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We numerically study the energy transfer in a multi-component 2d film, made of an active polar
gel and a passive isotropic fluid in presence of surfactant favoring emulsification. We show that by
confining the active behavior into the localized component, the typical scale where chemical energy
is transformed in mechanical energy can be substantially controlled. Quantitative analysis of kinetic
energy spectra and fluxes shows the presence of a multi-scale dynamics due to the existence of a flux
induced by the active stress only, without the presence of a turbulent cascade. An increase in the
intensity of active doping induces drag reduction due to the competition of elastic and dissipative
stresses against active forces. Furthermore we show that a non-homogeneous activity pattern induces
localized response, including a modulation of the slip length, opening the way toward the control of
active flows by external doping.

Active fluids exhibit a number of peculiar behaviors
due to the small-scale conversion of internal into mechan-
ical energy by the active constituents. Many biological
examples, such as bacterial [1, 2] and cytoskeletal sus-
pensions [3–5] and artificial systems, e.g. Janus [6, 7]
and magnetic microparticles [8], have been studied in the
labs and by numerical simulations. In the presence of
high concentration of the active component, there exists
the possibility to develop complex (chaotic) flows even in
absence of any external forcing, due to active injection
only [9–11]. This is a non-trivial collective phenomenon
[12], also leading to rich rheological properties, including
cases of vanishing and negative effective viscosity [13–16],
or preferential clustering [17–19].

Understanding the dense-suspension limit is pivotal
to develop novel fluid materials with ad-hoc and con-
trollable space-time dependent features, a challenge for
both fundamental and applied (micro) fluid mechanics.
Recently, very interesting results have been produced,
pointing toward the possibility to develop fluid motion
at meso-scales, i.e. at distances much larger than the
typical single-agent size and with a kinetic energy spec-
trum characterized by power-law behaviour in a limited
range of scales. The term bacterial turbulence has been
coined for that [1, 10, 20–23], with a puzzling variety of
non-universal behaviours [1, 8, 20, 23–25].
In this paper, we want to quantitatively disentangle the
different mechanisms behind the development of complex
active flows, for the important case of a composite fluid:
a 2d active polar gel in a passive isotropic fluid matrix
[26, 27]. At difference from most of the previous studies,
we are interested in the set-up where the active matter
is confined in a droplet-like emulsion phase (see Fig. 1),
whose experimental realization can be achieved, e.g., by
confining cellular extracts in a water-in-oil emulsion [3, 4]
or in bacterial systems subjected to depletion forces lead-
ing to microphase separation [28]. Our set-up is particu-

larly appealing because it allows us to change the degree
of localization of the energy injection by the active mat-
ter – a novel way to control forcing mechanisms in real
flows. By moving from a confined emulsion to a phase
with large aggregates of active material and then to a
fully dispersed (mixed) regime, we are able to systemati-
cally address the relevant scales of the active-component
for the chaotic flow evolution (see Fig. 1). We clarify
the difference between an active turbulent and an active
elastic flow and we argue that in most cases, one cannot
speak of a turbulent non-linear cascade, being the veloc-
ity field driven by the active field only. We discuss what
are the key observable that must be controlled in order to
distinguish and classify the flow properties, stressing that
the energy spectrum is not informative enough and can-
not be used to distinguish between the presence of an in-
verse/direct cascade or even no-cascade at all [29]. Con-
cerning more applied aspects, we show that the flow has
a non-trivial global response at changing the doping of
the confined active phase, with a tendency to reduce the
drag by going toward more and more delocalized agents.
Finally, we show that a suitable space-time modulation
of the doping is capable to fine-tune the flow response
and the mixture morphology, opening the unexplored di-
rection for active-control of (micro) active fluids.
The Model. The orientable nature of many active con-
stituents has been successfully modeled by means of the
Landau-De Gennes theory for liquid-crystals, introducing
a coarse-grained polarization field P, accounting for the
local orientation of constituents, while the local concen-
tration of active material is described by the conserved
field φ. The evolution of the system is governed by the
following equations, in the limit of incompressible flow:

ρ (∂t + v · ∇) v = ∇ · (σ̃pass + σ̃act) ,

∂tφ+∇ · (φv) = M∇2µ,

∂tP + (v · ∇)P = −Ω̃ ·P + ξD̃ ·P− h
Γ .

