a direction that is or-
thogonal to the counterflow. The phenomenon is similar
to atmospheric turbulence with a strong stable strati-
fication or to rotational turbulence23–28. On the other
hand, the tensor structures of these two types of quasi-
2D turbulence are quite the opposite: in atmospheric
turbulence the vertical component of the turbulent ve-
locity fluctuations is suppressed by the stratification and
only the two horizontal components are dominant23. In
the counterflow turbulence the main contribution to the
turbulent energy comes from one streamwise velocity pro-
jection, while the two cross-steam velocity projections are
strongly suppressed. The observed phenomenon is mild
at low temperatures and becomes more prominent as the
temperature increases. We confirm, in agreement with
Ref. 13, that the structure functions of the turbulent ve-
locities in the counterflow do not reflect in a quantitative
manner the underlying energy spectra. However, the rel-
ative magnitude of the structure functions, measured in
different directions, may qualitatively reflect the presence
of the spectral anisotropy.

I. QUALITATIVE ANALYSIS OF
ANISOTROPIC COUNTERFLOW TURBULENCE

As we mentioned in the introduction, one of important
properties of superfluid 4He is the quantization of vortic-
ity, which concentrates on vortex-lines of core radius a0 ≈
10−8 cm with fixed circulation κ = h/M≈ 10−3 cm2/s.
Here h is Planck’s constant and M is the mass of the
4He atom4. A complex tangle of these vortex lines with
a typical inter-vortex distance3 ℓ ∼ 10−4 − 10−2 cm is a
manifestation of superfluid turbulence4.
On the large scales this type of turbulence is commonly

described by the two-fluid model. The density of 4He ρ is
modelled as a mixture of two fluid components: an invis-
cid superfluid and a viscous normal fluid, with respective

densities ρs and ρn such that ρ = ρs+ρn. The fluid com-
ponents are coupled by a mutual friction force1,3,5,7–9.

Large-scale turbulence in 4He can be generated by var-
ious ways. In mechanically driven 4He (so-called ”co-
flow”), the turbulent statistics is similar10,20,30–32 to that
of classical turbulence. In this case both components
move in the same direction and the mutual friction force
couples them almost at all scales. On the other hand,
when a temperature gradient ∇T is imposed in a chan-
nel closed at one end, the heat flux is carried away by
the normal fluid with a mean velocity Un ∝ ∇T , while
the superfluid component flows in the opposite direction
with the mean velocity Us. There is no net mass flow:
ρnUn+ρsUs = 0. The counterflow velocityUns = Un−Us

creates a random vortex tangle with an energy spectrum,
peaking at the intervortex scale ℓ and with a close to
Gaussian statistics, as demonstrated experimentally in
Refs. 14–16 and rationalized theoretically in Refs. 18,33. At
large enough Un, the laminar flow of the normal com-
ponent become unstable, creating large scale turbulence
with the energy spectrum dominated by “the outer scale
of turbulence” ∆ ≫ ℓ (e.g. about half-width of the chan-
nel). Although the particular mechanisms of the large
scale superfluid motion generation are not known in de-
tails, recent indirect experimental evidence indicate13,33

that the large-scale normal fluid motion gives rise to the
superfluid turbulent motion due to the components’ cou-
pling by the mutual friction force.

A. Coarse-grained equations for counterflow 4He
turbulence

Our approach17,18,34 to large-scale counterflow turbu-
lence is based on two Navier-Stokes equations (NSE) for
the velocity fluctuations of the normal fluid and super-
fluid components Un(r, t) and U s(r, t). A complication
arises from the fact that the counterflow is created in
a channel and therefore is, in general, inhomogeneous.
However, at large enough Reynolds numbers, the flow
in the center of the channel can be approximated as al-
most space-homogeneous35. We therefore adopt a simpli-
fying description with space homogeneity and stationar-
ity. Further, we perform the standard Reynolds decom-
position of the velocities into their mean and turbulent
velocity fluctuations with zero mean:

Un(r, t) = Un + un(r, t) , Un = 〈Un(r, t)〉 , (1a)

U s(r, t) = Us + us(r, t) , Us = 〈U s(r, t)〉 .

The mean velocities are taken below as externally pre-
scribed parameters of the problem. Note that in the
classical hydrodynamics, the Navier-Stokes equations are
Galilean invariant and one can choose a reference system
in which the constant mean velocity vanishes. In the two-
fluid counterflow, there is no such reference system and
the mean velocities are necessarily present in the equa-
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tions of motion for the turbulent velocity fluctuations:

[
∂

∂t
+ (us +Us) ·∇]us −

∇ps
ρs

= νs ∆us + fns +ϕs , (1b)

[
∂

∂t
+ (un +Un) ·∇]un −

∇pn
ρn

= νn ∆un −
ρs
ρn

fns +ϕn ,

These equations are coupled by the mutual friction
force 2,6,36 fns. Here fns(r, t) is a fluctuating (with zero
mean) part of the total mutual friction force Fns(r, t):

Fns(r, t) = Fns + fns(r, t) . (1c)

The pressures pn, ps in Eqs. (1b) are given by

pn =
ρn
ρ

[
p+

ρsu
2
ns

2

]
, ps =

ρs
ρ

[
p−

ρnu
2
ns

2

]
, uns = un−us .

(1d)
The kinematic viscosity of the normal fluid component
is νn = η/ρn, where η is the dynamical viscosity29 of
the normal 4He component. The energy sink34 in the
equation for the superfluid component, with an effective
superfluid viscosity 3 νs, accounts for the energy dissipa-
tion at the intervortex scale ℓ due to vortex reconnections
and energy transfer to Kelvin waves. The random forces
ϕs and ϕn represent the forcing of the turbulent flow at
large scales.
The physical origin of the mutual friction is the scat-

tering of excitations that constitute the normal fluid on
the vortex lines. Any motion of a vortex line relative to
the normal fluid results3 in a force per unit length of the
line, which can be written as

f = −γ0s
′ × s′ ×

(
Uns + uns

)
+ γ′

0s
′ ×

(
Uns + uns

)
.(2)

Here s′ is a unit vector along the length of the vortex, γ0
and γ′

0 are some phenomenological parameters.
In order to estimate the coarse-grained mutual friction

force fns in Eqs. (1b) one needs to properly average the
microscopic Eq. (2) for f . The result depends on the
statistics of the quantum vortices that in turn depend
on the particular turbulent flow properties. In particu-
lar, this procedure includes averaging of the force f over
directions of the orientations s′ in the vortex lines. In
the relatively simple case of rotating turbulence, the vor-
tices are oriented mostly along the axis of rotation. In
this case 〈s′〉 may be directly related to the direction of
the superfluid vorticity ωs: 〈s′〉 = ωs/|ωs| . The result-
ing equations were named the “HVBK equations”5,6after
Hall, Vinen, Bekarevich and Khalatnikov.
Clearly, the original HVBK equations are not applica-

ble for the superfluid turbulence without global rotation,
for which 〈s′〉 = 0. In this case, to obtain a coarse-
grained representation one should average Eq. (2) over
“a physically small volume” of scale δ. This scale should
be chosen to be much larger than ℓ, but still much smaller
than the scale r of turbulent fluctuations under consider-
ation, ℓ ≪ δ ≪ r. For such δ, the local line orientations
s′ and s′⊗s′ in Eq. (2) can be considered as self-averaging

in space as they are almost uncorrelated with the r-scale
fluctuations uns(r), which are treated as dynamical vari-
ables.

