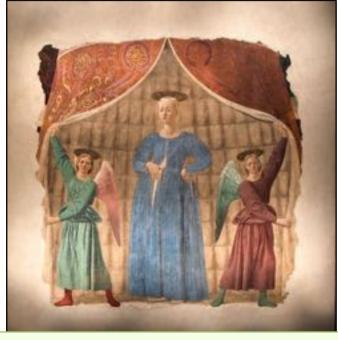
## Turbulent energy cascades in hydrodynamics and magnetohydrodynamics

Luca Biferale, Dept. Physics, INFN & CAST University of Roma 'Tor Vergata' biferale@roma2.infn.it









Piero della Francesca "Playing with Mirror Symmetry" ~ 1450 C.E. Monterchi IT







Credits [in order of appearance]: **S. Musacchio** (CNRS-France); **F. Toschi** (TuE, The Netherlands); **E. Titi** (Weizmann Institute of Science, Israel), **F. Bonaccorso, M. Linkmann, M. Buzzicotti, G. Sahoo** (U. Tor Vergata, Italy), **A. Alexakis (**ENS, Paris, France)

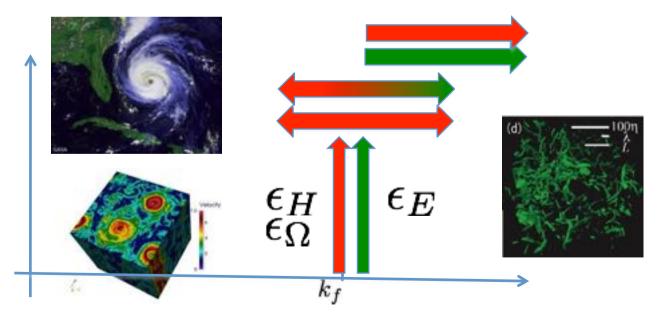
## MOTIVATIONS:

A TALE ABOUT TRANSFER PROPERTIES OF INVISCID CONSERVED QUANTITIES, KINETIC ENERGY, HELICITY ENSTROPHY, MAGNETIC HELICITY ETC...

Q1: HOW TO PREDICT THE DIRECTION OF THE TRANSFER (FORWARD/BACKWARD) AND ITS ROBUSTNESS UNDER EXTERNAL PERTURBATION (FORCING/BOUNDARY CONDITIONS)?

Q2: HOW MUCH THE FLUCTUATIONS AROUND THE MEAN TRANSFER ARE INTENSE AND SELF-SIMILAR (INTERMITTENCY AND ANOMALOUS SCALING) ?

AS A MATTER OF FACT, FOR 3D NAVIER STOKES EQUATIONS, WE DO NOT KNOW HOW TO PREDICT NEITHER THE SIGN OF THE MEAN ENERGY TRANSFER NOR THE INTENSITY OF THE FLUCTUATIONS AROUND IT.



## EXPLORING THE ROLE OF MIRROR SIMMETRY

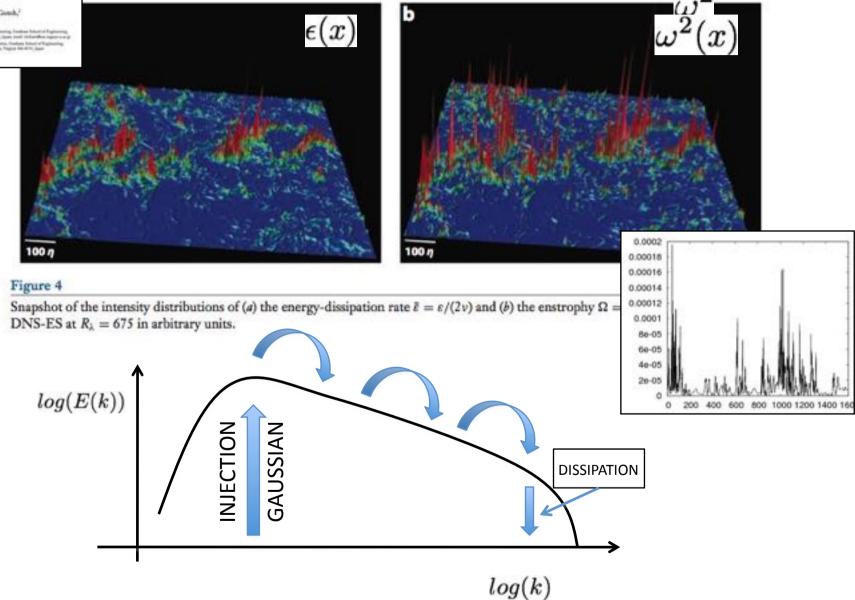
- ROLE OF KINETIC HELICITY IN THE REVERSAL OF THE MEAN ENERGY FLUX IN 3D NAVIER-STOKES (FORWARD/BACKWARD) AND IN THE FORMATION OF REAL-SPACE INTERMITTENCY
- IMPLICATION FOR THE SMALL-SCALES REGULARITY OF THE NAVIER-STOKES SOLUTIONS
- EMPIRICAL OBSERVATION ON ROTATING TURBULENCE
- IMPLICATION FOR THE STATISTICS OF THE REYNOLDS STRESS AND FOR THE SUB-GRID ENERGY TRANSFER IN TURBULENCE MODELING
- ROLE OF MAGENTIC HELICITY IN THE FORMATION OF LARGE AND SMALL SCALES DYNAMO IN MAGNETOHYDRODYNAMICS