(1)
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Figure 1. Contour-plot of concentration field φ, where the active component is red and passive is blue showing late-time
configurations of active fluids at different intensities of active doping ζ. Velocity streamlines are plotted in black for the case
at ζ = 0.050. Last panel: pdf of the concentration field, notice the transition to mixing for ζ > 0.020 characterized by the
presence of a single peak.

Here the first equation is the incompressible Navier-
Stokes equation, where v is the velocity field and ρ the
total (constant) density, while the stress tensor has been
divided in a passive term,

σ̃pass = σ̃hydro + σ̃bin + σ̃pol,

given by the conserved momentum current, including vis-
cous and ideal fluid pressure contributions (see SM), and
a phenomenological traceless active term [30, 31]

σ̃act = −ζφ
(
P⊗P− I

2
P2

)
.

The activity parameter ζ tunes the intensity of active
doping: if positive, it describes the stress exerted by
pusher swimmers – thus generating extensile quadrupolar
flow patterns [31]. Pullers can be modeled with negative
values of ζ. In this Letter, we will restrict to ζ > 0, since
most of biological extracts exhibiting complex behaviors
are pushers. The second equation rules the convection-
diffusion evolution of active concentration φ. Here M is
the mobility, while the chemical potential µ = δF/δφ is
derived from a generalization of the Brazovskii free en-
ergy [26, 27, 32, 33]:

F [φ,P] =

∫ [
a

4φ2
cr

φ2(φ− φ0)2 +
kφ
2

(∇φ)2 +
c

4
(∇2φ)2

−α
2

(φ− φcr)
φcr

P2 +
α

4
P4 +

kP
2

(∇P)2 + βP · ∇φ
]
dr.

(2)

Phase separation of the two components is obtained with
bulk energy density a > 0, to have two minima in the
free-energy at φ = 0, φ0. By choosing kφ < 0, interface
formation is favored, so that the Brazovskii constant c
must be positive to guarantee thermodynamic stability.
Setting α > 0, the polarization field P is confined in
the active regions (where φ > φcr = φ0/2), and is ab-
sent in passive regions, where φ < φcr. The energy cost

for the elastic deformations is paid by the gradient term
(∇P)2) [34]. The coupling P · ∇φ defines the anchoring
of the vector field at interfaces. If β > 0 the polariza-
tion at interfaces will point towards passive regions of
the mixture. In the passive limit (ζ = 0) and for asym-
metric compositions (φ/φ0 . 0.35, with the bar denoting
spacial average) the system sets into an array of droplets
of the minority phase in a background of the majority
phase [16], see also Fig. 1. Finally, the evolution of the
polarization field is governed by the Ericksen-Leslie equa-
tion for a vector order parameter. Here h = δF/δP is the
molecular field and Γ the rotational viscosity, while the
symmetric deformation rate tensor is D̃ = 1

2 (∇v+∇vT )

and the vorticity tensor is Ω̃ = 1
2 (∇v−∇vT ); we choose

the shape factor ξ > 1 to model flow-aligning rod-like
swimmers [26, 27]. In Fig. 1 we show for the first time
the existence of a transition to a final mixed phase by
increasing the activity ζ. This is due to the fact that
strengthening the doping, induces more and more active
stress across the droplets leading to interface breaking
and droplet coalescence. The consecutive dispersion of
active agents in the whole volume has the important ef-
fect to change the typical flow length-scales since small-
scale deformation of the polarization pattern are wiped
out. Similarly, a decrease in the viscosity η makes more
efficient the active pumping in the flow, leading to the
same conclusion. In what follows, we will investigate the
kinematic and flow properties across this transition.
Numerical Results. We performed a systematic series
of numerical simulations by fixing all free parameters in
Eqs. (1) and (2) to values that correspond to a realistic
description of cytoskeletal filaments [3, 35, 36] (see Table
I and SM) changing the intensity of the active doping
ζ, integrating Eqs. (1) by means of a widely validated
hybrid lattice Boltzmann (LB) approach, on a squared
periodical 2d-lattice of size L = 1024, except otherwise
stated. Details about the numerical scheme can be found
in the SM.
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In Fig. (2) we start by showing the energy spectra
per unit density E(k) = 0.5〈|v(k)|2〉, where 〈·〉 stands
for the steady state spherical average, for different val-
ues of ζ (left panel). Remarkably, we found the pres-
ence of a continuum spectrum even for wavenumbers
smaller than the typical injection scale ka, where the
active matter is preferentially confined. The spectrum
shape depends on the activity ζ, with an accumulation
of energy at large length-scales for increasing activity.
The typical Reynolds numbers are Re ∼ 10−2 to 1, a
regime close to experimental observations, where we de-
fined Re = ρE1/2(kv)lv/η in terms of the typical flow
wave-number kv =

