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Turbulence everywhere

• All environmental flows are turbulent,  

• Atmospheric boundary layer, Ocean 
Currents, interstellar clouds, flow of gas 
and oil in pipe lines, combustion in engines, 

Fumes Clouds Tornado Ocean

Windmills Sun Jupiter Soap Film

Blood flow in Aorta



What is it?

• A turbulent flow can be interpreted as a 
population of many eddies (vortices), of 
different sizes and strengths, embedded in one 
another and forever changing, giving a random 
appearance to the flow. 

• Highly irregular and intermittent. 

• Multiple length and time scales. 

• Diffusive: enhancement of momentum, heat, 
and mass transfer, 

• Essentially dissipative: drag on moving body, 
e.g. airplanes, friction in pipe flows. 

• Rotational: large vorticity fluctuations.



Reynolds Number

• U : mean velocity 
• ν : kinematic viscosity 
• L : characteristic length scale/ 

diameter of the pipe.

Transition to turbulence from 
laminar flow at high  

Re ~ 2000.

Re =
UL

⌫

• Different fluid flows with same 
Re are similar in nature.  

• Also Re describes different 
regimes in the same flow.



Reynolds Number

• Large scale structures are 
mainly independent of 
Reynolds number. 

• Large Reynolds number 
produces smaller scale 
structures. 

• Reynolds number is a measure 
of scale separations in the flow.

X.S. Bai Turbulence

Reynolds number and turbulence scales

Lower Re

Higher Re

Large eddy
Small eddy

Large scales: independent of ReLarge scales: independent of Re

Small scales: dependent of ReSmall scales: dependent of Re

Re =

✓
L

⌘

◆4/3



Richardson cascade Picture

X.S. Bai Turbulence

Turbulence eddies

• Richardson’s definition of turbulence eddies (1922)
– Turbulence consists of different eddies
– An eddy is a localized flow structure
– Large eddies consists small eddies

Lewis Fry Richardson

1881-1953

L.F. Richardson  1922  

“Big whorls have little whorls	

  That feed on their velocity,	

And little whorls have lesser whorls	

  And so on to viscosity.” 

“Doue la turbolenza dellacqua rigenera, 
doue la turbolenza dellacqua  
simantiene plugho, 	

doue la turbolenza dellacqua siposa”	


Leonardo da Vinci 1507 

η = viscous scale 

L= forcing scale 

• Energy is fed into the large eddies. 

• Large eddies break to smaller and smaller eddies and energy gets 
dissipated at viscous scales. 



Navier-Stoke’s equation

• Navier-Stokes equation for incompressible flows, 

• The nonlinear term is responsible for a cascade of energy in a turbulent flow. 

• Since the equations are nonlinear, generic solutions are not superposition of basic solutions.  

• Navier-Stokes equations display a strong sensitivity to initial conditions. Hence, exact solutions 
are less interesting. 

• Need for a statistical approach.  

• Complex to solve analytically. We use computers! 

• Large grid Direct Numerical Simulations to resolve smaller length scales.

@u

@t
+ (u ·r)u = �rp

⇢
+ ⌫r2u+ f ,

r · u = 0.



Universality?

• In a statistically stationary, homogeneous and isotropic flow, all 
eddies of size l behave similarly.

• They have a characteristic velocity, say u [LT-1].

• They transfer as much energy received from larger eddies to smaller 
eddies; rate of energy transfer is the same for all scales.

• Energy supplied at largest scales is equal to the energy dissipated at 
small scales; the rate of energy dissipation per unit mass is  ε [L2T-3].

Turbulence is irregular or chaotic in space in time.  
But is there any universal aspect?



Kolmogorov theory (1941)
• For very high Re, the statistical properties of eddies of sizes in the inertial range of 

scales are 

• independent of the forced and dissipative scales, and are locally homogeneous 
and isotropic.

• universally and uniquely determined by the length scale l, viscosity ν, and the 
rate of energy dissipation ε.

• Characteristic velocity of an eddy of size l scales as ul ~ (lε)-1/3. 

• Energy spectrum in the inertial range

• Self-Similarity hypothesis: Structure functions of p-th order scales as

Sp(l) = h�up
l i ⇠ ("l)p/3,

�ul = [u(r+ l)� u(r)] · l
l .