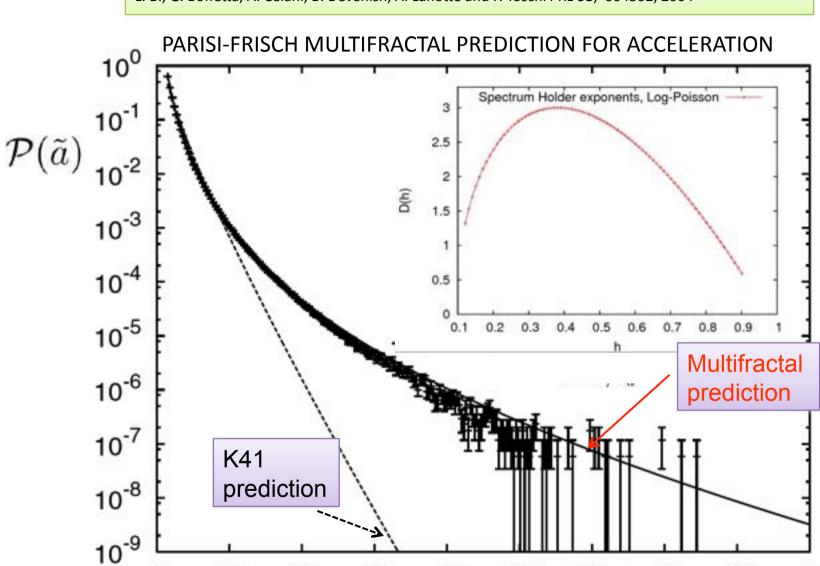
#### Study of High–Reynolds Number Isotropic Turbulence by Direct Numerical Simulation

#### Takashi Ishihara,<sup>1</sup> Toshiyuki Goroh,<sup>2</sup> and Yukin Kanola<sup>2</sup>

"Department of Companying Lances and Departments, London March of Engineering Engine Conversion Collarse Inc., Topper 404–4017, Space, South Collarse Barrier, and "Department of Engineering Constants, Conference Reference of Engineering