(∫∞
0

dk′k′E(k′)
)
/Etot, and length-

scale lv = L/kv, where Etot =
∫∞

0
dk′E(k′) is the total

kinetic energy. Since deformations both in the polariza-
tion and concentration patterns are acting as a source of
mechanical energy, the spectrum behavior is to be related
with the morphology of the system. The right panel of
the same figure shows the spectral properties of the active
energy injection:

Sact(k, t) = 〈v∗(k, t) · Fact(k, t)〉 (3)

where Fact(k, t) = 2πik·σ̃act(k, t)/L. As anticipated, en-
ergy pumping is considerably localized at high wavenum-
ber (ka/L = l−1

a ' 0.1) when activity is low enough,
due to small-scale deformations of the polarization field
homeotropically and strongly anchored to interfaces [26,
27]. By increasing ζ, as the system undergoes first coa-
lescence (ζ = 0.02), then mixing, interfaces broaden and
progressively disappear, thus attenuating energy supply
at high wavenumbers and leading to a situation where
energy is injected on a wider range of scales, typical
of the active-driven bending instabilities of the polar
gel [12, 37]. Going back to the spectra, we can see that as
long as the droplet phase survives, energy is accumulated
on the typical length-scale of the droplet size (ld ' 15),
as suggested by the bulge in energy spectra, for small val-
ues of ζ, located at wavenumber kd/L = l−1

d ' 0.067. As
confinement is lost (ζ & 0.030), energy is instead spread
on much larger scales (kv/L = l−1

v ' 0.025). Even more
interesting, is the observation that the energy injected in
the system at low activity is substantially greater than
the one delivered at higher active dopings.
This surprising behavior (and its connection to morphol-

Table I. Mapping between physical and simulation units.
Length-scale l∗ = 1µm, time-scale t∗ = 10ms and force-scale
f∗ = 102nN are fixed to be 1 LB units. Viscosity η is ex-
pressed in kPas, the elastic constant of the polar gel kP in
nN, the diffusivity D = Ma in µm2s−1, while Γ and ζ are
respectively expressed in kPas and kPa.

Units η kP D Γ ζ

Simulation 5/6 0.01 0.0004 1 0.01 − 0.06

Physical 0.83 10 0.004 10 100 − 600

Figure 2. Left: log-log plot of time-averaged energy spec-
tra varying activity (ζ = 0.013, 0.015, 0.02, 0.03, 0.04, 0.05).
Right: total amount of energy injected in the system by ac-
tive agents. Vertical black dashed lines mark the wavenumber
kv, kd and ka respectively (see text).

ogy) has been confirmed by keeping fixed the active pa-
rameter ζ = 0.015 and varying the nominal viscosity of
the suspension (not shown). Once again we found that
total kinetic energy rises and develops on progressively
bigger length-scales as viscous effects are lowered and
mixing of the two components occurs, thus driving the
active agents in an unconfined state.
It is well known that spectra do not bring enough infor-
mation to disentangle the complicated network of trans-
fer mechanisms inside a complex flow [29]. Thus, we
performed a systematic analysis of the energy balance
in Fourier space, by looking at the scale-by-scale contri-
bution of all terms, either dissipative or reactive. We
thus Fourier-transform both sides of the Navier-Stokes
equation and we multiply them by v∗(k), to obtain the
following balance equation, spherically averaged on shells
of equal momentum:

ρ∂tE(k, t) + T (k, t) =
∑
i

S(i)(k, t). (4)