E(k) ⇠ "2/3k�5/3,

for L�1 << k << ⌘�1
; ⌘ =

✓
⌫3

"

◆1/4



Role of helicity

• Like energy, helicity is also an invariant of the inviscid and unforced 
flow (discovered only in 1960’s). 

• Conservation of helicity is linked to the parity invariance of the flow. 

• At a very high Re, there is a growth of helicity at the small scales, 
but total helicity remains finite, because of the symmetry. 

• Energy gets distributed among scales by the nonlinear term in 
Navier-Stoke’s equation and  assuming a constant energy flux we 
observe the scaling behaviour  

• By similar dimensionality argument and assuming a constant helicity 
flux h [LT-3], we obtain 

• But such a scaling is not observed. Why?

�ul = [u(r+ l)� u(r)] · l
l ⇠ "1/3l1/3

�ul = [u(r+ l)� u(r)] · l
l ⇠ h1/3l2/3



Role of helicity

• There is no purely helicity dominated turbulence since both 
energy and helicity cascade to the small scales. 

• For the joint cascade of energy and helicity we expect 

• But then, we can not determine the exponents, uniquely, 
from dimensionality argument. 

• Presence of helicity changes the geometrical structure in a 
subtle way, which could not be captured by simple 
dimensional analysis.

�ul = [u(r+ l)� u(r)] · l
l ⇠ "�h� l�



Role of helicity

• Tells us if the instantaneous streamline is close to 
right-handed or left-handed screw. 

• Helicity measures the knottedness of the vortex lines. 

• It would help us in understanding the origin of 
vorticity tube and sheets. 

• Change in the helicity may be associated to a certain 
event called vorticity reconnection.  

• In presence of the viscosity, the vortex lines can 
touch and re-connect and produce helicity.

H =

Z

V
u · ! d3x is a pseudoscalar.



3D turbulence
Energy spectrum

Energy spectra E (k) =
P

k3|k|=k |u(k)|2
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I Forward energy cascade from large scales to small scales in
our DNS of 3D Navier-Stokes equations.

I Shows a Kolmogorov k�5/3 scaling in the inertial range.
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I Forward energy cascade from large scales to small scales in
our DNS of 3D Navier-Stokes equations.

I Shows a Kolmogorov k�5/3 scaling in the inertial range.

Introduction

I The invariants of 3D Navier-Stokes equations:
Energy E =

R
d3r ~u · ~u and Helicity H =

R
d3r ~u · ~!

I Helicity could be positive or negative.

I Both cascades forward, from large scales to small scales.
(Chen, Phys. Fluids 2003)

I Growth of helicity at small scales, both in positive and
negative modes but finite because of the mirror symmetry.

E(k)



2D turbulenceIntroduction

I For 2D Navier-Stokes equations two conserved quantities:
Energy E =

R
d2r ~u · ~u and Enstrophy ⌦ =

R
d2r ~! · ~!

I Forward cascade of energy is blocked, since enstrophy is also
positive and definite. (Bo↵etta Ann. Rev. Fluid Mech 2012)

Ray et al, Phys. Rev. Lett. 107, 184503 (2011)



Dimensionality

• The direction of cascade is 
determined by positive-
definite inviscid invariants. 

• In 2D: energy and enstrophy 
are conserved; both positive-
definite. 

• In 3D: energy and helicity are 
conserved; helicity is not 
positive-definite.

3D  

2D  

3D: Kinetic energy is transferred  
       from large to small eddies 

2D: Kinetic energy is transferred  
       from small to large eddies 

Many physical phenomena can 
change of the dimensionality of  
a turbulent flow: 

Confinement in thin fluid layers 

Rotation 

Stable stratification 

Helical flows 



2D or 3D ?

Many geophysical flows (e.g. oceans, atmosphere) 
have quasi-2d aspect ratios  

Complex systems:  

Turbulence 
Waves  
Stratification 
Convection 
Rotation (Coriolis)  
Boundaries 
Cloud physics  

A4 paper (80gr/m2) 
L1= 210 mm 
L2 = 297 mm 
h   = 0.1 mm 

Pacific Ocean 
N-S = 15000 km 
E-W = 19800 km 
average depth = 4.28 km 

• Many flows are quasi-2D, like 
thick films, geophysical flows 
like ocean and atmosphere.  

• Physical phenomenas change 
the dimensionality of the 
system, like rotation. 

• There have been evidence of 
inverse energy cascade in 
such systems. 

• Also conducting fluids transfer 
energy to the large scales.