For co-flows a number of model expressions were sug-
gested for the fluctuating part of the friction force in the
form fns ∝ Ωsuns. Here the mutual friction frequency
Ωs was modeled as a dimensional estimate, assuming un-
derlying Kolmogorov energy spectrum for the superfluid
component. Examples of such models include Ωs = α|ωs|

(e.g. in Refs. 32,37,38), Ωsα
√
〈ω2

s 〉(e.g. in Refs. 17,20,39)
and Ωs = ακL (e.g. in Ref. 2,13,18,20). Here α is the di-
mensionless mutual friction parameter related1 to γ0 as
αρsκ = (1 + α2)γ0, L is the vortex line density.

In counterflows the dynamics of the vortex tangle is
dominated by the stretching of the vortex lines by the
counterflow velocity and by their reconnections. Based
on experiments in narrow slits, Gorter and Mellink40 pro-
posed to couple the equations of motion for the compo-
nents’ velocities by the mutual friction force of a phe-
nomenological form Fns = Aρnρs U

3
ns, where A is a tem-

perature dependent constant. This form was later refined
by Vinen7 for homogeneous turbulence and an isotropic
vortex tangle as Fns = GUns, G = Aρnρs U

2
ns. Taking

into account the relation between the vortex line density
and the counterflow velocity in the steady-state isotropic
tangle, it can be further rewritten2 as Fns =

2
3
ακLUns.

The tangle anisotropy with respect to the direction of
Uns can be described by the Schwarz’s indices9:

I‖ =
1

Ltot

∫

C

[
1− (s′ · r̂‖)

2
]
dξ =

〈
[1− (s′ · r̂‖)

2
〉
C

, (3a)

I⊥ =
1

Ltot

∫

C

[
1− (s′ · r̂⊥)2

]
dξ =

〈
[1− (s′ · r̂⊥)2

〉
C

.(3b)

Here Ltot is the total vortex length in the whole vortex
configuration C over which integrals are taken and r̂‖
and r̂⊥ are unit vectors in the directions parallel and
perpendicular to Uns respectively. Using (3a) and (3b),
the mutual friction force may be written as

Fns = ακLI‖Uns , (3c)

fns(r, t) = ακL
[
I‖u

‖
ns(r, t) + I⊥u

⊥
ns(r, t)

]
. (3d)

Notably, the second non-dissipative term in Eq. (2) ∝ γ′
0,

vanishes by symmetry and does not contribute9 to the
averaged quantity Fns. The mean mutual friction force
Fns, (3c), found earlier by Schwarz9, enters into the equa-
tions for the mean velocities Un and Us, which we do not
discuss. The fluctuating part (3d) of the mutual friction
force fns(r, t) enters Eqs. (1b). The vector components of

turbulent counterflow velocity fluctuations u
‖
ns and u⊥

ns

are oriented in the directions of r̂‖ and r̂⊥ respectively.

The definitions Eq. (3) do not take into account that
the turbulent intensity of the normal fluid velocity√
〈|un|2〉/Uns in the counterflow turbulence is not very

small and can reach12 values of about 0.25. So, strictly
speaking, in Eq. (3a) and (3b) the directions r̂‖ and r̂⊥,
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should be taken along and orthogonal to the total coun-
terflow velocity Uns. In addition, one should take into ac-
count the space-time dependence of L in Eq. (3d). How-

ever, since the leading contribution to
√
〈|uns|2〉 origi-

nates from the outer scale of turbulence ∆ ≫ ℓ, for the
motions of the scale ℓ this correction effectively adds to
Uns and we can neglect the influence of the velocity fluc-
tuations of the scale r on the vortex line density, replace
an average of the product by the product of averages
and consider L as constant. The equation (3d) may be
identically rewritten as

fns(r, t) = Ωs

[
uns +

I‖ − I⊥

2
(2u‖

ns − u⊥
ns)

]
, (4)

Ωs =
2

3
ακL , uns = u||

ns + u⊥
ns .

Taking the numerical values of I‖ and I⊥ (see e.g. Tab.

IV for T = 1.6K in Ref. 41) we see that (I⊥−I‖)/2 ≈ 0.05.
This means that with a reasonable accuracy of about
(5 − 10)% we can neglect the anisotropy term in Eq. (4)
and use the simple form fns(r, t) = Ωsuns(r, t) as a good
approximation for fns even for counterflow turbulence.
Furthermore, in this paper we do not consider the de-
pendence of L on the flow parameters and use the mu-
tual friction frequency Ωs as a prescribed external control
parameter. It can be estimated or measured for each par-
ticular flow conditions.

B. Statistical characteristics of anisotropic
turbulence

1. Velocity correlation function

A useful characterization of homogeneous superfluid
4He turbulence is furnished by the three-dimensional
(3D) correlation functions of the normal- and superfluid
turbulent velocity fluctuations in k-representation:

(2π)3δ(k − k′)Eαβ
ij (k) =

〈
vαi (k)v

∗β
j (k′)

〉
, (5a)

Eαβ
j (k) = Eαβ

jj (k) , Eij(k) ≡
∑

α=x,y,z

Eαα
ij (k) . (5b)

Here δ(k−k′) is a 3D Dirac’s delta function, vj(k) is the
Fourier transform of uj(r)

vj(k) =

∫
uj(r) exp(−ik · r) dr , (5c)

uj(r) =

∫
vj(k) exp(−ik · r)

dk

(2π)3
, , (5d)

the indices α, β = {x, y, z} denote Cartesian coordinates,
the subscripts “i,j” denote the normal (i, j =n) or the su-
perfuid (i, j =s) fluid components and ∗ stands for com-
plex conjugation. In the rest of the paper, we denote the
trace of any tensor according to Eij(k) =

∑
α Eαα

ij (k) .

The correlation function Eαβ
ij (k) and the Fourier trans-

form (5c) are defined such that the kinetic energy density
per unite mass Ej reads

Ej =
1

2

〈
|uj(r)|

2
〉
=

1

2

∫
Ejj(k)

d3k

(2π)3
. (5e)

The dimensionality of the energy density is
[Ejj ] =cm2/s2, while the dimensionality of the 3D
energy spectra is [Ejj ] =cm5/s2.
Due to the presence of a preferred direction (the coun-

terflow velocity), the resulting turbulence has an axial

symmetry around that direction. Accordingly, Eαβ
ij (k)

depends only on two projections k‖ and k⊥ of the wave-

vector k: k‖ ≡ Uns(k · Uns)/U
2
ns and k⊥ ⊥ Uns, being

independent of the angle ϕ in the ⊥-plane, orthogonal to

Uns: Eαβ
ij (k) ⇒ Eαβ

ij (k‖, k⊥). This allows us to define a

two-dimensional (2D) object Eαβ
ij (k‖, k⊥) that still con-

tains all the information about 2nd-order statistics of the
counterflow turbulence:

Eαβ
ij (k‖, k⊥) ≡

k⊥
4π2

Eαβ
ij (k‖, k⊥) . (6a)

