arXiv:2107.14003v1 [physics.flu-dyn] 29 Jul 2021

A minimal phase-coupling model for intermittency in turbulent systems

José-Agustin Arguedas-Leiva,! Enda Carroll,? Luca Biferale,® Michael Wilczek,l’ and Miguel D. Bustamante?

! Maz Planck Institute for Dynamics and Self-Organization, Am Fafberg 17, 37077 Géttingen, Germany
2School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland
3Dept. Physics and INFN, University of Rome Tor Vergata, Via Ricerca Scientifica 1, 00183 Rome, Italy

(Dated: July 30, 2021)

Turbulent systems exhibit a remarkable multi-scale complexity, in which spatial structures in-
duce scale-dependent statistics with strong departures from Gaussianity. In Fourier space, this is
reflected by pronounced phase synchronization. A quantitative relation between real-space struc-
ture, statistics, and phase synchronization is currently missing. Here, we address this problem in
the framework of a minimal phase-coupling model, which enables a detailed investigation by means
of dynamical systems theory and multi-scale high-resolution simulations. We identify the spectral
power-law steepness, which controls the phase coupling, as the control parameter for tuning the
non-Gaussian properties of the system. Whereas both very steep and very shallow spectra exhibit
close-to-Gaussian statistics, the strongest departures are observed for intermediate slopes compara-
ble to the ones in hydrodynamic and Burgers turbulence. We show that the non-Gaussian regime of
the model coincides with a collapse of the dynamical system to a lower-dimensional attractor and
the emergence of phase synchronization, thereby establishing a dynamical-systems perspective on

turbulent intermittency.

INTRODUCTION. Turbulence is a prototypical non-
equilibrium phenomenon with a large number of strongly
interacting degrees of freedom [IHG]. A salient feature of
turbulence is the pronounced scale dependence of statis-
tics with particularly strong departures from Gaussian-
ity observed on the smallest spatial scales. In real space,
these departures from Gaussian statistics can be related
to coherent, intense and rare, small-scale structures in
the gradients of the velocity field — a phenomenon also
dubbed as intermittency [7, 8. Departures from Gaus-
sian statistics can also be studied from the complemen-
tary perspective of Fourier space. While Gaussian ran-
dom fields feature completely uncorrelated phases, phase
correlations can give rise to complex scale-dependent
statistics, and it is well known that coherent spatial struc-
tures such as shocks require a high level of correlation
amongst the phases of the Fourier modes.

Notably, so far only very few studies have addressed the
connection between the emergence of coherent intermit-
tent structures in real space, non-Gaussian statistics and
phase correlations, indicating that bursts of spectral en-
ergy fluxes (and dissipation) are produced when Fourier
phases become correlated [OHIT]. Elucidating these con-
nections is important for both fundamental and applied
aspects. In particular, we currently miss a clear identifi-
cation of which dynamical degrees of freedom lead to such
bursting and quiescent chaotic alternation of temporal
and spatial flow realizations. As a result, we lack optimal
protocols to avoid disrupting fluctuations in engineering
turbulence [12}, 3], to predict extreme events in geophys-
ical flows [I4] I5] and to control existence and uniqueness
of the PDE solutions [16], just to cite a few main open
problems with multidisciplinary impacts. The complex-
ity of fully developed three-dimensional turbulence makes
this an extremely challenging task. There is, however, the

opportunity to isolate the main aspects of this problem
in simpler, more tractable models. One popular way to
proceed is to lower the complexity by mode reduction,
as in the case of sub-grid-scale modeling [I7, [I8], Fourier
surgery [19] [20], statistical closure [2], partial freezing of
some spectral degrees of freedom [22] 23] or asymptotic
expansions [24] 25]. All attempts have some merits and
deficiencies, the main common drawback being the com-
promised ability to describe simultaneously spatial and
temporal fluctuations on a wide range of scales.