Transition from 3D to 2D

• If we make helicity positive definite, do we see inverse 
energy transfer in 3D?

• Dimensional transition occurs in turbulent 
fluid layers from 3D direct energy cascade 
to 2D inverse energy cascade as we 
decrease the thickness of the layer. 

• Depending upon the aspect ratio there is a 
coexistence of inverse and direct cascade. 

• Enstrophy (w.w) becomes quasi-invariant 
as only conserved by large scale dynamics 
where the flow is two dimensional. 

• Inverse cascade develops because of 
existence of another positive definite 
conserved quantity.

H. Xia, D. Byrne, G. Falkovich, and M. Shats, Nat. Phys. 7, 321 (2011) 
D. Byrne, H. Xia and M. Shats Phys. Fluids, 23, 095109 (2011)  

Inverse cascade 

Condensate 

H. Xia, D. Byrne, G. Falkovich, and M. Shats, Nat. Phys. 7, 321 (2011) 
D. Byrne, H. Xia and M. Shats Phys. Fluids, 23, 095109 (2011)  

Inverse cascade 

Condensate 

H. Xia, D. Byrne, G. Falkovich, and M. Shats, Nat. Phys. 7, 321 (2011) 
D. Byrne, H. Xia and M. Shats Phys. Fluids, 23, 095109 (2011)  

Inverse cascade 

Condensate 

H. Xia, D. Byrne, G. Falkovich, and M. Shats, Nat. Phys. 7, 321 (2011) 
D. Byrne, H. Xia and M. Shats Phys. Fluids, 23, 095109 (2011)  

Inverse cascade 

Condensate 



Inverse energy cascade in 3D

• Making the helicity sign-definite, we observe inverse 
cascade of energy.

Inverse energy cascade in three-dimensional isotropic turbulence,
Biferale, L., Musacchio, S., Toschi, F., Phys. Rev. Lett. 108, 164501 (2012)



Direct Numerical Simulations
Pseudospectral method for DNS

I We solve the Navier-Stokes equations on a triply periodic box of size 2⇡.

I Initial velocity field is in Fourier space on a grid of size N3.

I The nonlocal terms like ~r⇥ ~u, r2~u are evaluated in in Fourier space.

I Terms like ~u ⇥ ~! are calculated in real space.

I Switch between real and Fourier space by using the FFT algorithm FFTW.

I For the first step of evolution a Runge-Kutta scheme is used.

I Then an Adams-Bashforth second-order scheme is used.

For an equation of the form

dq

dt
= �↵q + f (t) (1)

A second-order Adams-Bashforth scheme

q(t + �t) = e�2↵�tq(t � �t) +
1� e�2↵�t

2↵
⇥ [3f (t)� f (t � �t)]. (2)



Navier-Stokes equations

Helical-decomposition of velocity

I In Fourier space, u(k, t) has two degrees of freedom since
k · u(k, t) = 0.

I We chose projection on orthonormal helical waves with
definite sign of helicty.

I Following Wale↵e Phys. Fluids (1992)

u(k, t) = a+(k, t)h+(k) + a�(k, t)h�(k)

where h

±(k) are the complex eigenvectors of
the curl operator ik⇥ h

±(k) = ±kh±(k).

I
h

⇤
s · ht = 2�st ; h

⇤
s = h�s ,

where s and t could be +1 or �1

u̇i(k) +

✓
�ij �

kikj
k2

◆
Nj(k) = �⌫k2ui(k),

where Ni(q) =
X

q=k+p

ikjui(k)uj(p)

• 3D Navier-Stokes equations in Fourier-space



Helical decomposition

Helical-decomposition of velocity

I In Fourier space, u(k, t) has two degrees of freedom since
k · u(k, t) = 0.

I We chose projection on orthonormal helical waves with
definite sign of helicty.

I Following Wale↵e Phys. Fluids (1992)

u(k, t) = a+(k, t)h+(k) + a�(k, t)h�(k)

where h

±(k) are the complex eigenvectors of
the curl operator ik⇥ h

±(k) = ±kh±(k).

I
h

⇤
s · ht = 2�st ; h

⇤
s = h�s ,

where s and t could be +1 or �1Helical-decomposition of velocity

I Choose h

±(k) = µ̂(k)⇥ k̂± iµ̂,
where µ̂ is an arbitrary unit vector orthogonal to k

I reality of the velocity field requires µ̂(k) = �µ̂(�k)

I Such requirement is satisfied, e.g., by the choice
µ̂(k) = z⇥ k/||z⇥ k||, with z an arbitrary vector.

