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Fluctuation-response relation in turbulent systems
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We address the problem of measuring time properties of response fun@een functionsin Gaussian
models(Orszag-McLaughipnand strongly non-Gaussian modéshell models for turbulengeWe introduce
the concept ohalving-time statisticso have a statistically stable tool to quantify the time decay of response
functions and generalized response functions of high order. We show numerically that in shell models for
three-dimensional turbulence response functions are inertial range quantities. This is a strong indication that the
invariant measure describing the shell-velocity fluctuations is characterized by short range interactions between
neighboring shells.
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I. INTRODUCTION For Hamiltonian systems one realizes that @gis the usual
linear response theory. H(x) is Gaussian, one has a simple
The fluctuation-respong&/R) relation plays an important relationship between the response and the correlation func-
role in statistical mechanics and, more generally, in systemson
with chaotic dynamics. With the term F/R relation we indi-
cate the connection between the relaxation properties of a i (Xi(1)x;(0)) = (X ){X})
system and its response to an external perturbation. The rel- (Ry()= (XX = a(xp) @
evance of this relation is evident: it allows us to connect
“nonequilibrium” features(i.e., response and relaxatioto  |n the general case of non-Gaussian statistics, fornilila
“equilibrium” [1] properties(correlation functions As an  just gives a qualitative information, i.e., the existence of a
important example, we mention the Green-KyB¢ formu-  Jink between response and the general correlation function
las in the linear response theory which links the response tox;(t)f;[x(0)]). In particular, in the most interesting cases in
an external field with correlations Computed at eqUIIIbrlum which p(X) is unknown, it is extreme|y |mp0rtant that the
Consider a system whose state is given by a finite dimeng/R relation(1) exists because it allows us to control some
sion vectorx=(xy, ... Xy), the average linear response properties of the invariant measupgx) in terms of the
Gl(t)=(RI(t)) is the average response after a titnaf the  response-functions behavior. In the past, this has not always
variablex; to a small perturbation of the variabig at time  been clear, e.g., some authors claiwith qualitative argu-
t=0. Under rather general conditioiisasically one has to mentg that in fully developed turbulence there is no relation
assume that the system is mixjrigis possible to show that between equilibrium fluctuations and relaxation to equilib-
a generalized F/R relation hold3,4]: rium [5], while a proper statement would limit to the nonex-
istence of the usual “Gaussian-like” F/R relatiof).
8%;(t) Response functions have a clear phenomenological im-
<R ()= <5x 0 > (xi()f;[x(0)]), (1)  portance in many applied problems where one needs to con-
(0) trol and/or predict the system reaction as a function of exter-
nal spatial and/or temporal perturbations. Moreover response
where the functiond; depend on the invariant probability functions, also known as Green functions, play a very impor-
distribution p(x), tant role in many nonequilibrium problems. In particular, in
many analytical approaches to hydrodynamical problems de-
scribed by Navier-Stokes equations, or models of them,
2) Greens functions naturally show up both in perturbafiée
i and closure schemes like the direct interaction approximation
(DIA) [7].
The physical meaning of Eql) is the following: consider a We stress that the F/R, in the forh), is a rather general
small perturbationsx(0)= (6x;(0), . ..,6xy(0)) at t=0; relation which does not depend too much on the details of
the average distanc@dx;(t)) from the unperturbed values the measure of the systems, e.g., both in the presence or
xi(t) is absence of an energy flux. For example, in the field of dis-
ordered systems the F/R had been widely studied in order to
highlight nontrivial relaxation aspects, e.g., aging phenom-
(5Xi(t)>=2 <R}(t)>8x,—(0). 3) ena..ln this paper we want to gddress the p_roblem of the F/IR
] relation for the case of dynamical models with many degrees

a1n p(x)

