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Clouds " Tornado

e All environmental flows are turbulent,

e Atmospheric boundary layer, Ocean
Currents, interstellar clouds, flow of gas
and oll In pipe lines, combustion in engines,

Windmills . Jupiter
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‘& What is it?
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e A turbulent flow can be interpreted as a
population of many eddies (vortices), of
different sizes and strengths, embedded in one
another and forever changing, giving a random
appearance to the flow.

e Highly irregular and intermittent.

e Multiple length and time scales.

e Diffusive: enhancement of momentum, heat,
and mass transfer,

e Essentially dissipative: drag on moving body,
e.g. airplanes, friction in pipe flows.

e Rotational: large vorticity fluctuations.
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 U: mean velocity
e v :Kinematic viscosity
« | : characteristic length scale/

d iameter Of the pipe. Fig. 9.1. Sketch of Rcynolds’snc:)::rcxperimcnt. taken from his 1883

Re =

Transition to turbulence from
laminar flow at high
Re ~ 2000.

e Different fluid flows with same :
Re are similar in nature. :W N

e Also Re describes different

. . W Turbulent
regimes in the same flow. &
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& Reynolds Number

7ok e Large scale structures are

_J P "“_Ff?i mainly independent of
ES 5 ,;__ 5y " f 7 Reynolds number.

oy e "H. i =
-_] KA LA ‘ﬁ-&ft" e | arge Reynolds number
o Lower Re T8 T produces smaller scale

Large eddy structures.
Small eddy A& * Reynolds number is a measure
;{a*fﬁi’hﬁgﬁ; of scale separations in the flow.
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#° Richardson cascade Picture
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* Richardson’s definition of turbulence eddies < L=forcing scale
— Turbulence consists of different eddies
— An eddy is a localized flow structure
— Large eddies consists small eddies
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1 = viscous scale

* Energy is fed into the large eddies.

e | arge eddies break to smaller and smaller eddies and energy gets
dissipated at viscous scales.



# Navier-Stoke’s equation
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e Navier-Stokes equation for incompressible flows,

ou _ Vp 5
> F(u-V)u = ; FvVeu 4 f,

V- -u=0.

e The nonlinear term is responsible for a cascade of energy in a turbulent flow.
e Since the equations are nonlinear, generic solutions are not superposition of basic solutions.

e Navier-Stokes equations display a strong sensitivity to initial conditions. Hence, exact solutions
are less interesting.

e Need for a statistical approach.
e Complex to solve analytically. We use computers!

e | arge grid Direct Numerical Simulations to resolve smaller length scales.



& Universality?
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Turbulence is irregular or chaotic in space in time.
But is there any universal aspect?

* In a statistically stationary, homogeneous and 1sotropic flow, all
eddies of size [ behave similarly.

* They have a characteristic velocity, say u [LT-1].

e They transfer as much energy received from larger eddies to smaller
eddies; rate of energy transfer is the same for all scales.

* Energy supplied at largest scales 1s equal to the energy dissipated at
small scales; the rate of energy dissipation per unit mass is € [L?T-3].



i ~Kolmogorov theory (1941)
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e For very high Re, the statistical properties of eddies of sizes in the inertial range of
scales are

» independent of the forced and dissipative scales, and are locally homogeneous
and 1sotropic.

- universally and uniquely determined by the length scale [, viscosity v, and the
rate of energy dissipation €.

e Characteristic velocity of an eddy of size [ scales as u; ~ (le I

* Energy spectrum in the inertial range E(k) ~ ¢2/3k~53/3,

V3

1/4
for L' <<k<<n ™t n= (;)

e Self-Similarity hypothesis: Structure functions of p-th order scales as

S, (1) = (6ul) ~ (el)P/3,
ou; = [u(r +1) —u(r)] - 7.
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e | ike energy, helicity is also an invariant of the inviscid and unforced
flow (discovered only in 1960's).

e Conservation of helicity is linked to the parity invariance of the flow.

e At avery high Re, there is a growth of helicity at the small scales,
but total helicity remains finite, because of the symmetry.

e Energy gets distributed among scales by the nonlinear term In

Navier-Stoke's equation and assuming a constant energy flux we

observe the scaling behaviour du; = [u(r +1) — u(r)] - % ~ gl/3[11/3

e By similar dimensionality argument and assuming a constant helicity
flux h [LT], we obtain

du; = [u(r +1) —u(r)] - } ~ h1/31%/3

e But such a scaling is not observed. Why"?