In this paper, we present a minimal description of hy-
drodynamic turbulence derived from a PDE model, pre-
serving the whole richness of multi-scale spatial and tem-
poral statistics. We combine theory and simulations to
establish a clear connection between phase correlations
in Fourier space and the complex statistics in real space.
The model is formulated in terms of Fourier phases whose
dynamical coupling resembles the one in Navier-Stokes
turbulence. In essence, its dynamics is reminiscent of
Burgers turbulence with the important distinction that
in our model, only the phases evolve whereas the ampli-
tudes are kept fixed. This allows us to precisely tune the
coupling strength of the phases by controlling the slope
of the energy spectrum.

We find that the system transitions from Gaussian to
non-Gaussian statistics as the spectrum is gradually
steepened. For slopes beyond a certain value, the rare
fluctuations become less extreme and return to near-
Gaussian statistics. Strikingly, the strongest deviations
occur in the intermediate range, within the range of val-
ues attained by turbulent systems. Within this range,
the dimension of the strange attractor collapses to a min-
imum, indicating that non-Gaussian real-space statistics
are related to the collapse of the dynamical system onto
a lower-dimensional manifold.
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FIG. 1. Results of a numerical simulation of equations @
with ko = 1 and N = 2° degrees of freedom, with a Burgers-
like steepness parameter & = 1. Panel (a): Color plot of
reconstructed physical field u(t,z) displaying a shock near
x = 7/2. Panel (b): Corresponding color plot of individual
phases @2, ... on. In both panels, the gray line marks an early
snapshot illustrating an instance of a disordered regime while
the blue line marks a late snapshot illustrating a persistent
synchronization regime. Panel (c): for the disordered (bot-
tom, gray) and synchronized (top, blue) regimes, the corre-
sponding snapshots of the reconstructed physical field u(¢, x).
Red plots show the gradient du(t, z)/0x to illustrate the dif-
ference between the two regimes.

Our work sheds light on the emergence of coherent struc-
tures and the associated phase synchronization phenom-
ena [20], establishing deep connections between the sta-
tistical theory of non-equilibrium systems and dynamical
systems theory.

THE MODEL. As a starting point, let us consider the
one-dimensional Burgers equation

Opu(t, ) + u(t, )0pu(t, ) = vd ult, ). (1)

This simple prototypical equation possesses a quadratic
nonlinearity reminiscent of the one in the Navier-Stokes
equations, and it is known to develop multi-scale bifractal
scaling properties, shocks, non-Gaussian statistics and
many other non-trivial statistical features [27H36]. Hence
it has become a workhorse in turbulence theory to inves-
tigate the effects of nonlinear advection. We consider
a one-dimensional field u(t,x) on a 2w-periodic domain
with Fourier decomposition

u(t,z) = Zak (t) el Pr M Fka), (2)
k

By inserting the Fourier representation into the Burg-
ers equation , we obtain equations of motion for the
amplitudes and the phases

akﬁ = Z —k ap Qk—p COS(¢p + ¢k—p - ¢k)7 (3)
p

% - Zk ap ag—p Sin(¢p + dr—p — Pr) — vk ag. (4)
P
This infinite set of coupled ODEs describes the full Burg-
ers dynamics of the Fourier phases and amplitudes. Re-
cently, it was shown that the dynamics of the Fourier
phases ¢ (t) determine to a great extent the shock dy-
namics and the associated non-Gaussian statistics [9] [[T].
Thus, we take equation as a starting point for a mini-
mal model for Fourier phase dynamics in turbulence, the
“phase-only” model. We set the amplitudes to prescribed
constants

ag = |k|7a7 |k| > ko, ar =0, |k| < ko, (5)
where the steepness « is a continuous control parameter
and kg > 0 is introduced as a large-scale cutoff lead-
ing to a finite integral length scale. We find that this
destabilises a single-shock-like fixed point, allowing for
non-steady dynamics. The phase dynamics is obtained
from equation which becomes a system of coupled
oscillators ¢y, satisfying