Another way to represent the same information is to in-
troduce a polar angle θ = ∠(k,Uns), to represent the

wavevector length as k =
√
k2‖ + k2⊥ and to define a 2D

object Ẽαβ
ij (k, θ) in spherical coordinates:

Ẽαβ
ij (k, θ) ≡

kEαβ
ij (k)

4π2
=

k

4π2
Eαβ
ij (k cos θ, k sin θ). (6b)

The dimensionality of 2D energy spectra and correlation

functions is [ Eαβ
ij ] = [ Ẽαβ

ij ]=cm4/s2.
A more compact but less detailed information on the

statistics of turbulence is provided by a set of one-
dimensional (1D) energy spectra. The most traditional
are the 1D “spherical” energy spectra and the cross-

correlation function •Eαβ
ij (k), averaged over a spherical

surface of radius k:

•Eαβ
ij (k) =

∫
Eαβ
ij (k‖, k⊥)δ

(
k −

√
k2‖ + k2⊥

)k⊥dk⊥dk‖
4π2

=

∫
Eαβ

ij (k‖, k⊥)δ(k −
√
k2‖ + k2⊥)dk⊥dk‖ (7a)

= k

∫ 1

−1

Ẽαβ
ij (k, θ)d cos θ .

In the isotropic case, when Eαβ
ij depends only on k =√

k2‖ + k2⊥, this representation simplifies to a well know

relationship

•Eαβ
ij (k) =

k2

2π2
Eαβ
ij (k) , for spherical symmetry. (7b)

Further information about the anisotropy of the 2nd-
order statistics is obtained by comparing the spherical
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1D-spectra •Eij(k) with a set of 1D spectra averaged dif-
ferently. A natural choice are spectra averaged over a
cylinder of radius k⊥ with the axis oriented along k‖.
This results in the cylindrical 1D spectra

◦Eαβ
ij (k⊥) =

∫
Eαβ

ij (k‖, k⊥)dk‖. (7c)

Alternatively, one can average the 3D function
Eij(k‖, k⊥) over a plane. Here we choose two planes:

– 1D-spectra ⊥Eαβ
ij (k‖), averaged over a ⊥-plane, or-

thogonal to Uns

⊥Eαβ
ij (k‖) =

∫
Eαβ

ij (k‖, k⊥)dk⊥ . (7d)

These spectra depend on the streamwise projection k‖ of
the wave-vector k.
– 1D-spectra ‖Eαβ

ij (k⊥), averaged over the ‖-plane, ori-
ented along Uns. We chose for concreteness the plane
(kx, kz), such that k‖ = kx and the spectra depend on
ky:

‖Eαβ
ij (ky) =

∫
Eαβ
ij

(
k‖,

√
k2z + k2y

)dk|| dkz
4π2

. (7e)

Note that the 2D-, and 1D-energy spectra are defined
such that the kinetic energy density per unit mass Ej can
be found as:

2Ej =

∫
Ejj(k)

d3k

(2π)3
=

∫
Ejj(k‖, k⊥)dk‖ dk⊥

=

∫
Ẽαβ

jj (k, θ) k dk d cos θ =

∫
•Eαβ

jj (k)dk (8)

=

∫
⊥Eαβ

jj (k‖)dk‖ =

∫
‖Eαβ

jj (ky)dky .

The tensor structure of the energy spectra will be consid-
ered only in Sec. II D. In the rest of Sec. II we will restrict
ourselves by discussing only scalar versions of the energy
spectra, which are the traces of their tensorial counter-
parts.

2. Velocity structure functions

Another presentation of the statistics of turbulence is
provided by the second-order velocity structure functions

δ
R
uα
j ≡ uα

j (R + r, t)− uα
j ( r, t) (9a)

Sαβ
j (R) ≡

〈
δ
R
uα
j δ

R
uβ
j

〉
. (9b)

The trace Sj(R) ≡
∑

α Sαα
j (R) is a measure of the ki-

netic energy of turbulent (normal or superfluid) velocity
fluctuations on scale R. Recently, the streamwise nor-
mal velocity across a channel, vx(y, t) was measured us-
ing thin lines of the triplet-state He2 molecular tracers
created by a femptosecond-laser field ionization of He

atoms 42 across the channel. This way, the transversal
2nd-order structure functions 11,12 of the normal-fluid ve-
locity differences Sxx

n (Ry) were obtained. Similarly, one
can use two or more tracer lines, separated in the stream-
line direction x̂, to measure the longitudinal structure
function Sxx

n (Rx) and even inclined structure function
Sxx
n (Rx, Ry).
Using the definition of the structure functions (9a) and

the one-dimensional version of the inverse Fourier trans-
form (5d) one gets

Sxx
j (Ry) = 8

∞∫

0

‖E
xx

j (ky) sin
2 kyRy

2
dky , (10a)

Sxx
j (Rx) = 8

∞∫

0

⊥E
xx

n (kx) sin
2 kxRx

2
dkx . (10b)

Analyzing the integrals (10) for the scale-invariant spec-
tra E(k) ∝ k−m one concludes that they converge in the
window of locality

1 < m < 3 . (11a)

In this window, the leading contribution to the inte-
grals (10) comes from the region kR ∼ 1 and

Sj(R) ∝ Rn , n = m− 1 . (11b)

This is a well known relationship. For example, n = 2/3
for the K41 spectrum with m = 5/3 [which satisfy (11a)].
However for fast decaying spectra with m ≥ 3 the inte-
grals (10a) diverge in the infrared region kR ≪ 1 with the
main contribution coming from energy containing region
k ∼ k0, giving

Sαα
j (R) ∝ R2 . (11c)

We see that connection between m and n for fastly de-
caying spectra with m > 3 is lost. To recover it for
m > 3 we consider structure functions of the velocity
second differences43,44

∆
R
uα
j ≡ uα

j (2R+ r, t)− 2uα
j (R + r, t) + uα

j ( r, t),(12a)

S̃αβ
j (R) ≡

〈
∆

R
uα
j ∆R

uβ
j

〉
. (12b)

Now instead of Eqs. (10) we have

S̃xx
j (Ry) = 32

∞∫

0

‖Ej
xx
(ky) sin

4 kyRy

2
dky , (13a)

S̃xx
j (Rx) = 32

∞∫

0

⊥E
xx

j (kx) sin
4 kxRx

2
dkx . (13b)

Now these integrals converge in the extended window of

locality

1 < m < 5 . (14a)
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TABLE I: Parameters of simulations by columns: (# 1) Run #, (# 2); Temperature (K); (# 3 and # 4) Ratios of the superfluid
and normal-fluid densities29, ρs/ρn and viscosities νs/νn ;(# 5) The mutual friction parameter α; (# 6 and #7) The numerical
values of the kinematic viscosity of the normal-fluid and superfluid components ν̃n and ν̃s; (# 8 and #9) The numerical values
of mutual friction frequency Ω and counterflow velocity V ; (# 10 and #11) the root mean square (rms) normal-fluid and
superfluid turbulent velocity fluctuations vnT and vsT; (# 12 and # 13) the normal-fluid and superfluid Reynolds numbers;
(# 14) k×, Eq. (16d).
For details see Sect.II A. In all simulations: the number of collocation points along each axis is N = 256; the computational
box size is L = 2π, the range of forced wavenumbers kϕ̃ = [0.5, 1.5].