fxI==—5x
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of freedom and many characteristic times. We are also intefponenj. One easily understands the main problem in trying
ested in exploiting the F/R relation in models which exhibit ato numerically compute any response function for large
strong departure from Gaussian statistics. We introduce imes: one needs to control an observable which is rapidly
suitable numerical method for measuring the characteristidecaying to zero with exponentially large fluctuations. In
times involved in the response functions. practice, it turns out to be impossible to have a reliable con-
This method is based on the idea of characterizing thérol on the asymptotic behavior of Green functiqisge the
response behavior as a function ofliglving time statistics following sections and figures thergin
(HTS), i.e., the timer necessary for the response from a In order to avoid this trouble we propose another ap-
typical infinitesimal perturbation to reach, say, one-half of itsproach. Let us first consider ondiragonalresponses, i.e., the
initial value. response after a timeof thenth variable from a perturbation
The plan of the paper is as follows. First we investigate aof the samenth variable at time=0, G/(t)=(R}\(t)).
dynamical system with many degrees of freedom and many In this case, we claim that it is possible to have a good
different characteristic times where still a classical Gaussiagharacterization of the main temporal properties by looking
set of F/R relations holds. The model is the so-calledat the HTS, that is at the probability density functidiér)
“Orszag-McLaughlin” model which is used to probe the ef- of the time r necessary to see an appreciable decay of the
fective improvement of halving time statistics with respect toresponse functionR)(7=t)=AR}(0), with the thresholo\
the usual direct measurement of time decaying propertiegixed to a macroscopic value, say=1/2. In practice, one
Then, we attack the much less trivial case of CharaCteriZin%erforms many response experiments by Co||ecting the sta-
response behavior in models for three-dimensional turbulerﬂstics of the times necessary to see the response become
energy cascade, i.e., shell mod84 Also in the latter case, one-half of its initial value. The advantage of this HTS with
the halVing time statistics will allow us to measure with gOOd respect to the more Standard Way Of Characterizing the mean
accuracy the nontrivial time properties of Green functionsyesponses”(t) with some typical time is that one does not
We show that the response functigwhich probes linear neeq 1o know any functional behavior for the averaged re-
features of the dynamical evolutipis strongly affected by  gnonse and, moreover, one has also a control on the fluctua-
thenonlinearinertial range physics. As a consequence, shorfions of the characteristic times, i.e., the HTS integrates all
range interactions between neighboring shells are thought Qa5 corresponding thalving eventsin the following, we

characterize the invariant measure describing shell-velocitgnow that the HTS is at least able to reproduce with good

fluctuations. accuracy the same results of the direct fitting procedure of
the averaged response in cases when the classical F/R rela-
[l. NUMERICAL SIMULATIONS tion (4) holds(the Orszag-McLaughlin model, i.e., Gaussian
Before entering the detailed description of the results, wi statistics and, more interesting, it is also able to give new

want to discuss a practical problem for the numerical com(;-q;“nts on the F/R relations when time intermittency and a

putation of G}(t)z(R}(t)). In numerical simulations, strong departure from Gaussianity are presehell models

R . d bi h b . n In the following we will also discuss the cases of nondiago-
( .i(t)> |s-co-rr.1put-e perFur ing the yana eat t|met:t1 nal responsegR)(t)), with n#m and the cases of general-
with an “infinitesimal” kick of amplitude ox;(t1|t;)=X;(t  ized higher order responses

=t;)—xj(t=t;)=¢, for e~0, and the deviatiorsx(t|t;)

=X(t)—x(t) is computed integrating the two trajectories

~ Ny,No, . n . . . ’
andx up to a prescribed timg,=t;+ At. At time t=t, the <Rm1,m2 ----- rrnr(tl'tl'tZ'tZ' ctat)
variablex; is again perturbed with another kick, and a new
sample 6x(t) is computed and so forth. The procedure is B 5Xn1(t1) 5Xn2(t2) 5an(tr)
repeated <1 times and the mean response is then evalu- - , N /
atgd as P 5Xml(t1) 5Xm2(t2) 5er(tr)
12 oxi(tertlty)
Gli)y=— > =k K (5) A. The Orszag-McLaughlin model
! M &L ox(tt)

Let us consider the following mod¢9]:

In the presence of chaos, the absolute value of the deviation, dx

| 6% (t+1,[t) ], typically gr(i)ws e>_<ponentially with. The_re- d_tn =Xt 1Xns 24 Xn— 1Xn—2— 2Xns1Xn—1+ 7)
fore, the mean responséRj(t)), is the result of a delicate

balance of terms with nonfixed sign. As a result, we have that

the erroro(t) on (Rj(t)) increases exponentially with with n=(1,2,...N), N=20, and the periodic condition
Xn+N=Xpn. This model contains some of the main features of
exp(yt) ©) inviscid hydrodynamics(a) there are quadratic interactions;
W™ (b) a quadratic invariant existEESN_;x2); (c) the Liou-
ville theorem holds. For sufficiently large the distribution
where vy is the generalized Lyapunov exponent of secondof each variablex,, is Gaussian. In this situation, a classical
order (greater than or equal to the maximum Lyapunov ex-F/R relationship exists for each of the variables: self-

o(t)~
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1 pogsrer—
ax Koy,

5Xn(t)> (11

RR(t)=< 5%,(0)