SO S g coslioy +n o) K> o, (6)
P

with coefficients wy, = —k |p(k — p)|™® |k|* when
Ip — k| > ko and |p| > ko (wk,p = 0 otherwise), and with
Y_r = —¢y, (reality condition). This triadic interaction
term couples the phases with wavenumbers k, p, and k—p,
via the so-called triad phase ¢F , = 0, +@r—p— . It
is important to note that this phase-only model does not
need an energy input/output mechanism, as constant en-
ergy is maintained by the constant amplitudes. Further-
more, it is formally fully time reversible under the sym-
metry t — —t; o — @i + 1. However, it will not come
as a surprise that, like in a formally reversible version
of the Navier-Stokes equations [37H40], the chaotic dy-
namics spontaneously break the time symmetry leading
to a non-Gaussian and skewed velocity probability distri-
bution function (PDF). To study the model numerically,
we further introduce a discretization with grid spacing
Az = 27 /N. The reality condition p_j = —¢y, leaves us
with a set of phases evolving on modes ko < k < N — 1.
We set kg = 1soa; = a_; = 0 and thus the evolving vari-
ables are s, ..., pn_1. Note that the energy spectrum of
the field is fixed and perfectly self-similar: Ej ~ a2, with
a power-law decay of Ej, oc k=2, The observed original
Burgers’ case, where quasi discontinuities (shocks) dom-
inate the high-order statistics, corresponds to a = 1.



NUMERICAL RESULTS ON REAL-SPACE AND PHASE DY-
NAMICS & STATISTICS. We integrate numerically @
with the Runge-Kutta method starting from uniformly
random initial conditions. The nonlinear term can be
written as a convolution, which we efficiently evaluate
with a pseudospectral method. Figure [1] illustrates the
dynamics of our model, for the choice of steepness a@ = 1
(Burgers shock case), revealing insights into the relation
between non-Gaussianity of the real-space statistics and
Fourier phase synchronization. Panel (a) is a space-time
plot of the velocity field from this minimal model, show-
ing that shocks are the dominant structure. As time
evolves, shocks steadily merge and separate. Occasion-
ally, they merge into one dominating shock (horizontal
blue line). Panel (b) is a time plot of the individual
Fourier phases of the model. It shows that the pres-
ence of this dominating shock is due to synchronization
of the oscillator model. Away from these synchroniza-
tion bursts, the system is dominated by smaller shocks
and we observe only little coherence (gray line). Panel
(c) shows that the synchronization events and presence
of the dominating shock (blue line) yield extreme events
in the gradient field characterizing the small scales of the
velocity field.
By changing the free parameter « in the phase model
we can control the multi-scale properties of the cou-
pling of the phases which, in turn, has a direct influence
on the hierarchical organization of typical time scales.
In a local approximation, i.e. supposing the dynamics at
wavenumber k is mainly driven by triads around the same
wavenumber, |k| ~ |k — p| ~ |p|, we can estimate the
scale-dependent eddy-turnover time as 75, ~ |k|*~!, indi-
cating that within this approximation we reach a regime
where small spatial scales are faster than the large spa-
tial scales if & < 1 (and slower if @ > 1). The local-
triad approximation is expected to be valid in the range
0.5 < a < 1.5 4], where the Fourier transform connect-
ing spectrum and two-point velocity correlations does not
diverge neither in the UV nor in the IR. As a result, we
expect that in the above range and around o = 1 a non-
trivial balancing between spatial and temporal fluctua-
tions will set in.
In figure [2| we indeed observe that our model has a non-
trivial scale and steepness-dependent statistics. Here we
show the probability distribution functions (PDF) of the
velocity increments d,u = u(x+r) —u(z) for two different
values, r = L = 7 and r = n = w/N denote the largest
and smallest distances in the periodic domain, respec-
tively. Real-space statistics are obtained by inserting the
phase dynamics into the Fourier representation . For
completely uniform Fourier amplitudes (steepness o = 0)
the phases evolve under an all-to-all coupling with equal
coupling strength. Note that this choice of spectral am-
plitudes corresponds to a delta-correlated field in real
space. In this case, all phases become dynamically uni-
formly distributed and uncorrelated. In real space this