### 3D HOMOGENEOUS AND ISOTROPIC TURBULENCE FLUCTUATIONS: SMALL-SCALES INTERMITTENCY

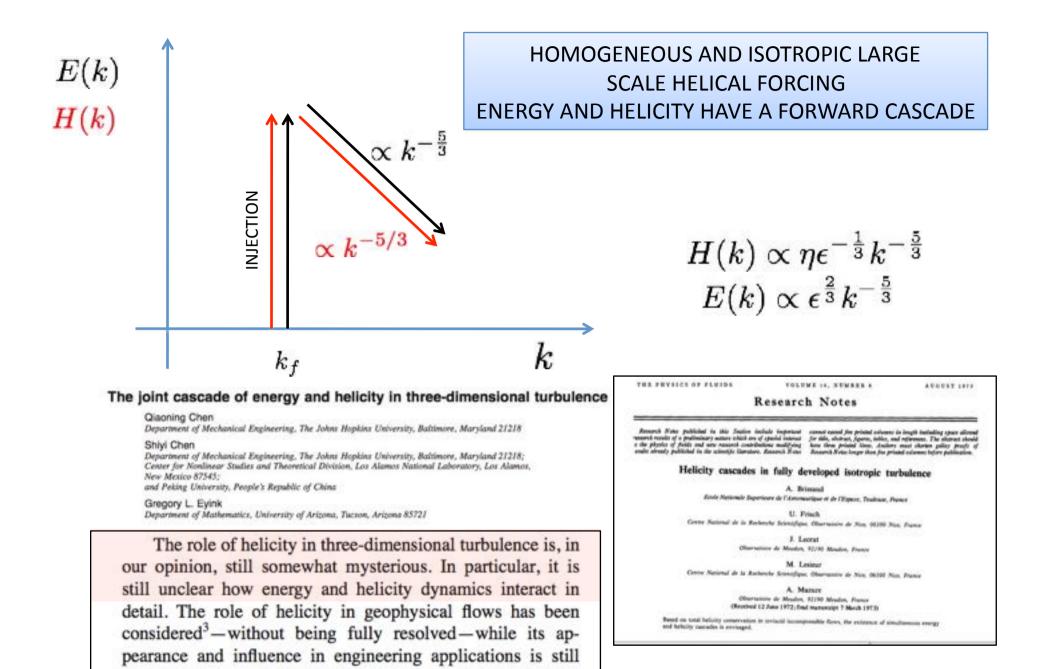






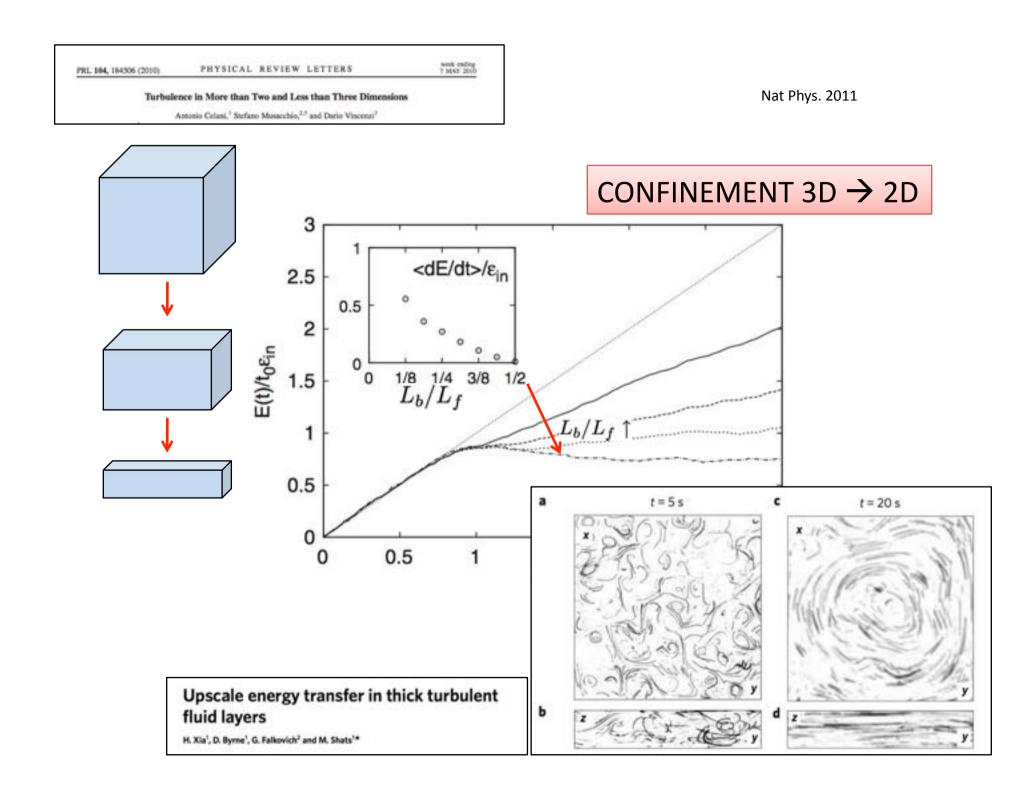
| $\mathcal{D}(x) = \int_{-\infty}^{\infty}$ | $dha^{\frac{h-5+D(h)}{3}}$ | ) 7-2h-2D(h | $D_{T}D(h)+h-3 -1$          |     | $\left(a^{\frac{2(1+h)}{3}}\nu^{\frac{2(1-2h)}{3}}L_0^{2h}\right)$ |
|--------------------------------------------|----------------------------|-------------|-----------------------------|-----|--------------------------------------------------------------------|
| $P(a) \sim \int_{h \in I} ah d$            | dna 3                      | $\nu$ 3     | $L_0 \sim \sigma_v \propto$ | exp | $-\frac{2\sigma_v^2}{2\sigma_v^2}$                                 |

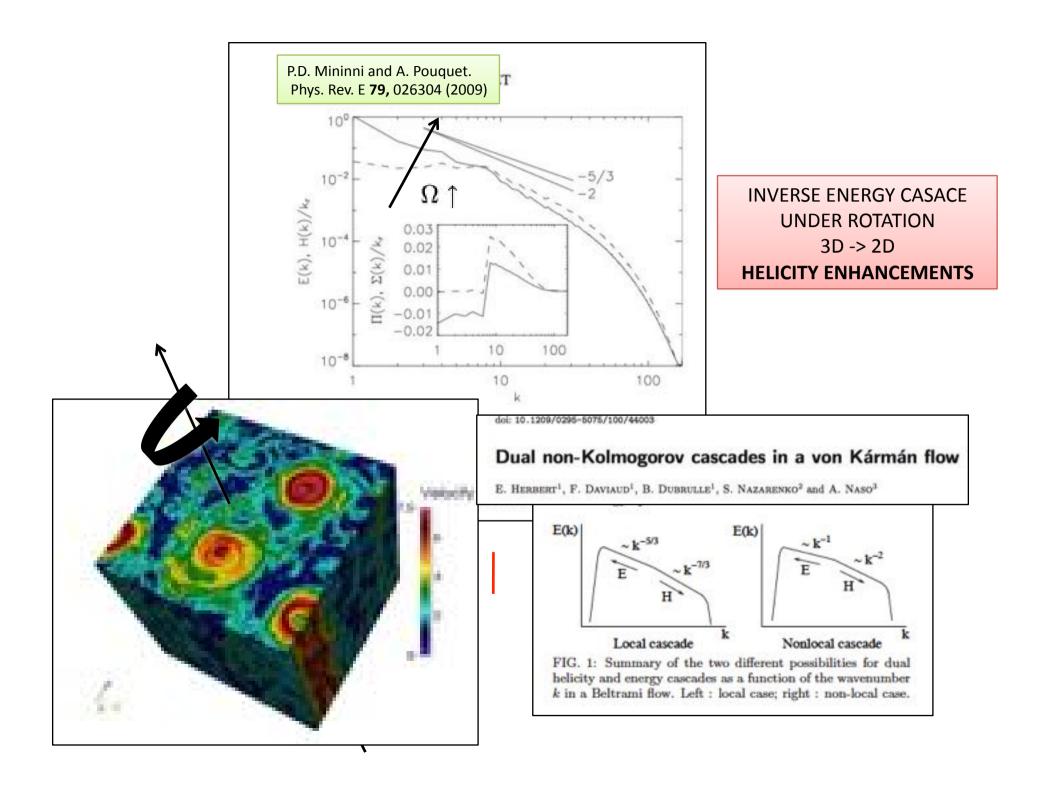
 $\tilde{a}=a/\sigma_a$ 



largely unexplored. We hope that this work will be a helpful step in the direction of better understanding the subtle mani-

festations of helicity in three-dimensional turbulence.



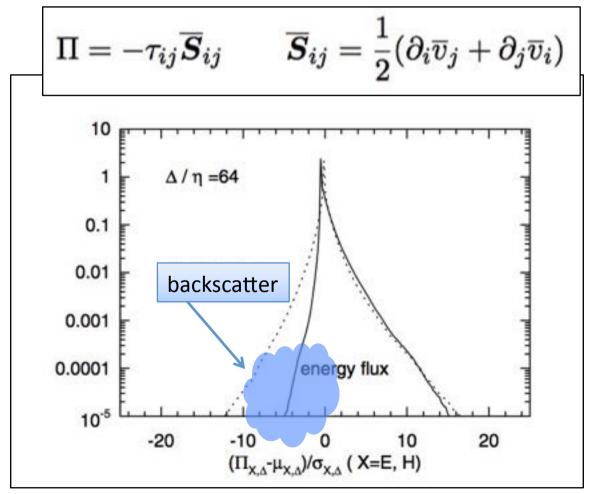


$$\partial_t \overline{oldsymbol{v}} + (\overline{oldsymbol{v}} \cdot 
abla) \overline{oldsymbol{v}} = - 
abla \overline{oldsymbol{p}} - 
abla \cdot au(oldsymbol{v},oldsymbol{v}) + 
u \Delta \overline{oldsymbol{v}}$$