NN are shown. As a consequence of the preserved Gaussian sta-
tistics, the F/R relation of the forr®) holds for each of the
variables, at least over time delays not too long. Tihear)
response functions are computed as decay functions of single
variable perturbations to infinitesimal instantaneous “kicks,”
averaged over a large number of simulations. If we conven-

. tionally define the correlation time of a variabkg as the

time delay rc(n) after which the correlation function be-
comes lower than the value 1/2, we find that

0 1 2 3 4 5 re(n)~k, ¥2. (12)
t

05

-1

_ The exponent of the scaling lai&2) can be explained with a
FIG. 1. Plot of the averaged response functi@fgt) and cor-  dimensional argument by noticing that from the mean energy
relation functlonsc_:n'n(t) for_flve fast vzirlables of t_he rrlodlfled per variable we get(§~kn, so from Egs.(8) and (9) the
Orszag-McLaughlin modeln=6 (+), n=7 (x), n=8 (*), N cparacieristic time results to bg(n)~k; ¥2. We notice that
=9 (O), andn=10 (O). Statistical error bars are shown only for . . . .

. . I the scaling(12) is robust with respect to the choice of the
response functions correspondingrie=6 andn=10. Thin lines threshold value. i it is ob d if the d fact
represent correlation functions. The statistics is oveére@nts. r_es oldva u?’ ' I'e".l IS observed even It the decay factor

\ is chosen slightly different from 1/2.
response functions to infinitesimal perturbations are indistin- ; The r:gshpok?se t'meR(ré) IS defmedf as t.he ttl)me mtervlal
guishable from the corresponding self-correlation functionter Which the averaged response function becomes lower
[3]. than 1/2. We must observe that the computation of the mean
We have slightly modified the systef) in order to have response function is pract|cally. |mpOSS|b_Ie after a certain
variables with different characteristic times. This can belime delay because of exponentially growing errors.

done, for instance, by rescaling the evolution time of each @St halving timesr(n) have been computed always for
variable, the variables of the systef8), using the same procedure as

before(i.e., infinitesimal kicks. The halving-time probability

dx, distribution functions(PDF’s) decay exponentially and, as
r T Kn(Xns 1Xnt2t Xn—1Xn—2— 2Xps1Xn—-1),  (8) can be shown, they all can be “collapsed” to the same renor-
malized PDF for a proper rescaling of the halving tifsee
below). A comparative plot of 7(n)), 7c(n), and 7g(n) is
shown in Fig. 2. Halving times and correlation times follow
the same scaling law witk, and, for each variable, have
values very close to each other. Typical time decaying of the
(ﬁveraged responseg(n) are very difficult to estimate due to

igh errors for slow variables. In fact, only a few points are
shown in Fig. 2, the ones for which the mean response drops
down to 1/2 fast enough, before the statistical error becomes
&00 large(say larger than 100%). The advantage of the HTS
with respect to the mean response function is that, with the
same statistics, halving times can be computed for all vari-

where the factok,, is a function of the “number of identifi-
cation” (e.g., a site in the chajnof the variables defined
as ky=aB", with a«=5x10"2 and B=1.7, for n
=1,2,...N/2, with the “mirror” property Kninpe
=Kn+1-n - An immediate consequence is that the quadrati
observableE is no longer invariant during the time evolution
of the systen(8). The mean energy per modg,=(x2) (not
shown), follows a linear law withk=k,,. It can be demon-
strated that a new quadratic integral of motion exists, an
this has the form

N 2 ables within reasonable uncertainty, while response times
| = E - (9) 7r(N) are generally affected by exponentially growing errors
n=1Kp and are practically not defined when the typical relaxation

time scale is longer than the error growth time scale.