produces a Gaussian velocity field at all scales (panel (a)
in figure . In contrast, for steepness values within the
range [0.5, 1.5], where the local-triad approximation is ex-
pected to be valid, heavy tails are observed in the PDF
of the small scales of the velocity field (panels (b)-(d) in
figure . For the smallest increment PDF, the negative
tails are much heavier than the positive tails and both
are much heavier than Gaussian. Heuristically (to be
quantified later), this is the result of phase synchroniza-
tion leading to shocks (anti-shocks), i.e. extreme negative
(positive) events at the smallest scales.

The presence of extreme events is maximal at a ~ 1.25,
as evidenced in figure c). For higher values of « the
PDF tails slowly regularize. In this limit, the large-
scale modes dominate the real-space velocity field. This
leads to a dominant sinusoidal mode with superimposed
smaller fluctuations. As a consequence the large a limit
shows close to Gaussian statistics throughout.

To quantify the steepness-dependent departure of the
small scales from Gaussianity we measure the skewness
and flatness at different increments r:

((0ru)®)
0 Touppr

Note that due to our frozen-amplitude conditions the de-
nominators of both quantities do not fluctuate. In figure
a) we observe a clear transition at o ~ 0.75. The peaks
of skewness and flatness at o ~ 1.28 correspond to the
presence of extremely intense negative gradients seen in
figure [2(c).

As the steepness is increased further, the phases evolve
under a non-local and non-trivial triad coupling. This
gives rise to synchronization events, which underlie the
steepness-dependent transition observed in real-space
statistics. Note, however, that when steepness is too
large the timescales from the triad coupling can get too
separated, as the coefficients wy, ,, in @ become too small
when |p| and |k —p| are large. Thus we expect to see syn-
chronization over a finite range of steepness values only.
In the next sections we will quantify the dependence, on
the a parameter, of synchronization and of the structure
of the associated chaotic attractors.

SYNCHRONIZATION. In order to quantify the behaviour
of triad phases across a range of scales for the oscilla-
tor system (@, we define the scale-dependent collective
phase 0;, via:

. Zp apakfpei(wpﬂ%fp—w)
i

esz —

(8)

. Yon_ o —on :
‘Zpa,pak_pel(%@p Pr—p—Pk)

This collective phase is dynamically relevant as the RHS
of the evolution equations @ is proportional to sin .
The fluctuations of 8, over time serve as a measure of
the triad phase coherence across scales. Thus, averaging
over time we get the following scale-dependent Kuramoto
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FIG. 2. (a)-(f): Standardized PDFs of d,u calculated at the the smallest, 1, and largest increments, L. (a) For completely

flat Fourier amplitudes a = 0 the velocity field is Gaussian across all scales. (b)-(e) Increasing « leads to heavy tails at small
scales. This indicates that extreme events are more common at small scales than at large scales, which in turn remain closer to
Gaussian throughout. (f) For a steep enough spectrum the velocity field is dominated by the first few modes. This regularizes
the heavy tails. These histograms correspond to simulations with N = 2'® collocation points and large-scale cutoff ko = 1.

order parameter:
Rye'®* = (eie’“)t (9)

As usual we have 0 < R < 1 and phase synchronization
is indicated by Ry values close to 1. Averaging addition-
ally over the spatial scales, we define the average phase
synchronization by

1
N — ko

N
> Ry, (10)

k=ko+1

R(a) =

which measures how the phase synchronization changes
as a function of the spectral slope.