SUB GRID /REYNOLDS STRESS:  $au_{ij}(m{v},m{v}) = \overline{v_iv_j} - \overline{v}_i\overline{v}_j$ 

$$\partial_t rac{1}{2} \overline{v}_i \overline{v}_i + \partial_j A_j = -\Pi$$

SUB GRID ENERGY TRANSFER:



# Helicity and singular structures in fluid dynamics

#### H. Keith Moffatt<sup>1</sup>

Department of Applied Mathematics and Theoretical Physics, University of Ca

This contribution is part of the special series of Inaugural Articles by members

Contributed by H. Keith Moffatt, January 14, 2014 (sent for review December

Helicity is, like energy, a quadratic invariant of the Euler equations of ideal fluid flow, although, unlike energy, it is not sign definite. In physical terms, it represents the degree of linkage of the vortex lines of a flow, conserved when conditions are such that these vortex lines are frozen in the fluid. Some basic properties of helicity are reviewed, with particular reference to (*i*) its crucial role in the dynamo excitation of magnetic fields in cosmic systems; (*ii*) its bearing on the existence of Euler flows of arbitrarily complex streamline topology; (*iii*) the constraining role of the analogous magnetic helicity in the determination of stable knotted minimum-energy magnetostatic structures; and (*iv*) its role in depleting nonlinearity in the Navier-Stokes equations, with implications for the coherent structures and energy cascade of turbulence. In a final section, some singular phenomena in low Revnolds number flows are briefly described.

Iocal beltrami flows

Color for springs

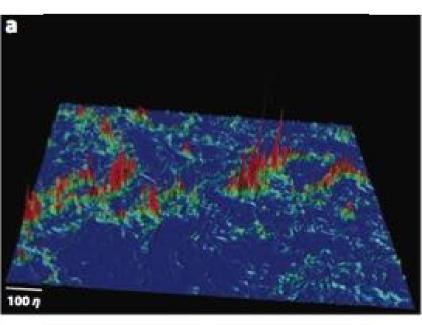
### Helicity conservation by flow across scales in reconnecting vortex links and knots

Martin W. Scheeler<sup>a,1,2</sup>, Dustin Kleckner<sup>a,1,2</sup>, Davide Proment<sup>b</sup>, Gordon L. Kindlmann<sup>c</sup>, and William T. M.

\*James Franck Institute, Department of Physics, and \*Computation Institute, Department of Computer Science, The University of Chicag and \*School of Mathematics, University of East Anglia, Norwich Research Park, Norwich NR4 713, United Kingdom

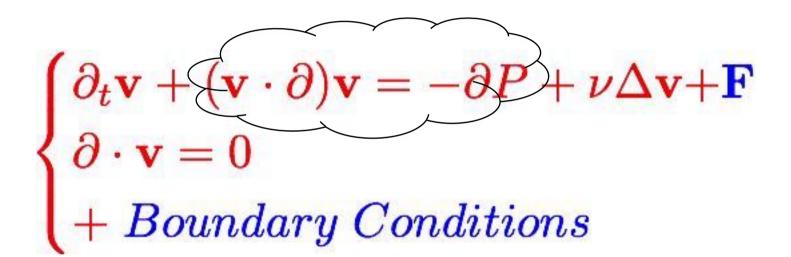
Edited\* by Leo P. Kadanoff, The University of Chicago, Chicago, IL, and approved August 28, 2014 (received for review April 19, 2014)

The conjecture that helicity (or knottedness) is a fundamental conserved quantity has a rich history in fluid mechanics, but the nature of this conservation in the presence of dissipation has proven difficult to resolve. Making use of recent advances, we create vortex knots and links in viscous fluids and simulated superfluids and track their geometry through topology-changing reconnections. We find that the reassociation of vortex lines through a reconnection enables the transfer of helicity from links and knots to helical coils. This process is remarkably efficient, owing to the antiparallel orientation spontaneously adopted by the reconnecting vortices. Using a new method for quantifying the spatial helicity spectrum, we find that the reconnection process can be viewed as transferring helicity between scales, rather than dissipating it. We also infer the presence of geometric deformations that convert helical coils into even smaller scale twist, where it may ultimately be dissipated. Our results suggest that helicity conservation plays an important role in fluids and related fields, even in the presence of dissipation.



5

Q: CAN WE DISSECT 3D NS EQUATIONS TO EXTRACT INTERESTING INFORMATION FROM ITS ELEMENTARY CONSTITUENTS?



Commun. Math. Phys. 115, 435-456 (1988)

## The Beltrami Spectrum for Incompressible Fluid Flows

Peter Constantin<sup>1,\*</sup> and Andrew Majda<sup>2,\*\*</sup>

#### The nature of triad interactions in homogeneous turbulence

Fabian Walette Center for Turbalence Research, Stanford University-NASA Ames, Building 500, Stanford, California 94305-3030

(Received 24 July 1991; accepted 22 October 1991)

$$u(k) = u^+(k)h^+(k) + u^-(k)h^-(k)$$

$$egin{aligned} m{h}^{\pm} &= \hat{m{
u}} imes \hat{m{k}} \pm i \hat{m{
u}} \ \hat{m{
u}} &= m{z} imes m{k} / ||m{z} imes m{k}||. \end{aligned}$$

$$i \mathbf{k} imes \mathbf{h}^{\pm} = \pm k \mathbf{h}^{\pm}$$

$$\begin{cases} E = \sum_{k} |u^{+}(k)|^{2} + |u^{-}(k)|^{2}; \\ H = \sum_{k} k(|u^{+}(k)|^{2} - |u^{-}(k)|^{2}). \end{cases}$$