I Projection operator:

P±(k) ⌘ h

±(k)⌦ h

±(k)⇤

h

±(k)⇤ · h±(k)
u

±(k, t) = P±(k)u(k, t)

u(k, t) = u

+(k, t) + u

�(k, t)

I Eneregy E (t) =
P

k

|u+(k, t)|2 + |u�(k, t)|2.
I Helicity H(t) =

P
k

k(|u+(k, t)|2 � |u�(k, t)|2).



Helically decimated Navier-Stokes equations

Helical-decomposition of velocity

I Choose h

±(k) = µ̂(k)⇥ k̂± iµ̂,
where µ̂ is an arbitrary unit vector orthogonal to k

I reality of the velocity field requires µ̂(k) = �µ̂(�k)

I Such requirement is satisfied, e.g., by the choice
µ̂(k) = z⇥ k/||z⇥ k||, with z an arbitrary vector.

I Projection operator:

P±(k) ⌘ h

±(k)⌦ h

±(k)⇤

h

±(k)⇤ · h±(k)
u

±(k, t) = P±(k)u(k, t)

u(k, t) = u

+(k, t) + u

�(k, t)

I Eneregy E (t) =
P

k

|u+(k, t)|2 + |u�(k, t)|2.
I Helicity H(t) =

P
k

k(|u+(k, t)|2 � |u�(k, t)|2).

Helical-decimated Navier-Stokes equations

I Decimated Navier-Stokes equations in Fourier space:

@tu
±(k, t) = P±(k)Nu±(k, t) + ⌫k2u±(k, t) + f

±(k, t)

where ⌫ is kinematic viscosity and f is external forcing.

I The nonlinear term containing all triadic interactions

Nu±(k, t) = FT (u± ·ru

± �rp)



Classes of triadic interactions in NS equations 

F-type: When large wavenumbers 
have opposite sign, smallest one is 
unstable and could transfer energy 
only to large wavenumbers, for both 
Class-III (+, -, +) and Class-IV (-, -, +). 

• Energy and helicity are conserved for 
each individual triad. 

• Triads with only u+, i.e. Class-I, lead to 
reversal of energy cascade. 

• Energy spectra in the inverse 
cascade regime shows a  k-5/3 slope.

R-type: When large wavenumbers have same sign, middle one is unstable and could 
transfer energy to both small and large wavenumbers;  
• predominantly to the smallest wavenumber if it has the same sign [Class-I (+, +, +)]. 
• mixed transfer if smallest wavenumber has the opposite sign [Class-II (+, -, -)].
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Forward transfer
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Eneregy Injection

E(k)

k

I

All

Direction of energy transfer in triads 

F-type: When large wavenumbers have same sign, middle one is unstable 
and could transfer energy to both small and large wavenumbers;  
• predominantly to the smallest wavenumber if it has the same sign [Class-I (+, +, +)]. 
• mixed transfer if smallest wavenumber has the opposite sign [Class-II (+, -, -)].

R-type: When large wavenumbers have opposite sign, smallest one is 
unstable and could transfer energy only to large wavenumbers, for both 
Class-III (+, -, +) and Class-IV (-, -, +).

p unstable (R-type)

u+(p)

u+(k)

u+(q)

I

u-(p)

u+(k)

u-(q)

u-(p)
u+(k)

u+(q)

u-(p)

u-(k)

u+(q)

k unstable (F-type)

Helical-decimated Navier-Stokes equations

Nu±(k, t) = FT (u± ·ru± �rp)

Nu±(q) = FT
⇥
u±(k) ·ru±(p)

⇤
;q = k+ p; k  p  q

I Four classes of
nonlinear triadic
interactions with
definite helicity signs
under helical
decomposition of NS
equations; k  p  q.

I Energy and helicity
are conserved for
each triads.

II III IV



Partial Helical-decimation

probability 1 probability (1-α)

probability (1-α)2

u+(p)

u+(k)

u+(q)
I

u-(p)

u+(k)

u-(q) II

u-(p)

u+(k)

u+(q) III

u-(p)
u-(k)

u+(q) IV

probability (1-α)2

Helical-decimated Navier-Stokes equations

Nu±(k, t) = FT (u± ·ru± �rp)

Nu±(q) = FT
⇥
u±(k) ·ru±(p)

⇤
;q = k+ p; k  p  q

I Four classes of
nonlinear triadic
interactions with
definite helicity signs
under helical
decomposition of NS
equations; k  p  q.