Figure b) shows the average phase synchronization as
a function of steepness a for various system sizes V. The
relatively high synchronization seen for small system size
at a > 2.0 decreases as the system size is increased. This
is due to the addition of faster and noisier oscillators to
the system causing a convergence towards a pronounced
peak for « € [1.0,2.0], indicating high phase synchroniza-
tion for this interval for large system sizes. This synchro-
nization peak is remarkably coincidental with the flatness
and skewness peaks shown in figure a). This provides
quantitative evidence in support of the relation between
synchronization (a dynamical-system measure) and inter-
mittency (a real-space measure). CHAOS CHARACTERI-
ZATION. As an additional characterization of the dynam-
ical system, we estimate the properties of the underlying
strange attractor as a function of a and for system sizes
N = 64,128,256,512 by examining the Lyapunov expo-
nents (LEs) [42]. For reasons of numerical complexity we
cannot reach the same resolution we used for the statis-
tical characterisation of intermittency and synchroniza-
tion; however as we will see below the N = 512 case

shows strong indications of convergence to the large-N
limit.

Using the LEs we can calculate the dimension of the
attractor via the Kaplan-Yorke approximation [43] [44].
Given the ordered LEs Ay > Ay > -+ > An_1, the
Kaplan-Yorke dimension is defined as

Dy =1+
|Ait1]

; (11)

where the conditions 7%, A; > 0 and Z;ill Aj <0
define the index i. The Kaplan-Yorke dimension gives
a measure of the systems’ effective degrees of freedom.
Figure c) shows a plot of the ratio between the Kaplan-
Yorke dimension and the number of available degrees
of freedom, as a function of a and for several values
of the system size N. It is evident that as N grows a
clear pattern emerges, whereby the Kaplan-Yorke dimen-
sion greatly diminishes for values of « inside the interval
[1.0,2.0], a behaviour that coincides, on the one hand,
with the departure from Gaussianity observed in figure
a), and on the other hand, with the increase in phase
synchronization shown in figure b).

CONCLUSIONS. Our minimal model sheds light into the
nature of coherent structures as low-dimensional objects,
as it establishes a dynamical scenario where real-space in-
termittency and phase synchronization are accompanied
by a reduction in the dimensions of the strange attrac-
tor. Remarkably, this model’s coherent structures are
controlled by Fourier phase dynamics only, as the energy
spectrum is static and plays a background role only, via
interaction coefficients.

Our results open new perspectives concerning the possi-
bility to connect turbulence intermittency with dynam-
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FIG. 3. Panel (a) shows the absolute value of the skewness
|S(n)| and the flatness F(n) of the PDF of the velocity incre-
ments defined in equation for the smallest increment n as
a function of steepness « (inset: same figure on log-lin scales).
Panel (b) shows the average phase synchronization, equation
, as a function of « for various system sizes. Panel (c)
shows the ratio between the Kaplan-Yorke dimension, equa-
tion , and the available degrees of freedom as a function
of a for various system sizes.

ical system tools based on phase synchronization and
chimera states [45].

On the quantitative side, our results provide insight on
the solution to the full inviscid Burgers equation, where
all amplitudes are allowed to evolve. There, for generic
initial conditions, a finite-time singularity develops char-
acterised by phase synchronization and a power-law spec-
trum with steepness « € [1.33,1.50] [46, 47]. The same
behaviour is observed even if we impose the constraint
ar, = 0 for kg = 1. Because in the full equations the
spectrum evolves slowly, it is natural to expect that in
our constrained model, with frozen spectrum, the phases
must show high correlation in the same range of imposed
slopes.

A natural extension of this work would be an investi-
gation of the phase-only 3D Navier-Stokes dynamics by
fixing the amplitudes of all Fourier modes, including com-
parisons to Navier-Stokes equations with a fixed spec-
trum, either for all wavenumbers or for a subset of them
[48, [49]. Results in this direction would help to shed ad-
ditional light on the origin of extreme events and small-
scale intermittency.
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