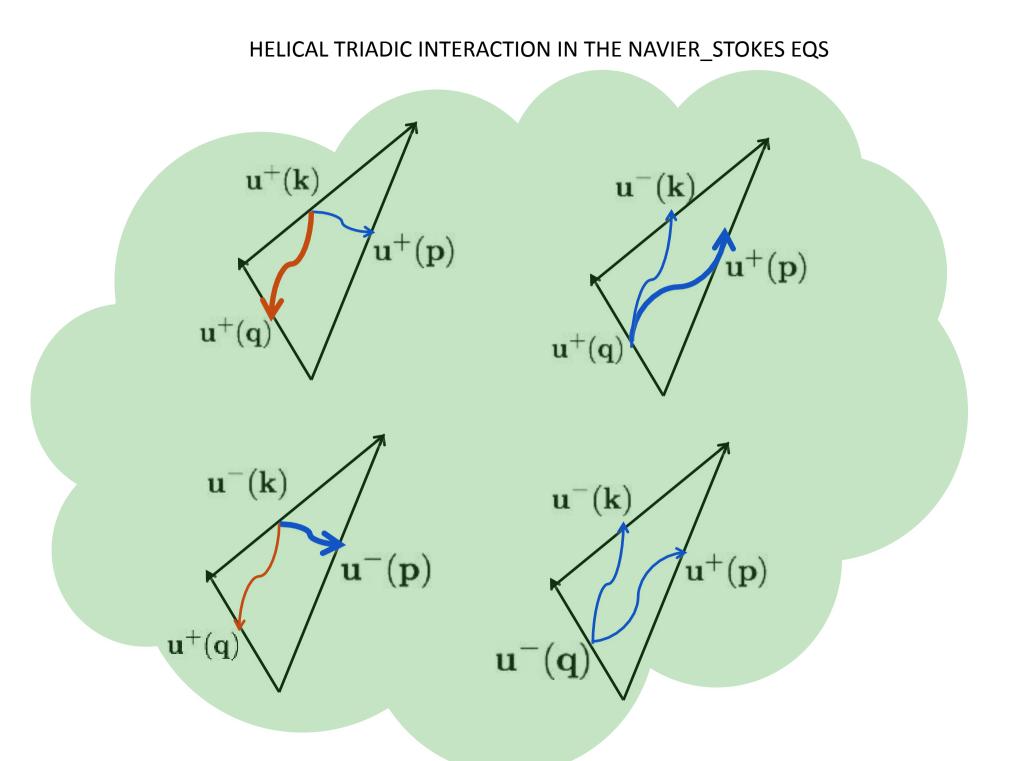
$$u^{s_k}(\mathbf{k},t) \quad (s_k = \pm 1)$$

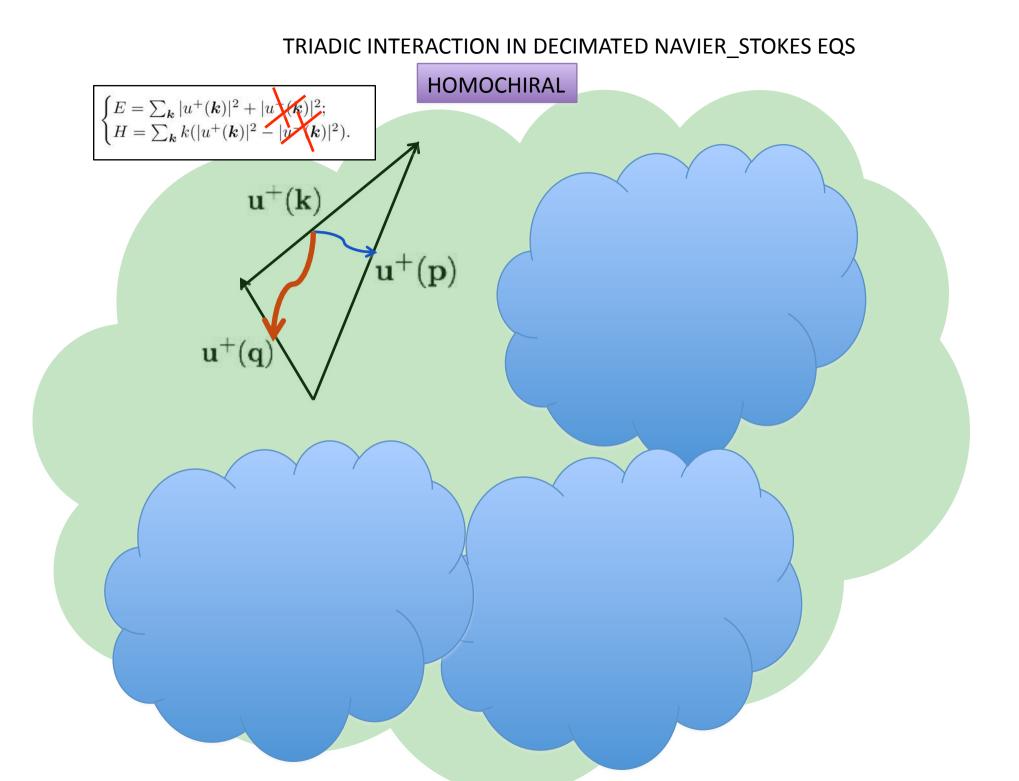
$$\frac{d}{dt}u^{s_k}(\mathbf{k}) + \nu k^2 u^{s_k}(\mathbf{k}) = \sum_{\mathbf{k}+\mathbf{p}+\mathbf{q}=0} \sum_{s_p,s_q} g_{\mathbf{k},\mathbf{p},\mathbf{q}}(s_p p - s_q q)$$