‘& Role of helicity
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* [here is no purely helicity dominated turbulence since both
energy and helicity cascade to the small scales.

e For the joint cascade of energy and helicity we expect

oup = [u(r +1) —u(r)] - ; ~ePRI1°

e But then, we can not determine the exponents, uniquely,
from dimensionality argument.

e Presence of helicity changes the geometrical structure in a
subtle way, which could not be captured by simple
dimensional analysis.
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‘&  Role of helicity

3 .
H ——/ u-wd'r jsapseudoscalar.
V

Tells us if the instantaneous streamline is close to
right-handed or left-handed screw.

Helicity measures the knottedness of the vortex lines. Vaekne

It would help us in understanding the origin of
vorticity tube and sheets.

Change in the helicity may be associated to a certain
event called vorticity reconnection.

In presence of the viscosity, the vortex lines can
touch and re-connect and produce helicity.
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erc - 3D turbulence
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I Forward energy cascade from large scales to small scales in
i our DNS of 3D Navier-Stokes equations.
. Shows a Kolmogorov k—°/3 scaling in the inertial range.
E(k)
0.01
0.001
0.0001
le-05
1 10 100

k
» The invariants of 3D Navier-Stokes equations:
Energy E = [ d°r - i and Helicity H = [ d°r - &

» Helicity could be positive or negative.

» Both cascades forward, from large scales to small scales.
(Chen, Phys. Fluids 2003)
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2D turbulence

» For 2D Navier-Stokes equations two conserved quantities:
Energy E = [ d°r ii- 4 and Enstrophy Q = [ d?r & - &

» Forward cascade of energy is blocked, since enstrophy is also
positive and definite. (Boffetta Ann. Rev. Fluid Mech 2012)

log(E(k))

anargy
X

~ enstrophy

flux

/L T
log(k)

Ray et al, Phys. Rev. Lett. 107, 184503 (2011)

"

I1 [ -8
10 10
I::-gmk




eeeeeeeeeeeeeeeeeeeeeee

e [he direction of cascade Is
determined by positive-

definite inviscid invariants, 9P ﬁp

e In 2D: energy and enstrophy I\ @

are conserved; both positive-
definite. SENANSLCS

OO QAL OYM 2D
e |n 3D: energy and helicity are

conserved; helicity is not 3D: Kinetic energy is transferred
positive-definite. from large to small eddies

2D: Kinetic energy is transferred
from small to large eddies
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#c 2D or3D 7

Many flows are quasi-2D, like
thick films, geophysical flows
Ike ocean and atmosphere.

Physical phenomenas change
the dimensionality of the
system, like rotation.

There have been evidence of
iInverse energy cascade in
such systems.

, , A4 paper (80gr/m?) Pacific Ocean
Also conducting fluids transfer  |L=210mm N-S = 15000 km
L, =297 mm E-W = 19800 km

eﬂel’gy tO the |al’ge ScaleS. h =0.1 mm average depth = 4.28 km




& Transition from 3D to 2D

106

e Dimensional transition occurs in turbulent
fluid layers from 3D direct energy cascade
to 2D inverse energy cascade as we 10-7
decrease the thickness of the layer.

e Depending upon the aspect ratio thereisa «
coexistence of inverse and direct cascade. 108

e Enstrophy (w.w) becomes quasi-invariant

E

M

as only conserved by large scale dynamics 5 k.
where the flow is two dimensional. b 100 1,000
Upscale energ’)'l 'a:;ﬂs:f\er in thick turbulent
® |nverse cascade develops because of fluid layers
existence of another positive definite H. Xia', D. Byrne', G. Falkovich? and M. Shats'*
conserved quantity. Nat. Phys. 7, 321 (2011)

- |If we make helicity positive definite, do we see inverse
energy transfer in 3D?



#  |nverse energy cascade in 3D
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* Making the helicity sign-definite, we observe inverse
cascade of energy.

10° 10 10°

Inverse energy cascade in three-dimensional isotropic turbulence,
Biferale, L., Musacchio, S., Toschi, F., Phys. Rev. Lett. 108, 164501 (2012)



& Direct Numerical Simulations
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Pseudospectral method for DNS

We solve the Navier-Stokes equations on a triply periodic box of size 2.
Initial velocity field is in Fourier space on a grid of size N3.

The nonlocal terms like ¥V x i, V2 are evaluated in in Fourier space.
Terms like U X @ are calculated in real space.

Switch between real and Fourier space by using the FFT algorithm FFTW.

For the first step of evolution a Runge-Kutta scheme is used.

vV v v v v v Y

Then an Adams-Bashforth second-order scheme is used.