Here T (k, t) = 〈v∗(k, t) · J(k, t)〉 represents the rate of
energy transfer due to nonlinear hydrodynamic interac-
tions (with J(k, t) standing for the Fourier transform of
ρv · ∇v + ∇p). The terms on the right-hand side of
Eq. (4) are energy source/sink contributions, where the
terms S(i)(k, t) are defined as in Eq. (3) and (i) denotes
the different kinds of contributions (viscous, binary, po-
lar or active). Finally we define each separate component
of the energy flux as the total variation per unit time of
the energy contained in a sphere of radius k:

Π(i)(k, t) =

∫ k

0

dk′ S(i)(k′, t),

with ΠT (k, t) defined analogously. Fig. 3 shows fluxes for
ζ = 0.013, 0.050, measured at steady state. In both cases,
the only source contribution is the active one, Πact while
all the others are energy sinks. Before the transition to
mixing (ζ = 0.013 left panel) the binary and polar terms
are also contributing (as sinks). After, the dynamics is
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Figure 3. Time-averaged components of the total energy flux
at ζ = 0.013 (left panel) and ζ = 0.050 (right panel). Notice
the different y-range in the two graphs.

characterized by an almost perfect matching among vis-
cous and active terms (right panel). The advection term,
ΠT , is, for all practical effects, null, as expected for flu-
ids flowing at negligible Reynolds numbers. The previous
findings suggest some important conclusions. First, the
scenario is in agreement with the absence of hydrody-
namic turbulence. Here, multi-scale effects and chaotic
evolution arise from the competition between sink terms
and active injection leading to a non trivial scale-to-scale
balance. The phenomenology is similar to the case of
elastic turbulence, where the non-linear evolution for the
velocity field is dominated by the non-Newtonian stress,
leading to chaotic and unpredictable multi-scale evolu-
tion even at nominally vanishing Reynolds numbers [38–
40]. Second, the overwhelming role played by the active
stress explains the absence of universality [1, 8, 20] in
many bio-fluids: there is no direct or inverse energy cas-
cade mediated by the universal advection flux, ΠT . En-
ergy is moved from scale to scale by the direct interaction
with the case-specific active stress. The absence of a tur-
bulent cascade is also supported by the relatively small
extension of the wave-range where fluxes are non-zero,
as seen from Fig. 3. Indeed, the vanishing of all Π(i) for
k < 10 leads to a quasi-equilibrium range at large scale,
where the spectrum E(k) ∼ k (see Fig. 2).

To quantitatively characterize the efficiency of injec-
tion of energy pumped in the system by active effects,
we define the drag factor :

D =
εactlv

E
3/2
tot

in terms of the total energy injected by active forces, the
only source contribution εact = limk→∞Πact(k), the to-
tal response, given by the available kinetic energy Etot,
and lv. In Fig. 4 we show the results for D at varying the
activity ζ. We note that the drag factor rapidly decreases
while increasing activity in the emulsion phase, then the
decrease slows down as big active clusters become domi-
nant in the system, and finally tends to saturation when
the morphological transition towards mixing takes place.

Space-time control. Finally, to test the dynamical
response of active emulsions we performed a numerical
study when we abruptly rise ζ across the mixing tran-
sition, from 0.013 to ζ = 0.030. Kinetic energy rapidly
increases in a short transient, and finally sets to a new
stable value higher than before. Power terms behavior is
instead characterized by a spike in correspondence of the
transient, followed by relaxation towards much smaller
values. This behavior is found to be reversible: indeed
when activity is lowered again kinetic energy rapidly re-
store its previous values, as well as power terms (see inset
of Fig. 4). Finally, in Fig. 5 we show a space-dependent
protocol to control the flow response. We studied the
evolution of the active polar gel emulsion on a channel
under constant pressure gradient and by changing the
activity parameter as a function of the position down-
stream ζ(x). In particular we show that a local sharp
increase of ζ above the mixing transition around x ∼ x0

is an efficient tool to locally control the degree of emulsi-
fication in the bulk, opening the way to change the flow
transport properties and the flow topology on-the-fly.
Conclusions. By using systematic numerical investi-
gation of a 2d active emulsion we have shown that a
non-trivial multi-scale chaotic dynamics develops due to
the direct injection of chemical/internal energy in to the
flow evolution. We showed that the relative effects of
advection, viscous, reactive forces do change at varying
the activity of the dispersed phase. In particular, for
low activity, the flow structures are driven by the active
stress and dissipated by the polar and viscous compo-
nents mainly. For large activity, the flow undergoes a
morphological transition, with the two fluids (active and
passive) both well mixed and active forces are balanced
by the viscous drag only. This must be considered a first
hint that active emulsions are able to develop flow con-