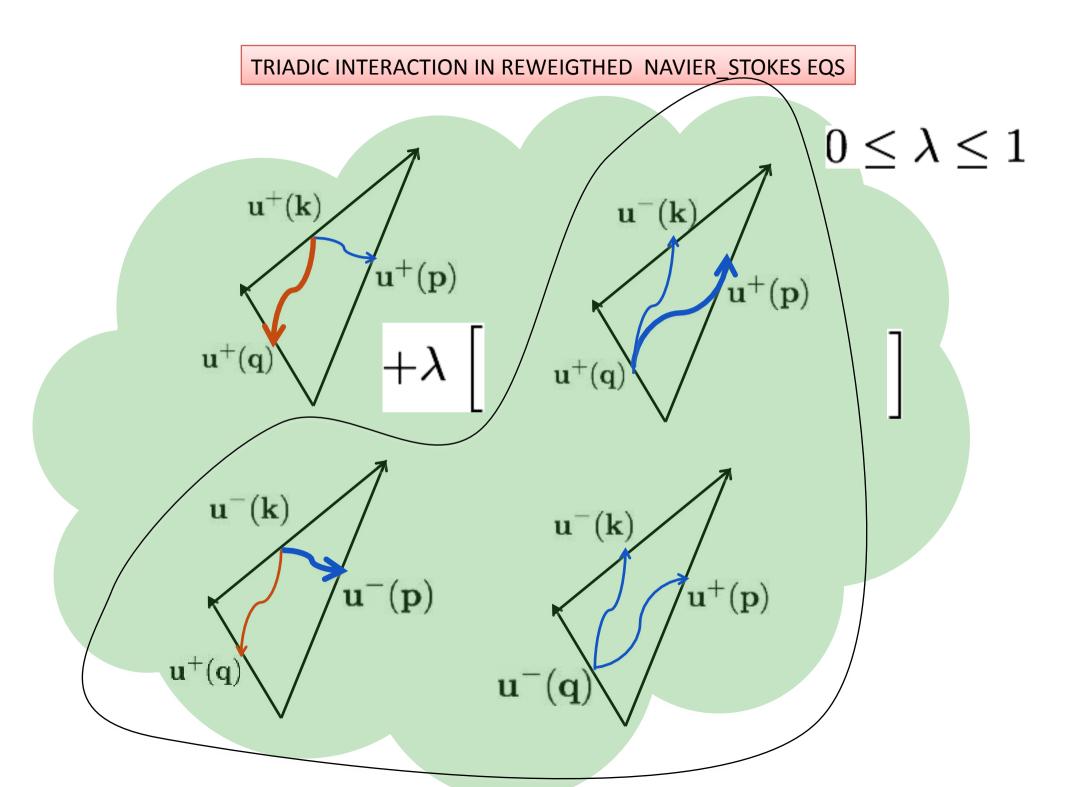
$$\times [u^{s_p}(\mathbf{p})u^{s_q}(\mathbf{q})]^*. \quad (15)$$

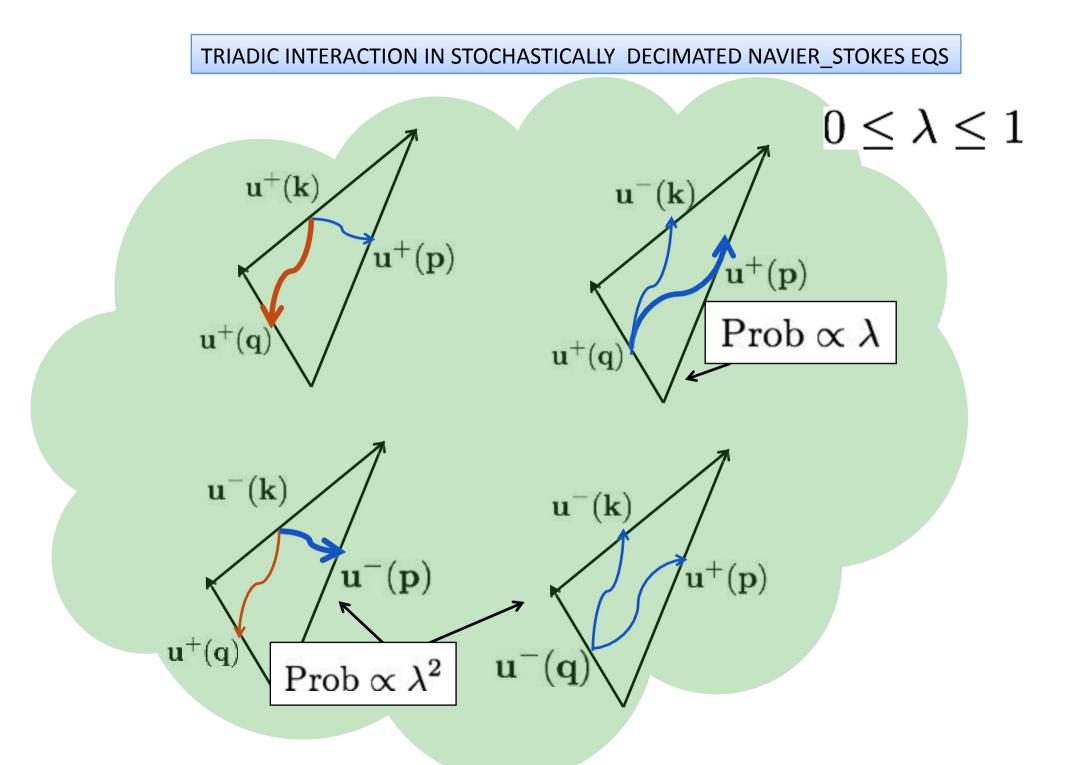
Eight different types of interaction between three modes  $u^{s_k}(\mathbf{k})$ ,  $u^{s_p}(\mathbf{p})$ , and  $u^{s_q}(\mathbf{q})$  with  $|\mathbf{k}| < |\mathbf{p}| < |\mathbf{q}|$  are allowed according to the value of the triplet  $(s_k, s_p, s_q)$ 