I Energy and helicity
are conserved for
each triads.

What happens in between??  
when we give different weights to different class of triads…

Helical-decimated Navier-Stokes equations

I Modified projection operator:

P+
↵ (k)u(k, t) = u+(k, t)+✓↵(k)u�(k, t)

where ✓↵(k) is 0 with probability ↵
and is 1 with probability 1� ↵.

I We consider triads of Class-I with
probability 1, Class-III with probability
1� ↵ and Class-II and Class-IV with
probability (1� ↵)2.

I ↵ = 0 ! Standard Navier-Stokes.
↵ = 1 ! Fully helical-decimated NS.

I Critical value of ↵ at which forward
cascade of energy stops?
alternatively, inverse cascade of energy
stops if forced at small scales.

Pseudo-spectral DNS on a triply periodic
cubic domain of size L = 2⇡ with resolutions
upto 5123 collocation points.



Evolution of Energy and helicity

• The peaks suggest the building up of the energy at forced large scales before being able 
to transfer to the small scales.  

• The cascade of energy starts only when helicity becomes active, i.e., modes with 
negative helicity becomes energetic. 

• With increase in α the peak grows, a signature of inverse cascade.

• Pseudo-spectral DNS on a triply periodic cubic domain of size L = 2π with resolutions up to 5123 collocation points. 

Inverse cascade
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Robustness of energy cascade 

• Spectra for all values of α showing 
k-5/3 suggest the forward cascade of    
to be strongly robust. 

• Unless we kill almost all the modes of 
one helicity-type energy always finds 
a way to reach small scales. 

• The energy flux also remains 
unaffected by the decimation until   
 α  is very close to 1. 

• Critical value of α  is ~ 1 !
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Energy in the positive helical modes

• The E+(k) does not change with decimation. 

Chen, Phys. Fluids 2003

Thank you!

E±(k) ⇠ C1✏
2/3
E k�5/3


1± C2

✓
✏H
✏E

◆
k�1

�
,

where ✏E is the mean energy dissipation rate
and ✏H is the mean helicity dissipation rate.

I As we increase ↵, the contribution of triads leading to inverse
energy cascade grows.

I Only when ↵ is very close to 1 inverse energy cascade takes
over the forward cascade.

I Critical value of ↵ may have Reynolds number dependence!

I Can both forward and inverse cascade co-exist?

I What about intermittency in the forward cascade regime at
changing ↵.
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Energy in the negative helical modes
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• E-(k) shows that as we have fewer negative helical modes, they 
become more energetic in the inertial range of scales. 



• The forward cascade of energy is though the triads of class-III 
where two large wavenumber modes have opposite sign of 
helicity. 

• The energy flux is carried by correlations of type  

• This involves two positive helical modes and one negative 
helical modes. 

• To maintain the constant flux, u-(k) must be rescaled by (1-α). 
since u-(k) exists with probability (1-α). 
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FIG. 2: (a) Log-log plot of E+(k) =
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2 vs k at

changing ↵; Inset: rescaled E�(k) with factor (1�↵). (c) Semi-log plot of flux of energy; Inset: flux of helicity, at changing ↵.

transferred forward with a rate " and h respectively, we
expect the usual Kolmogorov 1941 scaling (K41) for both
energy and helicity spectra [12, 17]:

E(k) ⇠ CE "2/3 k�5/3; H(k) ⇠ CH h "�1/3k�5/3,

which reflects in the scaling for each component as

E±(k) = "2/3k�5/3[1± C h ("k)�1], (8)

where C = CH/CE . In Fig. 1 we show the time evolution
of the total energy E↵, given in (6), starting from a null
configuration u