Figure 4. Drag factor versus activity. Inset shows time evolu-
tion of kinetic energy Etot and power terms ε(i)(t) defined in
the same way as εact(t), while rising activity from ζ = 0.010
to ζ = 0.030 at time t1 and reducing it to its previous value
at time t2, denoted by vertical dashed lines.
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Figure 5. Contour plot of concentration of active and passive
phases in an externally controlled active emulsion subject to
Poiseuille flow in a 512 × 256 channel (color legend is the
same as in Fig. 1). Velocity streamlines are plotted in black,
showing effective reduction of the channel width. Activity ζ
is modulated in the flow direction as shown in the central
color bar (beige corresponds to ζ = 0.010, while ζ(x0) =
0.03. Time-averaged profiles of vx are shown in the last panel.
Notice that profiles close to x0 exhibit a non-null (negative)
slip length.

figurations with a wide range of dynamical scales. An
increase in the intensity of active doping induces drag
reduction due to the competition of elastic and dissipa-
tive stresses against active forces. Furthermore we have
shown that a non-homogeneous pattern of activity in the
bulk induces a localized response opening the way toward
the control of active flows by patterned external doping.

[1] H.H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher,
H. Lowen R.E. Goldstein, and J.M. Yeomans. Meso-scale
turbulence in living fluids. Proc. Natl. Acad. Sci., 109,
2012.

[2] J. Dunkel, S. Heidenreich, K. Drescher, H.H. Wensink,
M. Bär, and R.E. Goldstein. Fluid dynamics of bacterial
turbulence. Phys. Rev. Lett., 110:228102, 2013.

[3] T. Sanchez, D.T.N. Chen, S.J. Decamp, M. Heymann,
and Z. Dogic. Spontaneous motion in hierarchically as-
sembled active matter. Nature, 491:431–434, 2012.

[4] P. Guillamat, J. Ignés-Mullol, and F. Sagués. Control of
active liquid crystals with a magnetic field. Proc. Natl.
Acad. Sci. USA, 113(20):5498, 2016.

[5] P. Guillamat, Z. Kos, J. Hardoüin, M. Ravnik, and
R. Sagués. Active nematic emulsions. Science Advances,
4:4, 2018.

[6] S. Ebbens, D.A. Gregory, G. Dunderdale, J.R. Howse,
Y. Ibrahim, T.B. Liverpool, and R. Golestanian. Elec-

trokinetic effects in catalytic platinum-insulator janus
swimmers. Europhys. Lett., 106:5, 2014.

[7] D.A. Gregory, A.I. Campbell, and S.J. Ebbens. The ef-
fect of catalyst distribution on spherical bubble swimmer
trajectories. J. Phys. Chem. C, 119:15339, 2015.

[8] G. Kokot, S. Das, R.G. Winkler, G. Gompper, I.S.
Aranson, and A. Snezhko. Active turbulence in a
gas of self-assembled spinners. Proc. Natl. Acad. Sci.,
114(49):12870–12875, 2017.

[9] M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liv-
erpool, J.J. Prost, M. Rao, and R.A. Simha. Hydrody-
namics of soft active matter. Rev. Mod. Phys., 85:1143,
2013.

[10] A. Doostmohammadi, T.N. Shendruk, K. Thijssen, and
J.M. Yeomans. Onset of meso-scale turbulence in active
nematics. Nat. Comm., 8, 2017.

[11] L.N. Carenza, G. Gonnella, A. Lamura, G. Negro, and
A. Tiribocchi. Lattice Boltzmann Methods and Active
Fluids. In press on Eur. Phys. J. E.