For an equation of the form
dq

- = —oq +f(1) (1)

A second-order Adams-Bashforth scheme

o e—2a5t

q(t+ ot) = e_2o‘5tq(t—5t)—|—1 o X [3f(t) — f(t —dt)]. (2)




& Navier-Stokes equations
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e 3D Navier-Stokes equations in Fourier-space

i (k) + (% ’“k? > N;(k) = —vk?u;(k),

» In Fourier space, u(k, t) has two degrees of freedom since
k-u(k,t) =0.

» We chose projection on orthonormal helical waves with
definite sign of helicty.



&  Helical decomposition
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» Following Waleffe Phys. Fluids (1992)

u(k, t) = a*(k, t)h* (k) + a~ (k, t)h~ (k)

where h¥(k) are the complex eigenvectors of
the curl operator ik x h™(k) = £kh~ (k).

> h: - hy = 204 h: = h_g,
where s and t could be +1 or —1

> Choose h™ (k) = ji(k) x k £ ifi,
where /i 1s an arbitrary unit vector orthogonal to k
> reality of the velocity field requires fi(k) = —f(—k)

» Such requirement is satisfied, e.g., by the choice

/\

[1(k) =z x k/||z x k||, with z an arbitrary vector.
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» Decimated Navier-Stokes equations in Fourier space:
Orut (k, t) = PT (k)N = (k, t) + vk?u®(k, t) + f¥(k, t)

where v is kinematic viscosity and f is external forcing.

» The nonlinear term containing all triadic interactions

N,:(k, t) = FT(uF - VuT= — Vp)

» Projection operator:

h*(k) ® h*(k)*
h*(k)* - h™ (k)

u=(k, t) = PE(k)u(k, t)
u(k,t) =ut(k,t) +u (k,t)

Pi(k) =

» Eneregy E(t) = >, [ut(k, t)]* + |u=(k, t)|*.
» Helicity H(t) = >, k(Ju™(k, t)|* — |u(k, t)]?).



uropean Research Cou

R-type: When large wavenumbers have same sign, middle one is unstable and could

~ Classes of triadic interactions in NS equations

transfer energy to both small and large wavenumbers;
e predominantly to the smallest wavenumber if it has the same sign [Class-I (+, +, +)].
e mixed transfer if smallest wavenumber has the opposite sign [Class-II (+, -, -)].

F-type: When large wavenumbers
have opposite sign, smallest one is
unstable and could transfer energy
only to large wavenumbers, for both
Class-lll (+, -, +) and Class-IV (-, -, +).

e Energy and helicity are conserved for
each individual triad.

e Triads with only u*, i.e. Class-I, lead to
reversal of energy cascade.

* Energy spectra in the inverse
. 5/3
cascade regime shows a k™ slope.

Ny=(q) = FT [u™(k)- Vu™(p)] ;a=k +p k< p<g

p unstable (R-type)

u*(k) u (k)

k unstable (F-type)

%

\'}

10 ¢
Fully helical-decimated NS

oh

Backward transfer

0.01 Eneregy Injection

E(k)
Forward transfer

" ‘Standard NS — ]

0.001 —_— —
1 10 K 100

1000




e Partial Helical-decimation
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What happens in between??
when we give different weights to different class of triads...

» Modified projection operator:

probablllty 1 probability (1-0)

P (ku(k, £) = ut (k, £) + 0a (kK)u~ (k, 1)
where 0, (k) is 0 with probability o
and is 1 with probability 1 — a.

» We consider triads of Class-l with

orobability 1, Class-11l with probability u’(k)
1 — « and Class-IlI and Class-IV with
probability (1 — o). u'( u*(q)
» o = 0 — Standard Navier-Stokes. 4 (p) u'(p)
a = 1 — Fully helical-decimated NS. u*(k) a (k)
probability (1-<:|)2 probability (1 -0)2

» Critical value of « at which forward
cascade of energy stops? Ny:(q) = FT [ut(k)- Vut(p)];a=k+p;k<p<gq
alternatively, inverse cascade of energy
stops if forced at small scales.



= Evolution of Energy and helicity

40 T T I )
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* The peaks suggest the building up of the energy at forced large scales before being able
to transfer to the small scales.

* The cascade of energy starts only when helicity becomes active, i.e., modes with
negative helicity becomes energetic.

e With increase in a the peak grows, a signature of inverse cascade.



#°  Robustness of energy cascade

European Research Council E(k)

10 .

e Spectra for all values of a showing

k" suggest the forward cascade of |
to be strongly robust. 0.01 }

e Unless we kill almost all the modes of 0.001 }

one helicity-type energy always finds | | =099 No forward cascade
a way to reach small scales. 0.0001 Y Am—— —— b
1 10 100
/ )
 The energy flux also remains 6 — —
. . . oa=0v ———
unaffected by the decimation until a=01
. L a=0s5 —8— |
a is very close to 1. : 6= 05 e
a=07 —e—
5 L =09 e
.y s . =0.99
Critical value of a is~ 1! o = 0.999

1 10 100



#°  Energy in the positive helical modes
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Chen, Phys. Fluids 2003

EX(k) ~ Cre*k5/3 [1 + G (6—”) k1] ,
€E

where e is the mean energy dissipation rate
and ey is the mean helicity dissipation rate.