Moreover, thex, variables are shown to preserve the Gauss- The numerically computed PDF’s of the halving time
ian statistics to a good extent. Therefore, the only effect okan be rescaled as follows:
the change in the original Orszag-McLaughlin system is that
each variable now has its own characteristic time. T

Let us see how correlation and response functions behave (g m P(1)—=(n)P(7). (13
for the system8). In Fig. 1 the self-correlation functions

We show in Fig. 3 the overlap of some rescaled PDF'’s of the
(Xn(1)Xn(0)) = (Xn)? 1o halving times. As a consequence, all moments of (i)
(X2 —(x,)? (10 PDF’s have a simple scaling

. —(3/2)-
and the self-response functions (r(n)P)y~k, 2P

Cn,n(t):
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1000 = ' - velocity variablesu,(t) must be understood as the velocity
fluctuation over a distanck,=k*. It is possible to write
100 | . i down many different sets of coupled ordinary differential
A equations possessing the same kinematical features necessary
2 to mimic Navier-Stokes nonlinear evolution. In the following
10k 2 ] we will present numerical results for a particular choice, the
E so-called Sabra modgll], namely,
1 L » % T T d ) _ . .
¥ % a+an Un=i[KnUq 1 1Un+2+bKy—qUpqUn- g
01} i _
+(1+b)k, Uy ouy_q1]+f,, (14
0'010_01 0:1 1 whereb is a free parametey, is the molecular viscosity, and
K, f, is an external forcing acting only at large scales, necessary

to maintain a stationary temporal evolution. The main,

FIG. 2. Log-log plot of correlation timesc(n) (A), mean halv-  strong, difference with the model discussed in Sec. Il A con-
ing times(~(n)) (0), and response times(n) (O) as a function  sjsts of the existence of a mean energy flux from large to
of k, for the modified Orszag-McLaughlin model. Notice the much sma|| scales which drives the system toward a strongly non-

Igrger errors found when measuring the characteristic responsgaussian stationary temporal evolutipt2]. Shell models

times, 7r(n). Errors on7c(n) and(7(n)) are of the same size as giscyssed here present exactly the same qualitative difficul-
the representative symbols. The statistics is over ré@lizations. ties of the original Navier-Stokes equations: strong nonlin-

All these characteristic times follow the same scaling law with ooy and far from equilibrium statistical fluctuations. The
;—Pgeu;)g:]?gem_ 3/2 of the scaling law follows from dimensional ¢ striking quantitative feature of the non-Gaussian statis-
' tics is summarized in the existence of anomalous scaling

We have found that in a Gaussian case, the response l%ws of velocity moments:
infinitesimal perturbations can be characterized both with the 0 —p)
classic mean response function and with the mean halving- (lunlP)~kq ’ (19
time technique. It is worth stressing that the HTS could be
the only technique usable for studying relaxation to nonlin-with {(p) # p/2{(2). Anomalous scaling, also known as in-

ear perturbation in complex systems. termittency, is the quantitative way to state that velocity
PDF’s at different scales cannot be rescaled by any changing
B. Shell model of variables.

Let us now discuss two subtle points. Using some general

Shell models for a turbulent energy cascade have proveg,gyments from the dynamical systems theory, one has that
to share many statistical properties with turbulent threey| the (typical) correlation functions at large time delay have
dimensional velocity field$10,8. Let us introduces a set of (4 ye|ax to zero with the same characteristic time, related to
wave numbersk,=2"k, with n=0,... N. The shell-  gpeciral properties of the Perron-Frobenius operator. If one
uses this argument in a blind way, the apparently paradoxical
result is that all correlation functions, C, (t)
=(upn(t)u,(0)), must go to zero with the same characteristic
times. On the contrary one expects a whole hierarchy of
characteristic times distinguishing the behavior of the corre-
lation functions at different scal¢$3]. In particular, the self-
correlation function,C, (t), decays with a characteristic
time decreasing witm. The paradox is only apparent since
the dynamical systems argument is valid at very long times,
i.e., much longer than the longest characteristic time, and
therefore in systems with many different time fluctuations it
is not helpful. In fact, it is well established numerically and
well understood theoreticalljd3—15 that general multiscale
multitime correlation functions of the kindCh(t)
=(Ju,(0)[Plun(t)|) are described by the cascade formal-
ism. In particular, most of the statistical properties in the

FIG. 3. Collapse of the rescaled PDFs of the halving times forinertial range can be well parametrized by the multifractal
the modified Orszag-McLaughlin model. For simplicity, only the formalism.