[12] R. Voituriez, J.F. Joanny, and J. Prost. Spontaneous flow
transition in active polar gels. E.P.L., 70:404, 2005.

[13] M.E. Cates, S.M. Fielding, D. Marenduzzo, E. Orlan-
dini, and J.M. Yeomans. Shearing active gels close
to the isotropic-nematic transition. Phys. Rev. Lett.,
101:068102, 2008.

[14] H.M. López, J. Gachelin, C. Douarche, H. Auradou, and
E. Clément. Turning Bacteria Suspensions into Superflu-
ids. Phys. Rev. Lett., 115:028301, 2015.

[15] A. Loisy, J. Eggers, and T.B. Liverpool. Active suspen-
sions have nonmonotonic flow curves and multiple me-
chanical equilibria. Phys. Rev. Lett., 121, 2018.

[16] G. Negro, L.N. Carenza, A. Lamura, A. Tiribocchi, and
G. Gonnella. Rheology of active polar emulsions: from
linear to unidirected flow and negative viscosity. In prepa-
ration, 2019.

[17] Y. Fily and M.C. Marchetti. Athermal phase separation
of self-propelled particles with no alignment. Phys. Rev.
Lett., 108:235702, 2012.

[18] I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen,
C. Bechinger, and T. Speck. Dynamical clustering and
phase separation in suspensions of self-propelled colloidal
particles. Phys. Rev. Lett., 110:238301, 2013.

[19] P. Digregorio, D. Levis, A. Suma, L.F. Cugliandolo,
G. Gonnella, and I. Pagonabarraga. Full phase dia-
gram of active brownian disks: From melting to motility-
induced phase separation. Phys. Rev. Lett., 121:098003,
2018.

[20] V. Bratanov, F. Jenko, and E. Frey. New class of
turbulence in active fluids. Proc. Natl. Acad. Sci.,
112(49):15048–15053, 2015.

[21] C. Dombrowski, L. Cisneros, S. Chatkaew, R.E. Gold-
stein, and J.O. Kessler. Self-concentration and large-
scale coherence in bacterial dynamics. Phys. Rev. Lett.,
93:098103, 2004.

[22] T.N. Shendruk, A. Doostmohammadi, K. Thijssen, and
J.M. Yeomans. Dancing disclinations in confined active
nematics. Soft Matter, 2017.

[23] L. Giomi. Geometry and topology of turbulence in active
nematics. Physical Review X, 5, 2015.

[24] A. Creppy, O. Praud, X. Druart, P.L. Kohnke, and
F. Plouraboué. Turbulence of swarming sperm. Phys.
Rev. E, 92:032722, 2015.

[25] M. Linkmann, G. Boffetta, M.C. Marchetti, and B. Eck-
hardt. Phase Transition to Large Scale Coherent Struc-



6

tures in Two-Dimensional Active Matter Turbulence.
Phys. Rev. Lett., 122:214503, 2019.

[26] F. Bonelli, L.N. Carenza, G. Gonnella, D. Marenduzzo,
E. Orlandini, and A. Tiribocchi. Lamellar ordering,
droplet formation and phase inversion in exotic active
emulsions. Sci. Rep., 9:2801, 2019.

[27] G. Negro, L.N. Carenza, P. Digregorio, G. Gonnella, and
A. Lamura. Morphology and flow patterns in highly
asymmetric active emulsions. Physica A: Statistical Me-
chanics and its Applications, 503:464 – 475, 2018.

[28] J. Schwarz-Linek, C. Valeriani, A. Cacciuto, M.E. Cates,
D. Marenduzzo, A.N. Morozov, and W.C.K. Poon. Phase
separation and rotor self-assembly in active particle sus-
pensions. Proc. Natl. Acad. Sci. USA, 109(11):4052–
4057, 2012.

[29] A. Alexakis and L. Biferale. Cascades and transitions
in turbulent flows. Phys. Rep., 767-769:1 – 101, 2018.
Cascades and transitions in turbulent flows.

[30] T.J. Pedley and J.O. Kessler. Hydrodynamic Phenomena
in Suspensions of Swimming Microorganisms. Annu. Rev.
Fluid Mech., 24(1):313, 1992.