10" ————

E*(k)

100

* The E"(k) does not change with decimation.



#  Energy in the negative helical modes

109 ¢
= T
10" F .
10_2 - ]
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oa=0.0
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4 | 4
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o=0.7
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10—5 ,
1 10 100

k

* E (k) shows that as we have fewer negative helical modes, they
become more energetic in the inertial range of scales.
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* The forward cascade of energy is though the triads of class-III
where two large wavenumber modes have opposite sign of
helicity.

* The energy flux is carried by correlations of type

S(klp,q) = (k- ug ) (g, -ug)) + (k- upy) (uyg - ug)).

e [his involves two positive helical modes and one negative
helical modes.

e To maintain the constant flux, u (k) must be rescaled by (1-0).
since u(k) exists with probability (1-a).



“#° Reaction of negative helical modes
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U,; %U;/(l—a),

E-(k)= ) (1—w)lugl* = E"(k)/(1—a),

k| =k

(I-E (k)

0.1 4
0.01 -
0.001 ¢ oa=00 — E
i o=0.1 ----x---
a=03 ——
a=05 —=—
0= 0.7 -oomee
0.0001 ' ' — ' ) —
1 10 100
k

* Invariance of parity is restored through scaling of E (k) by the factor (1-0).



& Flux in the dissipation scales
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Joint PDF of helicity and energy fluxes

Joint PDF of Il and Iy (¢ = 0.00) Joint PDF of Il and Iy (¢ = 0.10)
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The helicity flux attains higher values whereas the energy flux
depletes with increasing e.
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FIG. 3: (color online) iso-vorticity surfaces for: (a) o = 0, (b) @ = 0.5, (¢c) @ = 0.9. Last plot (d) is obtained applying the
projection with a = 0.5 on the original NSE fields without any dynamical decimation. Color palette is proportional to the
intensity of the helicity.



¢ Summary
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* As we increase decimation of the modes with negative helicity (a), the
contribution of triads leading to inverse energy cascade grows.

* The forward cascade of energy is very robust in 3D turbulence. It requires only
a few negative modes to act as catalyst to transfer energy forward.

 Only when ais very close to 1, i.e., we decimate almost all modes of one
helical sign, inverse energy cascade takes over the forward cascade.

* We observe a strong tendency to recover parity invariance even in the
presence of an explicit parity-invariance symmetry breaking (a >0).

o What about abrupt symmetry breaking at some kC?
can we stop the cascade by killing all negatives modes from k>kc?
or can we start it at our wish (killing all modes up to kc)?

« What about intermittency in the forward cascade regime at changing a”
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local energy dissipation rate

PDF of dissipation

1 | | | | |
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le_O6 =
16—07 =
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X

Comparison of PDFs of local energy dissipation rates show
reduction of longer tails with increase in fraction of decimation e.
Less of extreme dissipation events show decrease in intermittency
with increaseing ¢
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Structure functions

» Order-p equal-time, longitudinal velocity structure functions

Sp(r) = {ouy(x, r)[P)
where du(x,r) = [u(x+r,t) —u(x, t)] -

> In the inertial range we see the universal scaling S,(r) ~ r

2

1.8f
1.6}
1.4}

1.2F
s 1}
0.8f
0.6f

0.4f

02} (b)

0 1 2 3 4 5 6

» Deviations from Kolmogorov scaling Qf“ = p/3 shows
present intermittency.

» Extended Self-Similarity: (,/(3.



Measure of intermittency: Flatness F4(r) = S4(r)/[S>(r)]?

Flatness

mommnmomnmoMmom
[ 1 1 O |
NWOOOOO O
OO ~JWNWme=O.

S, (1)/S,(r)*

» Measure of flathess shows the small scale intermittency
reduces significantly when 10% of u™ modes are killed.

» |t reduces further and seems saturated with increase in €
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* On the role of helicity for large-and small-scales turbulent
fluctuations, G Sahoo, F Bonaccorso, L Biferale - arXiv
poreprint arXiv:1506.04906, 2015.

* |nverse energy cascade In three-dimensional Isotropic
turbulence, L Biferale, S Musacchio, F Toschi, Phys. Rev.

Lett. 108, 164501 (2012)



