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Non-linear energy transfer
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Triadic interactions

In 3D
homogeneous isotropic turbulence

a forward energy cascade

is observed

In 3D turbulence we cannot
predict the direction of the energy cascade!
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In 3D turbulence we cannot
predict the direction of the energy cascade!

Rotation (if high enough)

induces a decoupling

between the 3D bulk
and a 2D submanifold

in Fourier space:

Oy = Orapsc + Ortpyik



Two mechanisms are known to produce backward cascade:

1) by 2D interactions
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2) by 3D “Homo-Chiral” interactions

second invariant is not positive definite

Homo-Chiral _ _ E — 1<uu> H — 1<uw>
= 2 1™ 2 1~

Waleffe, F. (1992). PoF A: Fluid Dynamics, 4(2), 350-363.

u(k) =ut(K)h" (k) +u (k)h™ (k)
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homo- and hetero-chiral triads conserve energy separately:
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2D3C velocity field

three components
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2D3C velocity field

three components

u(x,y,t) . . oD _ S
——» constant in the z-direction U = | uy |; =
0 U,
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Main properties:

three-dimensionality

1. isotropy
— X under discrete rotations
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. . . . — _— Stationary state with
/ 1 no large-scale friction
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— Stationary state with
no large-scale friction
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— Stationary state with
no large-scale friction
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Stationary state with

—

no large-scale friction
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zero Flux, no Equilibrium!
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II(k) [x107%

zero Flux, no Equilibrium!

II(k) =lpom (k) + Uppr(k)
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Conclusions:

-)We have studied the effect of changing the geometry of the interactions

on the direction of the mean energy transfer in turbulence

-)We have coupled three 2D3C flows in order to study the transition
from 2D to 3D turbulence

-)We end up with a system which reaches a stationary state without

the addition of any hypo-viscous term at large scales

-)The zero energy flux is obtained as a results of a non-equilibrium dynamics

thanks to the cancellation of different fluxes following different channels

-)The complete transition from 2D3C to 3D dynamics can be reached adding

a small percentage (~ 10%) of modes in the Fourier space domain

From two-dimensional to three-dimensional turbulence through

two-dimensional three-component flows
L. Biferale,!** M. Buzzicotti,! and M. Linkmann? Physics of Fluids 29, 111101 (2017)






. In 2 dimensions

two positive definite quadratic invariants
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Inverse energy transfer

. In 3 dimensions

second invariant is not positive definite
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u(k) =ut(K)h" (k) +u (k)h™ (k)
ik x h™ = +kh™

Waleffe, F. (1992). Physics of Fluids A: Fluid Dynamics, 4(2), 350-363.
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. In 3 dimensions

second invariant is not positive definite
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