[31] Y. Hatwalne, S. Ramaswamy, M. Rao, and R.A. Simha.
Rheology of active-particle suspensions. Phys. Rev. Lett.,
92:118101, 2004.
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1. Stress tensor

The stress tensor appearing at the right-hand side of
the Navier-Stokes equation has been divided in two parts,
respectively addressed as passive σ̃pass and active σ̃act.
The first is in turn the sum of dissipative and reactive
contributions. The hydrodynamic term, including ideal
fluid pressure and viscous dissipation [41] is given by:

σ̃hydroαβ = −pδαβ + η(∂βvα + ∂αvβ).

Poiseuille flow, studied in Fig. 5 of the main text, is ob-
tained by applying a body force fx, i.e. requiring the
pressure gradient to satisfy ∇p = −fx. Reactive terms
include equilibrium contributions [34] arising from the
free energy functional F [φ,P] (Eq. (2) of the main text),
which can be in turn divided in a binary mixture term

σ̃binαβ =

(
f − φδF

δφ

)
δαβ −

δF
δ(∂βφ)

∂αφ,

and in a polarization term

σ̃polαβ =
1

2
(Pαhβ−Pβhα)−ξ

2
(Pαhβ+Pβhα)− δF

δ(∂βPγ)
∂αPγ ,

where h = δF/δP stands for the molecular field [34]. ξ is
the shape factor and selects rod-like particles if positive
or disk-like ones if negative. Moreover, the polarization
field exhibits flow aligning or flow thumbling features un-
der shear if |ξ| > 1 or |ξ| < 1, respectively.

Energy injection due to the action of active agents is
introduced in the model by means of a phenomenological
term addressed as active:

σ̃actαβ = −ζφ
(
PαPβ −

1

2
|P|2δαβ

)
,

arising from a coarse-grained description of the force den-
sity exerted by pusher (ζ > 0) or puller (ζ < 0) swimmers
on the surrounding fluid [30, 31].

2. Numerical methods and parameters

To solve the hydrodynamics of the system we made use
of a hybrid lattice Boltzmann (LB) approach on a d2Q9
lattice [42]. Navier-Stokes equation was solved through a
predictor-corrector LB scheme [11, 26, 43], while the evo-
lution equations for the order parameters φ and P were
integrated through a predictor-corrector finite-difference
algorithm implementing first-order upwind scheme and
fourth order accurate stencils for space derivatives. In
this approach the evolution of the fluid is described in
terms of a set of distribution functions fi(rα, t) (with in-
dex i labelling different lattice directions, thus ranging
from 1 to 9) defined on each lattice site rα. Their evo-
lution follows a discretized predictor-corrector version of

the Boltzmann equation in the BGK approximation:

fi(rα+i∆t)−fi(rα, t) = −∆t

2
[C(fi, rα, t) + C(f∗i , rα + ξi∆t, t)] .

(5)
Here {ξi} is the set of discrete velocities, with ξ0 =
(0, 0), ξ1,2 = (±u, 0), ξ3,4 = (0,±u), ξ5,6 = (±u,±u),
ξ7,8 = (±u,∓u), where u is the lattice speed. The
distribution functions f∗ are first order estimations to
fi(rα + ξi∆t) obtained by setting f∗i ≡ fi in Eq. (5),
and C(f, rα, t) = −(fi − feqi )/τ + Fi is the collisional
operator in the BGK approximation expressed in terms
of the equilibrium distribution functions feqi and supple-
mented with an extra forcing term for the treatment of
the anti-symmetric part of the stress tensor. The density
and momentum of the fluid are defined in terms of the
distribution functions as follows:∑

i

fi = ρ
∑
i

fiξi = ρv. (6)

The same relations hold for the equilibrium distribution
functions, thus ensuring mass and momentum conserva-
tion. In order to correctly reproduce the Navier-Stokes
equation we impose the following condition on the second
moment of the equilibrium distribution functions:∑

i

fiξi ⊗ ξi = ρv ⊗ v − σ̃bin − σ̃pols , (7)

and on the force term:∑
i

Fi = 0,
∑
i

Fiξi = ∇·(σ̃pola +σ̃act),
∑
i

Fiξi⊗ξi = 0,

(8)
where we respectively denoted with σ̃pols and σ̃pola the
symmetric and anti-symmetric part of the polar stress
tensor. The equilibrium distribution functions are ex-
panded up to the second order in the velocities:

feqi = Ai+Bi(ξ ·v)+Ci|v|2+Di(ξ ·v)2+G̃i : (ξ⊗ξ). (9)

Here coefficients Ai, Bi, Ci, Di, G̃i are to be determined
imposing conditions in Eqs. (6) and (7). In the con-
tinuum limit the Navier-Stokes equation is restored if
η = τ/3 [43].

