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Introduction: searching for an odor source in a turbulent
environment

Problem: find source of odor
or other cue advected by
atmosphere (e.g. moth
drawn to mate by
pheromones)

Turbulence mixes cue into
intermittent landscape:
randomizes cue encounters,
mean conc. gradients slow
to converge

How to search without
gradients?

Figure Artist’s conception of a moth searching for a mate
via pheromone cues.

Figure Concentration field from jet flow experiment
[Villermaux and Innocenti, 1999]. Fig taken from
[Celani et al., 2014]
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Model search problem

Source fixed on 2D grid, location unknown to agent.

At each ∆t, agent makes observation o(t) = θ(c(t)− cthr) then
moves. Start with a detection at t = 0

Try to reach source in as few ∆t as possible

Key physics input is Pr(o|s), where s ≡ r − r0.
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Figure In our setup, agent lives on the gridworld (blue points) and tries to find the source (red x)
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Bayesian approach

Assuming independent observations, agent can store
information in a probability distribution (posterior) b(s) over
possible source locations

After each observation, update posterior using Bayes’ theorem

b(s′|o) ∝ b(s)Pr(o|s)

Try to find policy π : b 7→ a minimizing expected time of
arrival to source

N.B.: Pr(o|s) assumed known by agent
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Infotaxis: an important heuristic

[Vergassola et al., 2007] suggested a policy that seeks to
maximize information content of belief

π(b) = argmin
a

∑
o

Pr(o|b, a)H[bo,a]

where H[b] = −
∑

s b(s) log b(s).

Generally performs extremely well, but can improve by adding
information about distance from source (“space-aware
infotaxis”) [Loisy and Eloy, 2022]
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Optimal policy

One can show that the optimal policy (minimum mean arrival
time) satisfies a so-called the Bellman equation, which can be
solved algorithmically

Recent work solved the problem using three algorithms
(Perseus w/ reward shaping, SARSOP, model-based DQN).
Can usually beat all available heuristics

1 Loisy and Eloy Proc. R. Soc. Lond. (2022) — DQN in windless
setting

2 RAH, Biferale, Celani, and Vergassola PRE (2023) — Perseus
in windy setting

3 Loisy and RAH EPJE (2023) — benchmark on Perseus,
SARSOP, DQN in windy and windless settings

But this work done in a ‘toy model’ setting with artificial
detections
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Correlations

Real flows will exhibit correlations between successive observations:
Pr(ot |s) ̸= Pr(ot |ot−1, s)

Correlations are associated with spatial structure of concentration
field: organized into puffs or clumps of odor

In faster flows, agent has less time to “see” this spatial structure

Figure Fast flows decorrelate odor encounters
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Correlations, cont’d

Main question: what is the effect of correlations on the search
performance?

Two possible approaches: (a) ignore correlations, or (b) keep
track of previous observation and use Pr(ot |ot−1, s)

Strategy:
1 Run DNS with a source of passive scalars
2 Tune correlations by rescaling time in flow t → αt
3 Find quasi-optimal policy with and without correlations
4 Compare Monte Carlo search performance
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The DNS

3-D incompressible Navier-Stokes with mean wind U on
1024× 512× 512 grid in turbulent regime Reλ ≃ 150

Periodic BCs, stochastic large-scale forcing

Lagrangian particles emitted simultaneously from point
sources at 5 locations, data dumped every τη (∼ 4000τη total)

Have data for 5 different mean flow speeds U = 0, 1.5, 3, 6, 9
with urms ≈ 1.2. To our knowledge, only data set of its kind
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Coarse-graining

To move to POMDP setting, data are coarse-grained on a
quasi-2D slice to obtain 99× 33 grid with spacing ∼ 10η

Grid aspect varied depending on wind speed, fixing total cells

Particles counted to obtain concentration field
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Empirical likelihoods

Define cthr ≫ ⟨c|c > 0⟩
Pr(o|s) ≡ Pr(c(s) ≥ cthr) averaged over time and source locations,
symmetrized across wind axis

Use SARSOP to solve for policy using empirical likelihood
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Figure Empirical likelihoods of observation for cthr = 100 when U ̸= 0
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Searching in the DNS: near-optimal vs. heuristics

Note casting (crosswind zig-zagging) behavior in all policies! Very
similar to real moths
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Arrival time statistics for U = 9
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Figure Arrival time pdfs for searching in the source
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Correlation strengths

Natural measure of strength of correlations is δ ≡ p11 − p10. Closely
related to correlation time

−1 ≤ δ ≤ 1. Sign determines if positively or negatively correlated

Generally more strongly correlated for small threshold, small U, small
time rescaling α
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Figure Correlation strength for cthr = 100, shown for crosswind action from centerline
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Arrival time performance
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Figure Regularized arrival time performance for U ̸= 0

Infotaxis is degraded by including correlations! If wind is strong,
gathering information ̸= arriving to the source
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Most likely trajectories: quasi-optimal and infotaxis

Most likely trajectory is to detect nothing. Good baseline for
understanding policy

U = 9 U = 1.5
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Sketch of theory

Basic idea: time for posterior to converge in probability
depends on δ

For stationary agent, can show that if agent is unaware of
correlations

Tunaware − T0 =
2δ∗p∗0p

∗
1

1− δ∗
log2

p0
p1

=
2δ∗

1− δ∗
T0,

where ∗ means evaluation at ground truth and no ∗ means
evaluation at test point. T0 is uncorrelated case

Thus positive (negative) correlations slow down (speed up)
the time to estimate the source

Can also show that taking correlations into account results in
a slight improvement to convergence (O(δ2)

N.B. full analysis more involved (e.g. can take into account
motion of agent, also need to consider time for asymptotic
posterior to be informative)
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Conclusions

Generated a high-quality data set for tracers emitted from a
point source in a turbulent flow

Found quasi-optimal policies to search in the flow, with and
without correlations. When mean wind is sufficiently strong,
optimal motion is to cast à la real moths

Strong correlations degrade search performance by slowing
convergence of posterior

Infotaxis fails when correlations are included in the policy
(and mean wind is sufficiently strong)

Showed results for U ̸= 0 today. Analysis of isotropic case not
yet complete
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