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Run T ,
ρs
ρn

νs
νn

α ν̃n , ν̃s, Ω, V un
T = us

T = Ren Res k×

# K ×103 ×103
√

〈un
2〉

√

〈us
2〉

1 1 15 4.3 4.5 997 2595 0.34

2 1.65 4.2 0.49 0.11 3.0 1.38 20 15 4.2 4.2 1216 2667 6.88

3 1 0 3.6 3.6 1257 2953 ∞

4 20 0 3.7 3.7 1316 2872 ∞

5 1 15 3.4 3.5 908 994 0.18

6 1.85 1.75 1.07 0.18 3.0 1.85 20 15 3.5 3.5 1051 1056 3.57

7 1 0 3.3 3.3 1154 1239 ∞

8 20 0 3.6 3.5 1179 1181 ∞

9 1 15 4.3 4.2 1064 582 0.15

10 2.00 0.83 1.72 0.28 3.0 5.0 20 15 3.5 3.5 1153 664 1.5

11 1 0 3.3 3.3 1225 689 ∞

12 20 0 3.6 3.5 1177 676 ∞

In this window, the leading contribution to the inte-
grals (13) again comes from the region kR ∼ 1 and,
similarly to Eq. (11b), for the scale-invariant spectrum
E(k) ∝ k−m we have

S̃αα
j (R) ∝ Rn , n = m− 1 . (14b)

Form > 5 the integrals (13) diverge in the infrared region
and

S̃αα
j (R) ∝ R4 . (14c)

It is worth noting that the relations (11b) and (14b) are
valid in the limit of infinite inertial interval. For a finite
inertial interval which is typical for the experimental con-
ditions, the structure functions have a complicated func-
tional dependence, mixing the inertial and viscous behav-
ior and the original scaling of the energy spectra is repro-
duced over very short intervals of scales13. Nevertheless,
when experimental conditions do not allow to measure
the energy spectra directly, the structure functions re-
main the preferred tool to access the statistics of the ve-
locity fluctuations. In a turbulent counterflow, where the
energy spectra are not scale-invariant, the quantitative
analysis of the structure functions may not be meaning-
ful. Nevertheless a qualitative difference between struc-
ture functions measured along different directions may
confirm the presence of the spectral anisotropy.

C. Physical origin of the strong anisotropy of
counterflow turbulence

In a recent Letter19 it was shown that the energy spec-
tra in counterflow turbulence are expected to be strongly
anisotropic. To keep the present paper self-contained,
we repeat here some of that discussion and add further
clarifications to the analysis.

We start with a balance equation18,19 for the 2D energy
spectrum Ẽj(k, θ) in the counterflow turbulence with ax-
ial symmetry:

∂Ẽj(k, θ, t)

∂t
+ divk[εj(k)] = −Dmf

j (k, θ)−Dν
j (k, θ),(15a)

Dmf
j (k, θ) = Ωj [Ẽj(k, θ)− Ẽns(k, θ)

]
, (15b)

Dν
j (k, θ) = 2 νjk

2Ẽj(k, θ) . (15c)

Here divk[εj(k)] is the transfer term due to inertial non-
linear effects. The terms on the right hand side describe
the energy dissipation rate due to the mutual friction
Dmf

j (k, θ) and due to the viscous effects Dν
j (k, θ). To

keep the presentation concise, we introduced a notation
Ωn = Ωsρs/ρn.

The origin of the energy spectra anisotropy in coun-
terflow turbulence can be deduced from the form of the
dissipation rate Dmf

j (k, θ) (15b). In this term, the cross-

correlation function Ẽns(k, θ) has the following form [cf.
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FIG. 1: The spherically-averaged energy spectra and the cross-correlation functions for the counterflow and coflow at different
temperatures. Panels (a),(b) and (c) – the K41-compensated energy spectra •Ej(k) for the normal-fluid (solid lines) and
superfluid components (dashed lines). Panels (d),(e) and (f) – the normalized cross-correlation functions •R(k). The four sets
of lines in each panel correspond to V0Ω1– green lines, V0Ω20– brown lines, V15Ω1– red lines, V15Ω20– blue lines. The black
lines, labeled ”Cl” in the panels (a),(b) and (c) correspond to the spectra of classical turbulence.

Eq.(13) in Ref. 17]:

Ẽns(k, θ) =
AB

B2 + (k ·Uns)2
. (16a)

Here A = ΩsẼn(k, θ)+ΩnẼs(k, θ) and B can be written18

as B = Ωns = Ωn + Ωs. We further note18,19that
when two components are highly correlated, the cross-
correlation may be accurately represented by the corre-
sponding energy spectra. For wave numbers where the
components are not correlated, Ẽns(k, θ) is small and the
accuracy of its representation is less important. This
allows us to decouple Ẽns(k, θ) in Eqs. (15) for each com-
ponent as follows:

Ẽns(k, θ) = Ẽj(k, θ)D(k, θ) , (16b)

D(k, θ) = 1
/[

1 +
(kUns cos θ

Ωns

)2]
. (16c)

Note that averaging Eq. (16c) over θ results in the equa-
tion for D(k), used in the theory of isotropic counterflow
turbulence 18:

D(k) ≡ 〈D(k, θ)〉θ =

1∫

0

D(k, θ)d cos θ

=
k×
k

arctan
k

k×
, k× ≡

Ωns

Uns

. (16d)

The function D(k, θ) in Eqs. (16) describes the level
of decorrelation of the normal-fluid and superfluid veloc-
ity components by the counterflow velocity. Within the
approximation (16b), D(k, θ) defines the rate of energy
dissipation caused by mutual friction:

Dmf
j (k, θ) = ΩjẼj

[
1−D(k, θ)

]
. (17)

For small k or even for large k with k almost perpendic-
ular to Uns (i.e cos θ ≪ 1), D(k, θ) ≃ 1 , the normal and
superfluid velocities are almost fully coupled and the rate
of the energy dissipation Dmf

j (k, θ) ≪ Ωj is small. In this
case, the role of mutual friction is minor and we expect
the energy spectrum Ẽj(k, θ) to be close to the classi-

cal prediction EK41(k) ∝ k−5/3. For large k and for k
with cos θ ∼ 1, D(k, θ) ≪ 1, the velocity components are
almost decoupled, Dj(k, θ) ≪ 1 and the mutual-friction
energy dissipation is maximal: Dmf

j (k, θ) ≈ Ωj . This

situation is similar to that in 3He with the normal-fluid
component at rest, for which Dmf

s (k, θ) = Ωs. In this
case, we can expect that the energy dissipation by mu-
tual friction strongly suppresses the energy spectra, much
below the K41 expectation EK41(k) up to the level typi-
cal for the 3He turbulence 21,22,36,45. Next, we note that
Ωns = Ωs+Ωn = ρΩs/ρn. Then Eq. (16c) may be rewrit-
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FIG. 2: The angular dependencies of the energy spectra Ẽj(k, θ)/
•Ej(k) and the cross-correlations R(k, θ), averaged in 3

wavenumber bands, for various flow condition. Panels (a),(b) and (c)- the 2D energy spectra Ẽj(k, θ). The spectra of the
normal-fluid are shown by solid lines and of the superfluid – by dashed lines. Panels (d)-(f)– the cross-correlations R(k, θ).
The spectra and the cross-correlation for the coflow are shown by thin horizontal lines and marked V0Ω20, for the counterflow
– by thick lines and marked V15Ω20. In all panels, red lines correspond to the averaging over wavenumber range 10 ≤ k < 20
(labeled as k10), green lines – to averaging over 20 ≤ k < 60 (labeled as k20) and blue lines – to the averaging over 60 ≤ k ≤ 80
(labeled as k60). Note the log-linear scale.

ten as

D(k, θ) = 1
/[

1 +
(ρnkUns cos θ

ρΩs

)2]
. (18)

At low temperatures ρn/ρ is small and the velocity decor-
relation is considerable only at large k, while at higher
temperature ρn/ρ ≈ 1 and the energy dissipation by mu-
tual friction is effective at all scales.