We performed simulations on bidimensional square lat-
tices of size L = 1024, 2048 (Fig. 1,2,3,4 of the main text
show results for a grid of size 1024, while the dynamical
response to the quench/unquench of the activity param-
eter, shown in the inset of Fig. 4 of the main text, has
been studied on a system of size 512). Periodic bound-
ary conditions were imposed at the boundary. Table II
shows the simulation time and the Reynolds number Re,
as defined in the main text, for the simulated cases at
varying the activity parameter ζ. Fig. 6 shows a compar-
ison between the active and velocity typical length-scales
computed on grids of different size (1024, 2048) to show
that our results are not affected by finite-size effects.
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Table II. Simulation details. The table shows for each value of the activity parameter ζ the simulation time in terms of LB
iterations and the Reynolds number Re measured at steady state as defined in the main text, both on a grid of size L = 1024
and 2048. n.s. stands for not simulated.

ζ 0.012 0.013 0.015 0.016 0.017 0.018 0.020 0.024 0.025 0.027 0.030 0.035 0.040 0.045 0.050 0.060
1024

time/105 42 42 38 35 30 30 30 30 30 n.s. 30 30 30 30 30 30
Re/10−2 4.8 5.6 6.9 8.6 12.0 13.4 15.3 19.6 20.2 21.0 22.0 26.3 33.3 35.4 41.8

2048
time/105 40 n.s. 38 n.s. n.s. n.s. 32 n.s. n.s. 28 25 n.s. 30 n.s. 25 n.s.
Re/10−2 5.2 7.4 18.2 23.3 25.2 27.1 35.1

Figure 6. Typical lengthscale of the velocity field lv and of the
active injection la, as defined in the main text, as a function
of ζ for systems of size L = 1024, 2048.

For the analysis of the Poiseuille flow shown in Fig. 5
we made use of a grid of size 512 × 256. The system
is confined between two horizontal flat walls at y = 0
and y = 256. We imposed neutral wetting boundary
conditions by requiring the following conditions to hold
at the boundary:

∇⊥µ = 0, ∇⊥(∇2φ) = 0, (10)

where ∇⊥ denotes the partial derivatives taken along the
normal to the walls. We imposed strong homeotropic

anchoring of the polarization field to the walls requiring:

P⊥ = 0. ∇⊥P‖ (11)

where P⊥ and P‖ respectively denote the normal and
tangential component of the polariztion field with respect
to the walls.

In our simulations the system is initialized in a mixed
state, with the concentration field φ(r) = φ0/4 + δφ,
where δφ is a random value uniformly distributed within
the range [−φcr/10, φcr/10], in order to obtain an asym-
metric mixture with active and passive components re-
spectively representing the 25% and 75% of the overall
composition. By varying the composition of the mixture,
we checked that the hydrodynamic response is not al-
tered, but for the value of ζ at which the transition (from
the emulsified phase toward the mixed phase) takes place.
The polarization field is initially randomly oriented, while
its modulus is randomly distributed between 0 and 1.
The values of free energy parameters are a = 4 × 10−3,
φ0 = 2.0, φcr = φ0

2 , kφ = −6 × 10−3, c = 3 × 10−2,
α = 10−3, kP = 10−2, β = 10−2, while the constants
appearing in the evolution equation have been chosen as
follows: M = 0.1, Γ = 1, ξ = 1.1. Notice that, by setting
such value of ξ, the system is in the flow-aligning regime.
Finally, in the case of Poiseuille flow, fx = 5× 10−5.


	Multi-scale control of active emulsion dynamics
	Abstract
	 References
	 1. Stress tensor
	 2. Numerical methods and parameters