01 ¢

rescaled PDFs

0.01 ¢

0.001 :
0

/<>

PDFs relative to the fastest four variables are showm, On the other hand, the response properties are related to
=7,...,10. The statistics is over ¥0mpulsive infinitesimal per-  infinitesimal perturbations. Therefore, it is not obvious that
turbations as in Fig. 2. the response depends on inertial range properties. The exis-
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3.5
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0.5 — a5l
= 2
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0 - = 15}
—-0.5 1 1 i 1 1 1
0 1 2 3 0 02 04 06 08 1 12 14 16 18 2
t t
FIG. 4. Modulus of the average response functioGg(t) FIG. 6. Plot of three different diagonal instantaneous responses,
=(R)\(t)), for shellsn=7, . . ., 14(from top to botton. Error bars  R[(t), for the shelin= 10, versus time. Halving time is fixed by the

are shown only for the smallest and the largest scales. The numbérst time when the curve touches the threshold at1/2.
of independent kicks used to perform the averages is around 2
X 10°. Notice the extremely large error bars measured for the slowthe inertial-range statistics is far from Gaussian. By using
est shell variables. The parameters entering in the equations of me4TS we can get information on the temporal dependence of
tion (14) areb=0.4, v=5x10"" for N=25 shells. the response function in the whole range of inertial shells. In
Fig. 6 we report some realizations of the instantaneous re-
tence of the F/R relation and the fact ti@&f ,(t) (and other sponse function, which shows typical halving time experi-
similar correlation functionsare determined by the inertial ments.
range properties suggest that also the response features areln Fig. 7 we summarize the results we obtain by compar-
ruled by the inertial range behavior if the invariant measureng the mean halving timer(n)), with the characteristic
is dominated by local interactions among shells. times one extracts from the decay properties of both the
Let us now examine the numerical results concerning remean responser(n) and correlation functions¢(n) for
sponse functions in the shell model. Figure 4 shows the dithose shells where such a behavior can be safely extracted. It
agonal mean responggn(t) for a range of inertial shells, is worth noticing how the mean halving time allows a full
ne [7—14]. The most striking property is the impossibility to characterization of time properties also for those shells where
follow the response behavior at large scdksall shellsfor ~ the mean respong®;(t) cannot be measured for large time
large times, i.e., the explicit evidence that errors grow expolegst. Also, the dependence from the scale of the mean halv-
nentially. In order to compare the different behaviand ing time is given as a best fitr(n))~k, X, with y=0.53
different error propagatiorbetween the response and corre- +0.03. The valuge=0.53+0.03 can be seen as an intermit-
lation function, we plot in Fig. 5 both the average responseent correction to the dimensional inertial-range prediction
and the self-correlatiorG,, (t), for the shelln=10. Asitis  2/3. On the other hand, the dependency from the scale of
clear from the previous figures, only a response at the smallrg(n) is difficult to extract due to the small number of points
est scalegfast scalesin the inertial range can be computed available.
with enough accuracy to follow an asymptotic decay. Still, Let us now focus on the whole PDF of the halving time
also for this response the clear departure between the re-
sponse and the self-correlation shows another indication thas T T T T T T T

5F = -1
x
1.2 T T T T T T 4 =
3k = -
].‘ 2 - : - -
__ 08 1r A g 7
= 0F R - -
2 -
(5 0.6 -1 » « - -
= 2k - - -
= 04 s
& 3F - -
0.2 4}k -
-5 1 1 1 1 1 1 1 e
0 2 4 6 8 10 12 14 16 18
0.2 1 1 ) 1 1 1 n
0 0.2 0.4 0.6 0.8 1 1.2 1.4 L
: FIG. 7. Log-log plot of the mean halving timgs;(n)) (+) and

of decaying times of the mean diagonal respongén) (X), ver-
FIG. 5. Comparison between the averaged response functiosusk,. We have checked that a different choice of the threshold
Gn(t) (top) and the self-correlatiolT,, ,(t) (bottom) for the shell  \=1/2 used to compute halving time does not affect the slope of
n=10. Notice the different order of magnitude of error bars. the graph.
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s x:
e 2F T x -
ot e . 1f - .
;v/ 0k x -
1k s i
> a1 . .
21 ,,/’ - 2F * i
3 e 3t 4
e 4l “ -
4 1 1 1 [l -5 1 1 1 1 1 1 1
-6 -4 -2 0 2 4 2 4 6 8 10 12 14 16 18
p n
FIG. 8. s, exponents of thgth moment of halving times. The FIG. 9. Log-log plot of the off-diagonal response characteristic