Combining all these considerations, we expect the en-
ergy spectra Ẽj(k, cos θ) to become more anisotropic with
increasing k, with most of energy concentrated in the
range of small cos θ, i.e. in the wavevector plane orthog-
onal to the counterflow velocity Uns. This effect is milder
at low T and stronger at higher temperatures.

II. STRONG ANISOTROPY OF ENERGY
SPECTRA

A. Simulation parameters and numerical procedure

The direct numerical simulation of the coupled
Eqs. (1b) were carried out using a fully de-aliased pseu-
dospectral code with a resolution of 2563 collocation
points in a triply periodic domain of size L = 2π. The
parameters of the simulations are summarized in Table I.
To obtain the steady-state evolution, velocity fields of the
normal and superfluid components are stirred by two in-
dependent isotropic random Gaussian forcings:

〈ϕ̃u(k, t) ·ϕ̃
∗
u(k

′, t′)〉 = Φ(k)δ(k−k′)δ(t− t′)P̂ (k) , (19)

where P̂ (k) is a projector assuring incompressibility and
Φ(k) = Φ0k

−3; the forcing amplitude Φ0 is nonzero only
in a given band of Fourier modes: k ∈ [0.5, 1.5]. Both
components are forced with the same amplitude to al-
low direct comparison with simulations of the uncou-
pled equations. The time integration is performed using
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a 2-nd order Adams-Bashforth scheme with the viscous
term exactly integrated. Simulations for all temperatures
were carried out with the normal-fluid viscosity fixed at
ν̃n = 0.003 and the value of ν̃s is found using the known
value of ratio νs/νn at each temperature.
To properly expose various aspects of the counterflow

turbulence statistics we chose several sets of governing
parameters for the simulations. Since the material pa-
rameters of 4He are strongly temperature dependent29

(see Table I, columns #3–5), we consider three tem-
peratures, corresponding to an experimentally accessible
range T = 1.65, 1.85 and 2.0K. At low temperatures the
superfluid component is dominant and has a lower viscos-
ity, while at high T the density of the normal-fluid com-
ponent is larger, while its kinematic viscosity is lower.
At T = 1.85K, the densities and the viscosities of two
components are closely matched.
As was shown in previous studies17,18,33, the major

role in the statistics of the counterflow in superfluid
4He is played by the ratio of the mutual friction frequency
and the counterflow Doppler frequency Ωns/(kUns) [cf.
Eq. (16d)]. To explore various scenarios, we use one coun-
terflow velocity Uns and two very different values of Ωs.
To emphasis the importance of the flow anisotropy, we
compare the results for the counterflow with simulations
of coflow Uns = 0, keeping the rest of parameters un-
changed. The detailed study of the statistics of the coflow
was reported in Ref. 20. Other parameters of the simu-
lations were chosen based on dimensionless numbers: i)

the Reynolds numbers Rej =
∆u

νjk0
, ii) the turbulent in-

tensity
Uns

∆u
, and iii) the dimensionless cross-over scale

q× =
Ωns

k0Uns

=
k×
k0

. Here ∆u is the root-mean-square

(rms) of the normal-fluid turbulent velocity fluctuations,
k0 = 1 is the outer scale of turbulence. The numerical
values of the dimensionless counterflow velocity V = 15
and the mutual friction frequency Ω = 1 and 20 are listed
in Table I, columns #8-9. In this way, for each tem-
perature we have 4 runs, labeled below as V0Ω1, V0Ω20,
V15Ω1 and V15Ω20. Reference simulations of the uncou-
pled Eq. (1a) with Ωs = 0, Uns = 0, representing classical
hydrodynamic turbulence for the same parameters of the
flow, are labeled as ”Cl”.
The correlation between components in the counter-

flow become gradually weaker with increasing cos θ for
T = 1.65K, while for T = 2.0K the normal fluid and
superfluid are essentially uncorrelated for cos θ & 0.1.

B. Spherical energy spectra •Ejj(k) and
cross-correlations •Ens(k)

The energy spectra are influenced by a few compet-
ing factors: the viscous dissipation, the dissipation by
mutual friction and the decoupling due to counterflow
velocity. To find their relative importance, we first ig-

nore the present angular dependence and consider the
spherically averaged spectrum •Ej(k) and the normalized
cross-correlation function:

•R(k) =
2 •Ens(k)

•Enn(k) + •Ess(k)
. (20)

In the upper row of Fig.1 we plot the spectrum •Ej(k),

compensated by the classical scaling k5/3 for different
flow conditions. In the lower row we show the cross-
correlations Eq. (20). In this figure and in Figs. 2-7 the re-
sults for T = 1.65K are shown in the left column [panels
(a) and (d)], for T = 1.85K– in the middle column [pan-
els (b) and (e)] and for T = 2.0K – in the right column
[panels (c) and (f)]. The effect of viscous dissipation is
clearly seen in the spectra of the uncoupled components,
corresponding to classical turbulence and marked ”Cl”,
black lines. The spectra almost coincide for T = 1.85K,
for which the viscosities are almost equal. The viscos-
ity of the normal-fluid component (solid lines) is larger
than for the superfluid (dashed lines) for T = 1.65K and
smaller for T = 2.0K.
Next, we add the coupling by the mutual friction force,

creating a coflow (green and brown lines). The strongly
coupled components (V0Ω20, brown lines) are well cor-
related at all scales and move almost as one fluid. The
corresponding spectra slightly differ only at the viscous
scales. Note the additional dissipation due to mutual fric-
tion, leading to further suppression of the spectra com-
pared to the uncoupled case, for T = 1.85 and 2.0K.
At the lower temperature T = 1.65K the energy ex-
change between components leads to stronger dissipation
in the superfluid component and weaker dissipation in
the normal-fluid component. For weaker coupling (V0Ω1,
green lines), the situation is completely different. The
components are almost uncorrelated, especially at large
k. The coupling between them is translated into very
efficient dissipation by mutual friction, leading to spec-
tra that are suppressed almost at all scales, especially at
high temperature (see Ref. 20 for details).
In the presence of the counterflow velocity17, the two

components are swept in opposite directions by the corre-
sponding mean velocities. This leads to further decorre-
lation of the component’s turbulent velocities, especially
at small scales, for which the overlapping time is very
short [cf. lines for V15Ω1 and V15Ω20 in Fig. 1(d-f)]. Even
for the strong coupling, V15Ω20, blue lines, the veloci-
ties become progressively less correlated for all tempera-
tures. The dissipation by mutual friction is very strong
in this case, with both Ω and the velocity difference be-
ing large, leading to very strongly suppressed spectra,
with •Enn(k) ≈ •Ess(k). At T = 1.65K there is still
some interval of scales with k & k0, for which the spectra
are close to K41 scaling. The crossover scale agrees well
with k× ≈ 7 for this case (see Table I, column #14). For
higher temperatures this crossover scale become smaller
and the classical-like behavior is not resolved. At weak
coupling (V15Ω1, red lines), the velocities are essentially
uncorrelated and the spectra of the two components dif-
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fer and are very strongly suppressed, especially at high
T .