$$\begin{split} \dot{u}^{s_{k}} &= r(s_{p}p - s_{q}q) \frac{s_{k}k + s_{p}p + s_{q}q}{p} (u^{s_{p}}u^{s_{q}})^{*}, \\ \dot{u}^{s_{p}} &= r(s_{q}q - s_{k}k) \frac{s_{k}k + s_{p}p + s_{q}q}{p} (u^{s_{q}}u^{s_{k}})^{*}, \\ \dot{u}^{s_{q}} &= r(s_{k}k - s_{p}p) \frac{s_{k}k + s_{p}p + s_{q}q}{p} (u^{s_{k}}u^{s_{p}})^{*}. \end{split}$$









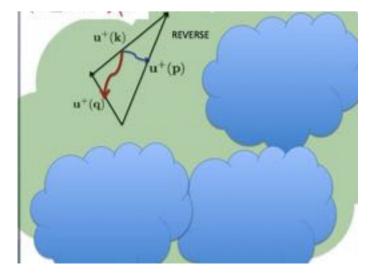
HOMOCHIRAL 3D NAVIER STOKES EQS.

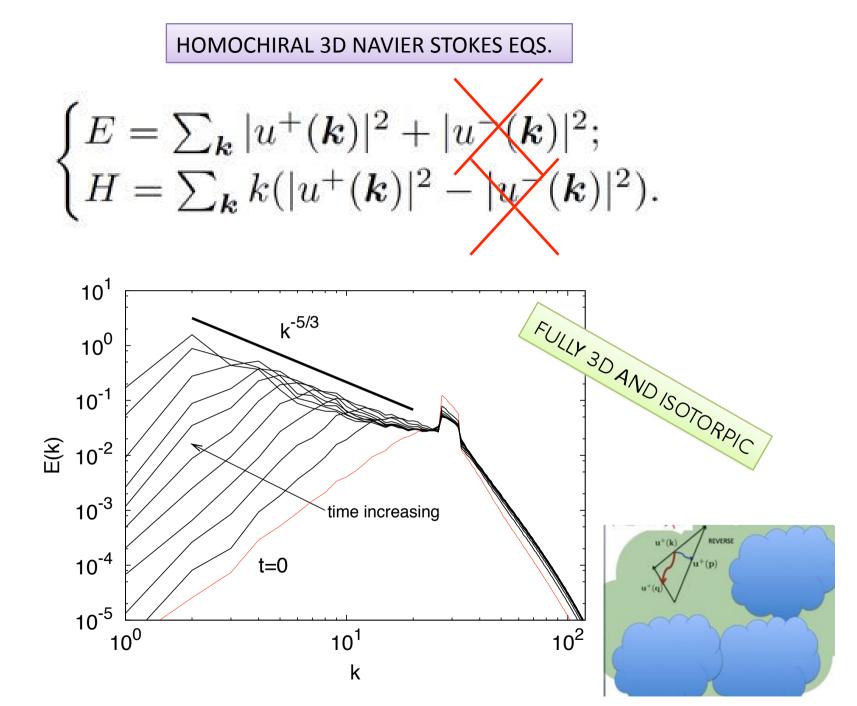
$$\mathcal{P}^{\pm} \equiv rac{h^{\pm} \otimes \overline{h^{\pm}}}{\overline{h^{\pm}} \cdot h^{\pm}}.$$
  $v^{\pm}(x) \equiv \sum_{k} \mathcal{P}^{\pm} u(k);$   
 $u(k) = u^{+}(k)h^{+}(k) + u^{-}(k)h^{-}(k)$ 

LOCAL BELTRAMIZATION (IN FOURIER)