straight line corresponds to the dimensional predictigh=2/3p.  times 74" versusk,. We performed two experiments. First, we
perturb at large scalem=2, and we follow the response at small

statistics. We first analyze the positive and negative momentgalesn>2 (+); the expected independence of characteristic times

of the halving times, from the scale is well reproduced. Second, we perturb at small
scales,m=13, and we follow the response at larger scales,
TP(n)=((7P(n))~ k= ¥(P) (16) <13, X. In the latter case, for comparison we also plot the straight
n ’

line (dashed with the expected dimensional slope2/3.

with p=—5,...,3. Dimensional, nonintermittent, scaling

would predict the linear behavior for the scaling exponents; | "€ Strong intermittency shown by halving times in Fig. 8
¥(p)=2/3p. In Fig. 8 we plot the results for the halving 'S the clear signature of deviations from a simple Gaussian-
times scaling exponentg/(p) for all moments fromp= like behavior of response functions. We must therefore also

—5,...,3 and thestraight line corresponding to the dimen- expect that generalized responses of higher order are not

sional inertial range estimate. We notice that intermittent cor-s'mp!y related .to the linear response. For example, let us
rections are much stronger for the positive moments than fornsider the third moments of the linear respofiss:
the negative moments. This must be related to the fact that () =([R(1)]?)
positive moments of the halving times are dominated by rare nit AL '
events where the response has a very long decaying. We . i , )
interpret the fact thaty(p)=(2/3)p as an indication that Asw:]wplegnonl.ntelrmltFent behavior would suggest tBatt)
linear response functions are inertial range quantities. Th&[Gn(t)]” while in Fig. 10 it is possible to see that this is
latter results lead to the important conclusion that the invaridefinitely not the case for atl legs where we have a mea-
ant measure is well approximated by short range interactiofurable signal. Unfortunately the already discussed statistical
among shells in the inertial range. problems in measuring averaged response functions for long
As for the nondiagonal response function and for the genfimes are even more pronounced for generalized response
eralized response function of higher order the numericafunctions. Therefore, we refrain from showing any results for
problems to measure them are even more pronounced. Firdf€ scaling behavior of typical times of the generalized re-
let us examine the off-diagonal response functifi(t) ~ SPonse functions.
= 6u,(t)/ Su,(0). Of course these responses start from zero
at time zero instead of starting from one as in the diagonal 1
case. Measuring them by a direct average is strictly impos-
sible because of very large errors. We still decided to mea?-8
sure their characteristic time by using the time the response¢
reaches a “macroscopic” fraction, say 1/2, of the typical 0.6
fluctuations on the scale where we are measuring the re
sponse, i.e., we collect the statistics of the first timesich 0.4
thatR'(t=7) = 1/2(|u,|?). We expect a strong asymmetry of
the characteristic times depending whether the perturbatiorp.2

1
et
-xf:;_

is done at smallerrt>n) or larger >m) scales. Indeed, i
by using the usual inertial range arguments we expect tha g 1 A
the response reacts always with a typical time given by the 0.0 0.1 0.2
time of the largest between the two shells involvedh. By ¢

fixing, therefore, the shell where we perturb, saywe ex- FIG. 10. Comparison between the third power of the mean di-

pect that the typini'Z}igme oRY(1), 74" i§ constant whem  aq0nal responséG’(t)|® (+) and the generalized third order re-
>m and scales ak, “~ whenn<m. In Fig. 9 we show that sponse|S{(t)| (X) computed for the shelh=13, with 5x 10°
indeed this behavior is well reproduced numerically. kicks.
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[1l. CONCLUSIONS play an important role in any diagrammatic approach for

We have addressed the problem of measuring time bro nonlinear out-of-equilibrium systems. In this work we have
. 1€ pro . g P ppresented the first numerical attempt to measure some of
erties of response functions in Gaussian mod€lsszag-

McLaughin and strongly non-Gaussian models, like Shellthelr properties in a systematic way. More work is needed,

X oth numerically and analytically, in order to better under-
mod_els f_or turbu_lence. We have_ mtroduc_ed the concept Ogtand the detailed structure of the invariant measure govern-
halving time statistics with the aim of having a statistically

stable tool to quantify the time decaying of response func!"9 FIR relations.
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