C. Angular dependence of 2D-energy spectra

The behavior of the spherically averaged energy spec-
tra agrees well with the predictions of the theory18, based
on the assumption of spectral isotropy. To explore the
angular dependence of the energy spectra and the correla-
tions Ẽij(k, θ) we plot in Fig. 2(a-c) the spectra Ẽj(k, θ),
normalized by the corresponding •Ej(k) and in Fig. 2(d-f)

the corresponding normalized cross-correlations R̃(k, θ).
Given the discrete nature of the k-space in DNS, we fur-
ther average them over 3 bands of wavenumbers. We
do not account for the largest scales k ≈ k0 which are
influenced by the forcing and average the spectra and
the cross-correlations over the k-ranges 10 ≤ k < 20,
20 ≤ k < 60 and 60 ≤ k ≤ 80. The corresponding lines
are labeled as k10, k20 and k60, respectively. Here we
consider only strong coupling regime and plot the spec-
tra and the cross-correlations for the coflow (V0Ω20) and
for the counterflow (V15Ω20) .
The first observation is that the spectra and the cross-

correlation for the coflow are isotropic for all the condi-
tions. The angular dependencies of Ẽj(k, θ) and R̃(k, θ)

for the counterflow, on the other hand, have a compli-
cated form. Both the spectra and cross-correlation are
largest for cos θ ≈ 0 and fall off very quickly with decreas-
ing angle. The spectra decrease exponentially with cos θ,
slower for small k (red lines for k10) and faster for larger k
(green and blue lines for k20 and k60, respectively). This
effect is stronger for the normal-fluid (super fluid) com-
ponent at low temperatures (high temperature). Most of
the energy is contained in the narrow range cos θ < 0.1,
near the ⊥-plane in the k-space, orthogonal to Uns.

To better quantify the angular energy distribution, we
use the fact that the spectra Ẽj(k, θ) have piecewise expo-
nential dependence of cos θ , as is evident from Fig. 2(a)-
(c). We then estimate the cos θ-range, in which half of
the total energy is contained, for different wavenumber
bands. At T = 1.65K, for the small wavenumbers k10
band, this range is indeed cos(θ) < 0.1 for both the nor-
mal an superfluid components. With increasing temper-
ature, this range decreases to cos θ < 0.05 for T = 1.85K
and to cos θ < 0.03 for the normal-fluid and cos θ < 0.025
for the superfluid at T = 2.0K. For the larger k20 band
these values are 0.04 and 0.06 for the normal fluid and
the superfluid, respectively, at T = 1.65K. For higher
temperatures, as well as for the high wavenumber k60
band, about a half of the total energy is contained in a
narrow cos θ < 0.02− 0.025 range for both components.
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u

FIG. 5: Superfluid velocity ux
s and uy

s components50. T =
1.85K, Ω = 20, V = 15. The uz

s component (not shown) is
similar to the y component. The velocity magnitude is color
coded, with red denoting positive and blue denoting negative
values.

Indeed, the superfluid energy spectrum Ess(k||, k⊥),
shown in Fig. 3, is strongly suppressed in k|| direction,
while decreasing slowly in the orthogonal direction, es-
pecially for T = 2.0 K.

D. Tensor structure of 1D energy spectra

Given such a strong anisotropy of the spectra in the
counterflow, it is natural to expect that different compo-
nents of the turbulent velocity fluctuations are excited to
a different extent. In this section we consider the tensor
structure of 1D-energy spectra •Eαα

jj (k) for α = x, y, z

and clarify which components (vxj along Uns or vyj , v
z
j ,

both orthogonal to Uns) are most excited.
In Figs. 4 we plot the components of the spherical spec-

tra for three temperatures as the ratios

•Kα
j (k) ≡ 3 •Eαα

jj (k)/ •Ejj(k) . (21)

The factor 3 was introduced to ensure that for the
isotropic turbulence

∑

α=x,y,z

•Kα
j (k) = 1.

Indeed, for the coflow (the almost horizontal lines,
labeled V0Ω20) all the velocity components are excited
equally, except for the smallest wavenumbers. On the
other hand, for the counterflow turbulence (lines la-
beled V15Ω20) the contribution of the •Kx

j (k) component
(shown by red lines) is dominant and monotonically in-
creasing with k from the isotropic level •Kx

j (k0) ≈ 1 to
the maximal possible level •Kx

j (k) ≈ 3. This means that
the small-scale counterflow turbulence mainly consists
of vxj (k) velocity fluctuations. The contribution of vyj
and vzj fluctuations for k & 10 is negligible, especially at
T = 2.0K.

Therefore, the counterflow turbulence represent a spe-
cial kind of a quasi-2D turbulence, consisting mostly of
the turbulent velocity fluctuations with only one stream-
wise projection u‖, which depends on the cross-stream
coordinate r⊥: u‖(r⊥, t). This behavior is essentially
different from other known types of quasi-2D turbulence,
such as stably-stratified flow in the atmosphere23–25 or
rotational turbulence26–28, in which the leading contri-
bution to the turbulent velocity field comes from the 2D
velocity field u⊥ that depends on r⊥: u⊥(r⊥, t). Such a
u‖(r⊥, t)-turbulence can be visually presented as narrow
jets or thin sheets as illustrated in Fig. 5.
Note the difference with the strong acoustic turbu-

lence. There the velocity field has tangential velocity
breaks at the jets boundaries and the 1D energy spec-
trum E(k) ∝ k−2. The energy spectra in the counterflow
decay much faster. It means that the velocity fields at
the jets boundaries are continuous together with some
finite number of their derivatives. This is a consequence
of the mutual friction that tends to smooth the velocity
field.

E. Comparison of 1D energy spectra and
reconstruction of 3D spectra

The best way to study the anisotropy of hydrodynamic
turbulence is to expand the statistical objects in the ir-
reducible representations of the SO(3) symmetry group,
see, e.g. Refs. 25,46–49. In counterflow turbulence, an at-
tempt to expand Ẽj(k, θ) into a series with respect to
Legendre polynomials,

Ẽj(k, θ) =
∑

ℓ

Ẽj(k, ℓ)Pℓ(cos θ) , (22)

and to study k-behavior of Ẽj(k, θ), turned out to be in-

effective. The very strong anisotropy of Ẽj(k, θ) spectra
required too many terms in the expansion (22) for an ad-
equate reproduction of its angular dependence. There-
fore, we choose another way to characterize the spec-
tral anisotropy, which is more suitable in our case. We
compare the normal-fluid and superfluid spherical •Ej(k),
cylinder ◦Ej(k⊥), and ‖-, ⊥-plane-averaged energy spec-

tra ‖Ej(k⊥),
⊥Ej(k‖).