k

= 0 at t = 0 at varying the degree of
decimation from ↵ = 0, for the non-decimated NS case,
to ↵ ⇠ 1. We notice first that the time needed to de-
velop the initial release of energy becomes longer with in-
creasing ↵ and that the oscillations around the stationary
regime, for long times, are also larger when ↵ ⇠ 1. The
most striking phenomenon is that even for very high dec-
imation of negative helical modes, ↵ ⇠ 1, the system is
able to reach a stationary state transferring energy to the
small-scales. In other words, it is enough to have a very
few negative helical modes to develop a stable and sta-
tionary positive energy flux. This is quantified in Fig. 2
where we separately plot the spectra for the two helical
components for various ↵. The spectrum for the positive
helical modes (Fig. 2a) is almost unchanged and indepen-
dent of ↵ with a clearly developed k�5/3 slope. Whereas
the spectrum for the negative helical modes (Fig. 2b)
tends to react back and become more and more energetic
as ↵ increases; this can be explained by looking at the
behaviour of the energy flux. In Fig. 2c we show that
the energy flux is constant and independent of ↵ for all
↵ < 1, it reverts only for ↵ ⇠ 1. The surprising e�ciency
of the nonlinear transfer to find its way to small-scales
suggests that helicity plays a singular role in turbulence:
a tiny mixture of positive and negative helical modes, i.e.,
the existence of a few triads with mixed helicity signs, is
enough to sustain energy transfer across all scales. This
fact was suggested in [16] where the primary role of the
triads with two high-wavenumber modes of opposite he-
licity was realized as the main contribution to the vortex
stretching mechanisms. The constant energy flux must

be mainly carried by triadic correlations with only one
negative and two positive helical modes like

S(k|p, q) = h(k · u�
q

)(u+

k

· u+

p

)i+ h(k · u+

p

)(u+

k

· u�
q

)i. (9)

This is becasue such correlations are present with proba-
bility / (1� ↵) while other correlations, with two nega-
tive helical modes, are present with probability / (1�↵)2

in the dynamics. Thus one can predict that

u�
k

! u�
k

/(1� ↵), (10)

E�(k) =
X

|k|=k

(1� �
k

)|u�
k

|2 ! E�(k)/(1� ↵), (11)

because each u�
k

in (9) must be renormalized by a fac-
tor / 1/(1 � ↵) in order to keep the triadic correlation
constant. As a result, negative helical modes retain more
energy in order to maintain a constant energy flux. This
prediction is shown to be well realized in the inset of
Fig. 2b, where we show that rescaling E�(k) by a factor
(1�↵) leads to a good overlap except for ↵ ⇠ 1 where the
fluctuations due to the onset of the inverse energy trans-
fer becomes very large and the above argument possibly
breaks down. Negative helical modes play a singular role.
They act as ‘bridges’ for the energy transfer; they receive
energy from the large-scale positive helical modes and re-
lease it to the small-scale positive helical modes; fewer
they are more intense their amplitude must be to do it
e�ciently. Moreover, negative helical modes can trans-
fer energy to other negative helical modes only if they
form a triad; an event that has a probability / (1� ↵)2

to be present. When negative helical modes become too
rare or absent, i.e., for ↵ ⇠ 1, this bridging is not possi-
ble anymore and the energy flows up-scale [27]. Helicity
plays the role of a passive catalyst in the energy transfer.
This can also be seen in the behavior of its flux (see in-
set of Fig. 2c) which is independent of ↵ except at very
high dissipative wavenumbers where the mismatch be-
tween energy of the positive and negative helical modes
induce an increase of the helicity transfer [17, 18]. Prov-
ing the existence of a unique ↵c for the inversion of the
energy transfer could be extremely hard and it may not
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Thank you!
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where ✏E is the mean energy dissipation rate and ✏H is the mean helicity dissipation rate.
I As we increase ↵, the contribution of triads leading to inverse energy cascade grows.
I Only when ↵ is very close to 1 inverse energy cascade takes over the forward cascade.
I Critical value of ↵ may have Reynolds number dependence!
I Can both forward and inverse cascade co-exist?
I What about intermittency in the forward cascade regime at changing ↵.
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FIG. 2: (a) Log-log plot of E+(k) =
P
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|u+
k |

2 vs k at changing ↵. (b) Log-log plot of E�(k) =
P
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(1� �k)|u�
k |

2 vs k at

changing ↵; Inset: rescaled E�(k) with factor (1�↵). (c) Semi-log plot of flux of energy; Inset: flux of helicity, at changing ↵.

transferred forward with a rate " and h respectively, we
expect the usual Kolmogorov 1941 scaling (K41) for both
energy and helicity spectra [12, 17]:

E(k) ⇠ CE "2/3 k�5/3; H(k) ⇠ CH h "�1/3k�5/3,

which reflects in the scaling for each component as

E±(k) = "2/3k�5/3[1± C h ("k)�1], (8)

where C = CH/CE . In Fig. 1 we show the time evolution
of the total energy E↵, given in (6), starting from a null
configuration u

k

= 0 at t = 0 at varying the degree of
decimation from ↵ = 0, for the non-decimated NS case,
to ↵ ⇠ 1. We notice first that the time needed to de-
velop the initial release of energy becomes longer with in-
creasing ↵ and that the oscillations around the stationary
regime, for long times, are also larger when ↵ ⇠ 1. The
most striking phenomenon is that even for very high dec-
imation of negative helical modes, ↵ ⇠ 1, the system is
able to reach a stationary state transferring energy to the
small-scales. In other words, it is enough to have a very
few negative helical modes to develop a stable and sta-
tionary positive energy flux. This is quantified in Fig. 2
where we separately plot the spectra for the two helical
components for various ↵. The spectrum for the positive
helical modes (Fig. 2a) is almost unchanged and indepen-
dent of ↵ with a clearly developed k�5/3 slope. Whereas
the spectrum for the negative helical modes (Fig. 2b)
tends to react back and become more and more energetic
as ↵ increases; this can be explained by looking at the
behaviour of the energy flux. In Fig. 2c we show that
the energy flux is constant and independent of ↵ for all
↵ < 1, it reverts only for ↵ ⇠ 1. The surprising e�ciency
of the nonlinear transfer to find its way to small-scales
suggests that helicity plays a singular role in turbulence:
a tiny mixture of positive and negative helical modes, i.e.,
the existence of a few triads with mixed helicity signs, is
enough to sustain energy transfer across all scales. This
fact was suggested in [16] where the primary role of the
triads with two high-wavenumber modes of opposite he-
licity was realized as the main contribution to the vortex
stretching mechanisms. The constant energy flux must

be mainly carried by triadic correlations with only one
negative and two positive helical modes like

S(k|p, q) = h(k · u�
q

)(u+

k

· u+

p

)i+ h(k · u+

p

)(u+

k

· u�
q

)i. (9)

This is becasue such correlations are present with proba-
bility / (1� ↵) while other correlations, with two nega-
tive helical modes, are present with probability / (1�↵)2

in the dynamics. Thus one can predict that

u�
k

! u�
k

/(1� ↵), (10)

E�(k) =
X

|k|=k

(1� �
k

)|u�
k

|2 ! E�(k)/(1� ↵), (11)

because each u�
k

in (9) must be renormalized by a fac-
tor / 1/(1 � ↵) in order to keep the triadic correlation
constant. As a result, negative helical modes retain more
energy in order to maintain a constant energy flux. This
prediction is shown to be well realized in the inset of
Fig. 2b, where we show that rescaling E�(k) by a factor
(1�↵) leads to a good overlap except for ↵ ⇠ 1 where the
fluctuations due to the onset of the inverse energy trans-
fer becomes very large and the above argument possibly
breaks down. Negative helical modes play a singular role.
They act as ‘bridges’ for the energy transfer; they receive
energy from the large-scale positive helical modes and re-
lease it to the small-scale positive helical modes; fewer
they are more intense their amplitude must be to do it
e�ciently. Moreover, negative helical modes can trans-
fer energy to other negative helical modes only if they
form a triad; an event that has a probability / (1� ↵)2

to be present. When negative helical modes become too
rare or absent, i.e., for ↵ ⇠ 1, this bridging is not possi-
ble anymore and the energy flows up-scale [27]. Helicity
plays the role of a passive catalyst in the energy transfer.
This can also be seen in the behavior of its flux (see in-
set of Fig. 2c) which is independent of ↵ except at very
high dissipative wavenumbers where the mismatch be-
tween energy of the positive and negative helical modes
induce an increase of the helicity transfer [17, 18]. Prov-
ing the existence of a unique ↵c for the inversion of the
energy transfer could be extremely hard and it may not



Joint PDF of helicity and energy fluxes
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The helicity flux attains higher values whereas the energy flux
depletes with increasing ✏.