In the case of isotropy, all the four 1D energy spectra
are proportional to each other

•Eαβ
ij (p) ∝ ◦Eαβ

ij (p) ∝ ⊥Eαβ
ij (p) ∝ ‖Eαβ

ij (p) , (23)

differing only in numerical prefactors. Here p is the
corresponding (dimensional, [p] =1/cm) wavenumber:
p = k, k⊥, k‖ or ky. By estimating contributions to
the integrals in Eqs. (7a), (7c) and (7e) in the case of
strong anisotropy (i.e coming from a narrow range with
k‖ ≪ k⊥), one may show that the spectra are related

as •Ej(p) ≈ ◦Ej(p) ≈ C ‖Ej(p), where C is a numeri-
cal prefactor. This fact may explain the good agreement
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FIG. 6: Various 1D energy spectra of the normal-fluid (solid lines) and the superfluid (dashed) components for the coflow (lines
labeled V0Ω20) and for the counterflow (lines labeled V15Ω20). Different kinds of spectra are annotated in the figure.
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FIG. 7: The ⊥-plane energy spectra ⊥Ej(k‖) of the normal-fluid (solid lines) and the superfluid (dashed) components for
counterflow V15Ω20. The spectra are shown in a Log-linear scale in panel (a) and in Log-log scale in panel (b). Different
temperatures are annotated in the figure. Note linear behavior at small k‖ in panel (a) and at large k‖ in panel (b) .

between the experimental spectra ‖En(k⊥), obtained in
Ref. 13 and the prediction of the theory18 for •Ej(k). The
integral in Eq. (7d) is different and the spectrum ⊥Ej(k‖)
is expected to be confined to small k‖ range.

These spectra, normalized by the energy density En
and compensated by the K41 factor p5/3, are shown in
Fig. 6. The coflow spectra, appearing as almost horizon-
tal lines, labeled V0Ω20, indeed differ by less than an or-
der of magnitude for all T . The relation between various
spectra for the counterlow is consistent with the above es-
timate, further confirming the strong spectral anisotropy.
The degree to which the ⊥Ej(p) spectra, shown by green
lines, are suppressed at different temperatures, agrees
with the angular dependence of Ẽj(k, θ), Fig. 2(a)-(c).
While at T = 1.65K the spectrum for the k10-range at
cos θ ≈ 1 is smaller by three orders of magnitude in the
direction of the counterflow compared to the orthogonal
plane, at T = 2.0 K this difference is almost ten orders of
magnitude. Accordingly, the ⊥Ej(p) spectrum at T = 2.0
K is confined to less than a decade in p. To better quan-
tify the steepness of the spectra we list in Table II the
values of the ratios Ej(10)/Ej(1) for

⊥Ej(p) and
||Ej(p).

The analysis of the (k, θ)-dependence of the Ẽj(k, θ)
energy spectra in Sec. II C showed that the overwhelming

T = 1.65K T = 1.85K T = 2.0K
‖En,s(10)/

‖En,s(1) 10−3 2.0 × 10−4 2.5× 10−4

⊥En(10)/
⊥En(1) 6.3× 10−6 2.0 × 10−8 1.6× 10−8

⊥Es(10)/
⊥Es(1) 2.5× 10−5 3.2 × 10−8 1.6× 10−9

TABLE II: The steepness of the energy spectra ⊥Ej(k)

and ‖Ej(k) in the counterflow, characterized by the ratios
⊥Ej(10)/

⊥Ej(1) and
‖Ej(10)/

‖Ej(1).

part of the total turbulent energy is concentrated in the
range of small cos θ, and consequently small k‖, say for
k‖ . 10. For a semi-qualitative analysis of the 2D-spectra

Ej(k‖, k⊥) and Ẽj(k, θ) in this range of k||, we assume a
factorization

E(k‖, k⊥) ≃ f1(k‖) f2(k⊥) . (24a)

If so, using Eqs. (7c) and (7d), we can reconstruct the 2D
energy spectra as follows

Ej(k‖, k⊥) ≃
◦Ej(k⊥)

⊥Ej(k‖)

Ej
, (24b)

where Ej is the energy density in the system given by
Eq. (8).



13

(a) (b) (c)

10-1 100
10-4

10-2

100

102

104

V
0 20

T=1.65 K

V
15 20

S||
n
(R

||
) S||

n
(R )

S||
n
(R ) S||

n
(R

||
)

10-1 100
10-4

10-2

100

102

104

T=1.85 K

V
0 20

V
15 20

S||
n
(R

||
) S||

n
(R )

S||
n
(R

||
) S||

n
(R )

10-1 100
10-4

10-2

100

102

104

T=2.0 K

V
0 20

V
15 20

S||
n
(R

||
)

S||
n
(R )

S||
n
(R

||
) S||

n
(R )

FIG. 8: The velocity structure functions of the normal-fluid component S
||
n (R) (9b). The lines for the coflow are marked V0Ω20,

for the counterflow V15Ω20. Various structure functions are marked in the figures. The dashed lines, labeled R2/3 and the
dot-dashed lines, marked R2, serve to guide the eye only.
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FIG. 9: The structure functions S
||
j (R||) (a) and S

||
j (R⊥) (b) at T = 1.65 K. The lines for the counterflow with V = 15 and

different values of Ω are color-coded: Ω = 1 (red lines), Ω = 3 ( green lines), Ω = 20 ( blue lines). The structure functions for
the normal-fluid component are shown by solid lines and for the superfluid component–by dashed lines. Structure functions for
the classical turbulence (V = 0,Ω = 0) are shown by black lines and labeled ”Cl”.

Furthermore, using Eqs. (6), we can also reconstruct

the 2D spectra Ẽ(k, θ) from E(k‖, k⊥):

Ẽj(k, θ) ≃
◦Ej(k sin θ)

⊥Ej(k cos θ)

Ej sin θ
. (24c)

In the range of small cos θ, where most of the tur-
bulent energy is concentrated, Eq. (24c) can be sim-

plified as follows: Ẽj(k, θ) ≃ ◦Ej(k)
⊥Ej(k cos θ)/Ej .

The θ-dependence of Ẽj(k, θ) is therefore determined
by ⊥Ej(k cos θ), i.e. cos θ appears in the combination
k cos θ = k‖. This observation fully agrees with our the-
oretical prediction, that cos θ appears in the theory only
via Eq. (16c) in the dimensionless factor kUns cos θ/Ωns.
We consider this agreement as an argument in a favor of
the factorization assumption (24a) for small cos θ.
To take a closer look at ⊥Ej(k‖), we plot in Fig. 7 these

spectra for different temperatures. To expose the func-
tional dependence of the spectra, we use different scales
in two panels: in the panel (a) the scale is Log-Linear,
while in panel (b) the spectra are plotted in the Log-Log

scale. At all temperatures the small-k‖ behavior is ex-
ponential, while at larger k‖ the spectra are consistent
with the power-law behavior. Using this information, we
propose the following form for the small-k‖-spectra:

⊥Ej(k‖) ≃
k‖ Ej

k∗
exp

[
−

k‖

k∗

]
. (25)

It is tempting to relate the characteristic k∗ to the
crossover scale k× : k∗ ∝ Ωns/Uns = k×. Indeed, k∗
estimated from Fig. 7(a) and k× (Table I, column #14)
have similar temperature trends. This gives additional
support for factorization (24a) and for qualitative theo-
retical discussion of the problem in Sec. I C.

The observed steep power-law behavior of ⊥Ej(k‖) for
larger k‖ & 10, Fig. 7(b) with an apparent exponents
m ≈ −7 may indicate a nonlocal energy transfer between
largest and smallest scales, similar to the super-critical
spectra in the superfluid 3He.
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lines) T = 1.85 K in the counterflow Ωs = 20, V = 15. The
flatness for the normal-fluid component are shown by solid
lines and for the superfluid component–by dashed lines. The
corresponding flatnesses for the classical turbulence (V =
0,Ω = 0) are shown by black and gray lines and labeled ”Cl”.

F. The structure functions

The energy spectra ‖Ej(k⊥),
⊥Ej(k‖) may be trans-

lated into the corresponding structure functions, accord-
ing to Eqs. (10) and (13). In Fig. 8 we show the structure

functions (9b) S
||
n(R) ≡ Sxx

n (R) with the velocity differ-
ences taken in the direction of the counterflow R|| ≡ Rx

and in the plane R⊥ orthogonal to it. The structure func-
tions (9b) for the coflow, shown in Fig. 8(a-c) as red and
orange lines are similar to classical turbulence; at large
scales they follow approximately R2/3 scaling, gradually
crossing over towards viscous R2 behavior. The tran-
sition is very broad here, but the two apparent scaling
ranges are evident. The cross-over scale increases with
temperature. The structure functions, calculated along
and across the counterflow direction, are similar, slightly
differing mostly in the magnitude at all scales. The main
difference from the uncoupled case (not shown) is the
lower magnitude at all scales, reflecting the presence of
addition energy dissipation by mutual friction. In the
counterflow, the situation is different. Over most of the
available range of scales, the structure functions, shown
as dark and light blue lines in Fig. 8, appear to have an

apparent scaling behavior close to R2, especially S
||
n (R||).

The actual behavior depends on the flow conditions, in
agreement with the results of Ref. 12. The magnitudes
of the structure functions are much lower than for the
coflow. At the lower temperature T = 1.65K, S

||
n (R⊥)

has an overlap with the corresponding structure func-
tion in the coflow a large scales, which disappears with
increasing temperature. The two types of the structure
functions in the counterflow have significant difference in

magnitude, with S
||
n (R||) being strongly suppressed. As

it was suggested in Sec.I B 2, these structure functions do

not quantitatively reflect the corresponding energy spec-
tra, however the qualitative difference should be observ-
able experimentally.

The influence of the coupling strength on the behav-
ior of the structure functions is illustrated in Fig. 9 for
T = 1.65K. Here, in addition to the weak coupling Ω = 1
and the strong coupling Ω = 20 we consider also an in-
termediate coupling strength Ω = 3.4. The structure
functions for the classical turbulence are included for
comparison. The general form is similar for all values
of Ω, with all the structure functions in the counterflow
being strongly suppressed compared to classical turbu-

lence, especially S
||
j (R||). Note that at this temperature

the structure functions of the normal fluid are more sup-
pressed for weaker coupling, in accordance with the en-

ergy spectra in Fig. 1(a). For the transverse S
||
j (R⊥) the

difference between the two fluid components is relatively
small and the influence of the coupling strength is weak.
This is consistent with the 2D energy spectra, shown in
Fig. 3: the energy spectra in the transverse direction k⊥
are weakly influenced by the mutual friction.

Additional information may be obtained from anal-

ysis of the flatness F
||
j (R) = P

||
j (R)/[S

||
j (R)]2, where

P
||
j (R) = 〈(δRux

j )
4)〉 is the forth-order structure func-

tion. In Fig. 10 we compare F
||
n (R⊥) and F

||
n (R||) with

the flatness in the classical turbulence. In the transverse
direction, F

||
n (R⊥) in the counterflow is growing towards

small scales faster than in the classical turbulence at
large scales. This indicate a moderate enhancement of
intermittency at intermediate scales in this direction, in
agreement with experimental results of Ref. 13. In the
longitudinal direction, similar to the structure functions,

the flatness F
||
n (R||) is almost constant in the counter-

flow, leading to a much stronger discrepancy between
the transverse and the longitudinal components that in
the classical turbulence. This constant value reflects the
behavior of the structure functions S

||
n (R||) ∝ R2

|| and

P
||
n (R||) ∝ R4

|| over a wide range of scales that is a conse-

quence of the energy spectra ⊥Ej(k‖) that fall off faster

than k−3.

The second difference structure functions S̃
||
j (R) (12b)

are expected to better reflect the underlying spectra, at
least for ‖E(k⊥), since they have wider windows of lo-
cality up to k−5. The steeper ⊥E(k‖) result in S||(R‖)

behaving as R4 in most of the available range of scales.
In principle, these exponents can fall within the windows
of locality for the structure functions of the third differ-
ence (up to x ≤ 7) and of the fourth difference (up to
x ≤ 9.0). We do not discuss these objects due to the
increasing difficulties in their measurements.

Having in mind possible experiments, we compare in
Fig. 11 two types of the structure functions for the normal
fluid in the counterflow. To allow a meaningful compari-
son we plot them normalized by the values at the largest
R = Rmax and compensated by the corresponding vis-
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FIG. 11: Comparison of the normalized compensated velocity structure functions †S
||
n (R⊥) (�) and †S

||
n (R‖) (©) with

†S̃
||
n (R⊥)(⊲) and †S̃

||
n (R‖) (♦) for the normal-fluid component in the counterflow.

cous scaling

†S
||
j (R) = S

||
j (R)/S

||
j (Rmax)R

−2 , (26)

†S̃
||
j (R) = S̃

||
j (R)/S̃

||
j (Rmax)R

−4 .

Indeed, the transition to the viscous behavior (the hor-
izontal lines at small scales) occurs at smaller R for

S̃
||
j (R) (marked by triangles and diamonds) than for

S
||
j (R) (marked by squares and circles). As expected,

the range of the condition-dependent apparent scaling
at large scales also increases. In addition, the differ-
ence in the amplitudes of the structure functions in the
longitudinal and transverse directions is much larger for
S̃||(R), hopefully allowing more accurate detection of the
anisotropy.

III. CONCLUSIONS

Both the theoretical considerations and the results
of the numerical simulations presented indicate strong
anisotropy in the energy distribution in counterflow tur-
bulence. This is basically due to an angular dependence
of the energy dissipation caused by the mutual friction
force. It tends to suppress the velocity fluctuations elon-

gated across the direction of the counterflow velocity. At
the same time, most of the flow energy is confined to
a narrow wavenumber plane, orthogonal to this direc-
tion, leading to a flow which is smooth along the counter-
flow direction and turbulent across it. Unlike rotational
and atmospheric turbulence with stable stratification, in
counterflow turbulence the streamwise velocity compo-
nent plays the dominant role. This effect is progressively
stronger at smaller scales and at higher temperatures.
At low temperatures, the milder gradual increase of the
small scale anisotropy is due to the smaller fraction of
normal fluid and consequently weaker decorrelation. The
structure functions of this anisotropic, non-scale invari-
ant turbulent flow, do not allow to extract the quan-
titative information about the energy distribution over
scales, but are expected to reveal strong differences be-
tween the directions along and orthogonal to the coun-
terflow velocity.
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