Flux in the dissipation scales
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FIG. 3: (color online) iso-vorticity surfaces for: (a) ↵ = 0, (b) ↵ = 0.5, (c) ↵ = 0.9. Last plot (d) is obtained applying the
projection with ↵ = 0.5 on the original NSE fields without any dynamical decimation. Color palette is proportional to the
intensity of the helicity.

be crucial. The observed value is so close to unity that it
might also be dependent on the realization of �

k

and/or
on the Reynolds numbers. This issue is left for more
detailed analysis in a future work.
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FIG. 4: Excess Kurtosis measured at the dissipative scale,
r
x

= ⌘ (a) and in the inertial range, r
x

= 20⌘ (b). (⇤):
decimation of negative helical modes only; (�): decimation of
either positive or negative helical modes with 50% probability.
(4): aposteriori decimation of negative helical modes from a
velocity field of standard non-decimated NSE.

The second important problem addressed concerns
with intermittency, the presence of strong non-Gaussian
fluctuations at small scales, usually interpreted as a build
up of instabilities in the vortex-stretching mechanisms.
Here we want to understand how intermittency changes
under the helical mode-reduction. A visual inspection of
the vorticity field, in Fig. 3, shows a strong depletion of
filament-like structures, starting from the standard 3D
NSE (Fig. 3a), as a function of the degree of decimation
of the negative helical modes (see Fig. 3b and Fig. 3c).
In Fig. 4 we show the evolution of the excess Kurtosis,

K(rx) =
h(�r

x

u↵
y )

4i
h(�r

x

u↵
y )

2i2 � 3,

of the transverse velocity increments �r
x

u↵
y = u↵

y (rx) �

u↵
y (0) for two values of rx and at changing ↵, where the

selection of the x � y components is arbitrary because
of isotropy. We found that intermittency is very sensi-
tive to ↵-decimation; it is enough to remove, from the
dynamics, a small fraction of negative helical modes to
strongly deplete the non-Gaussian character as measured
by the fact that the excess Kurtosis is approaching 0.
We show in Fig. 4 also the results of another numerical
experiment, where we repeated the measurements in a
set of simulations (RUN 9-13) with random decimation;
this time either a positive or a negative helical mode is
decimated with a global probability ↵. The reduction
in the intensity of intermittency is comparable with the
previous case; suggesting that it is mainly due to the de-
crease in the total number of dynamically active modes
than due to their helical nature. This result is another
manifestation of the passive role of helicity in the energy
transfer mechanism. To further investigate the role of dy-
namic helical mode-reduction, we performed a projection
aposteriori, applying the operator Dalpha to the velocity
field obtained from a fully resolved non-decimated NSE
(↵ = 0). In this case, intermittency remains almost un-
changed, independently of ↵, suggesting that only the
dynamical mode-reduction is crucial to deplete the vor-
tex stretching mechanism. For the original NSE positive
and negative helical modes develop the same content of
intermittency (see Fig. 3d for a visual confirmation of this
fact). In conclusion, we have highlighted and quantified
the singular role played by the helical Fourier modes in
the energy flux reversal, showing that a forward transfer
is always preferred as soon as a very small percentage of
modes with opposite helicity are present. In contrast, the
leading intermittent fluctuations are very fragile to any
mode-reduction (helical or not helical) suggesting that
the origin of real-space intermittency must rely on highly
non-trivial and non-local correlations in Fourier space.
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Summary

• As we increase decimation of the modes with negative helicity (α), the 
contribution of triads leading to inverse energy cascade grows. 

• The forward cascade of energy is very robust in 3D turbulence. It requires only 
a few negative modes to act as catalyst to transfer energy forward. 

• Only when α is very close to 1, i.e., we decimate almost all modes of one 
helical sign, inverse energy cascade takes over the forward cascade. 

• We observe a strong tendency to recover parity invariance even in the 
presence of an explicit parity-invariance symmetry breaking (α >0).

• What about abrupt symmetry breaking at some kc?  

• can we stop the cascade by killing all negatives modes from k>kc?  

• or can we start it at our wish (killing all modes up to kc)? 

• What about intermittency in the forward cascade regime at changing α?
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Structure functions

I Order-p equal-time, longitudinal velocity structure functions
Sp(r) ⌘ h|�uk(x, r)|pi
where �uk(x, r) ⌘ [u(x+ r, t)� u(x, t)] · r

r

I In the inertial range we see the universal scaling Sp(r) ⇠ r ⇣p
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I Deviations from Kolmogorov scaling ⇣K41

p = p/3 shows
present intermittency.

I Extended Self-Similarity: ⇣p/⇣3.



Measure of intermittency: Flatness F
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I It reduces further and seems saturated with increase in ✏



Thank you!
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