$$\partial_t v^+ + \mathcal{P}^+ B[v^+, v^+] = \nu \Delta v^+ + \mathbf{f}^+$$

decimated-NSE

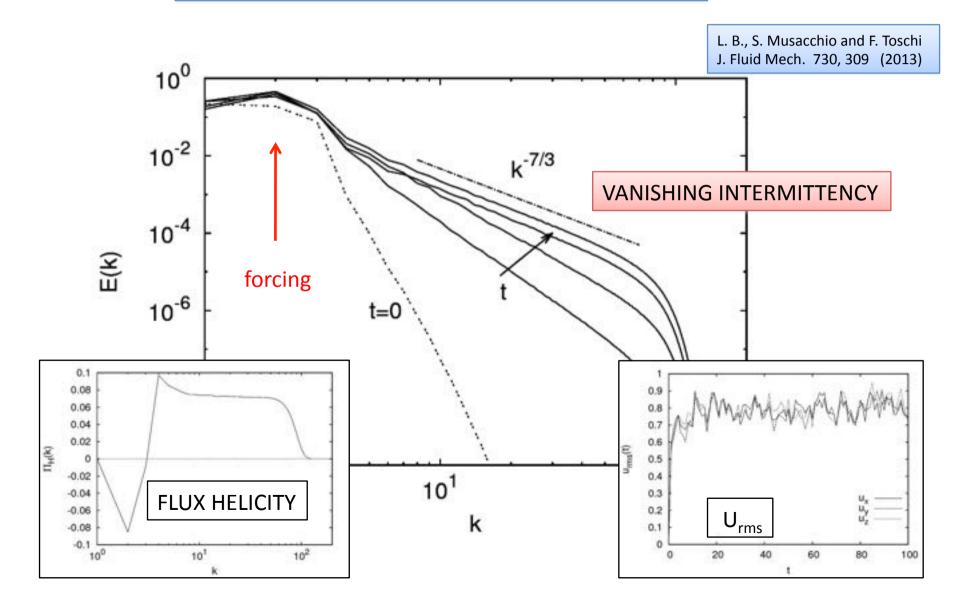


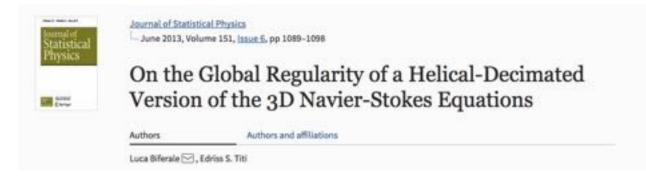


L.B., S. MUSACCHIO & F. TOSCHI Phys. Rev. Lett. 108 164501, 2012.

### HOMOCHIRAL 3D NAVIER STOKES EQS.

#### LARGE SCALES FORCING: DIRECT HELICITY CASCADE





We study the global regularity, for all time and all initial data in  $H^{1/2}$ , of a recently introduced decimated version of the incompressible 3D Navier-Stokes (dNS) equations. The model is based on a projection of the dynamical evolution of Navier-Stokes (NS) equations into the subspace where helicity (the  $L^2$ -scalar product of velocity and vorticity) is sign-definite. The presence of a second (beside energy) sign-definite inviscid conserved quadratic quantity, which is equivalent to the  $H^{1/2}$ -Sobolev norm, allows us to demonstrate global existence and uniqueness, of spaceperiodic solutions, together with continuity with respect to the initial conditions, for this decimated 3D model. This is achieved thanks to the establishment of two new estimates, for this 3D model, which show that the  $H^{1/2}$  and the time average of the square of the  $H^{3/2}$  norms of the velocity field remain finite. Such two additional bounds are known, in the spirit of the work of H. Fujita and T. Kato (Arch. Ration. Mech. Anal. 16:269–315, <u>1964</u>; Rend. Semin. Mat. Univ. Padova 32:243–260, <u>1962</u>), to be sufficient for showing well-posedness for the 3D NS equations. Furthermore, they are directly linked to the helicity evolution for the dNS model, and therefore with a clear physical meaning and consequences.

#### ESISTENCE AND UNIQUENESS OF WEAK SOLUTIONS OF THE HELICAL-DECIMATED NSE

$$\begin{cases} \partial_t \boldsymbol{v}^+ = \mathcal{P}^+(-\boldsymbol{v}^+ \cdot \boldsymbol{\nabla} \boldsymbol{v}^+ - \boldsymbol{\nabla} p^+) + \nu \Delta \boldsymbol{v}^+ + \boldsymbol{f}^+ \\ \nabla \cdot \boldsymbol{v}^+ = 0 \end{cases}$$

HILBERT-NORM COINCIDES WITH THE SIGN-DEFINITE HELICTY

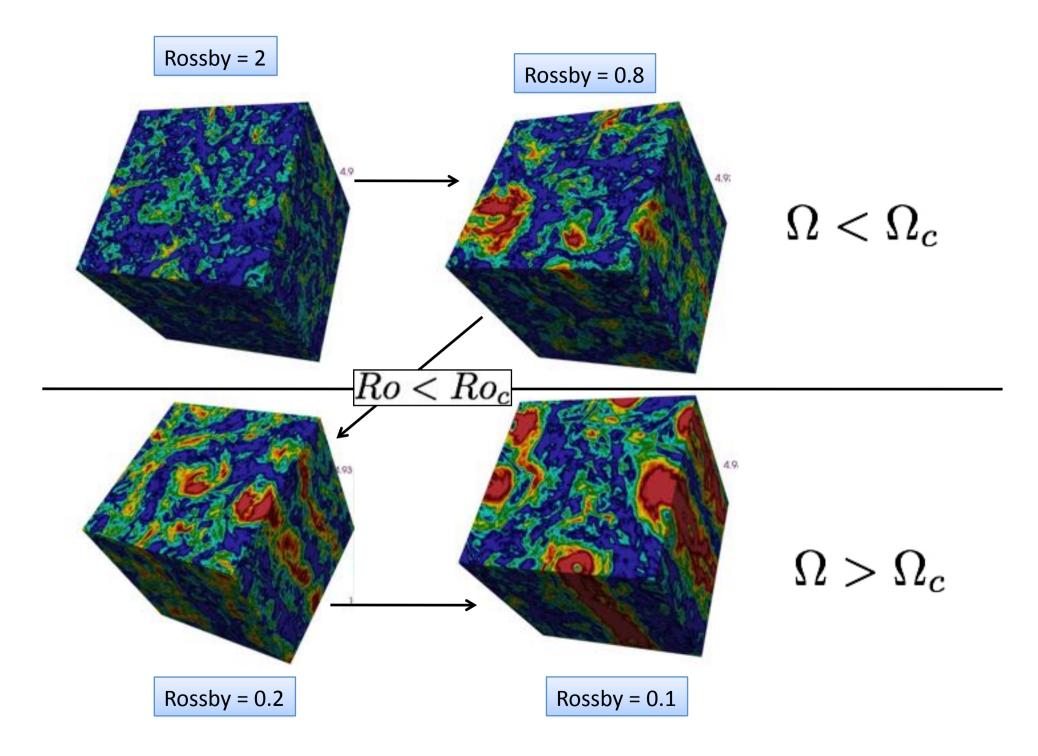
$$||g||_{H^{1/2}} = \sum_k k |g(k)|^2$$

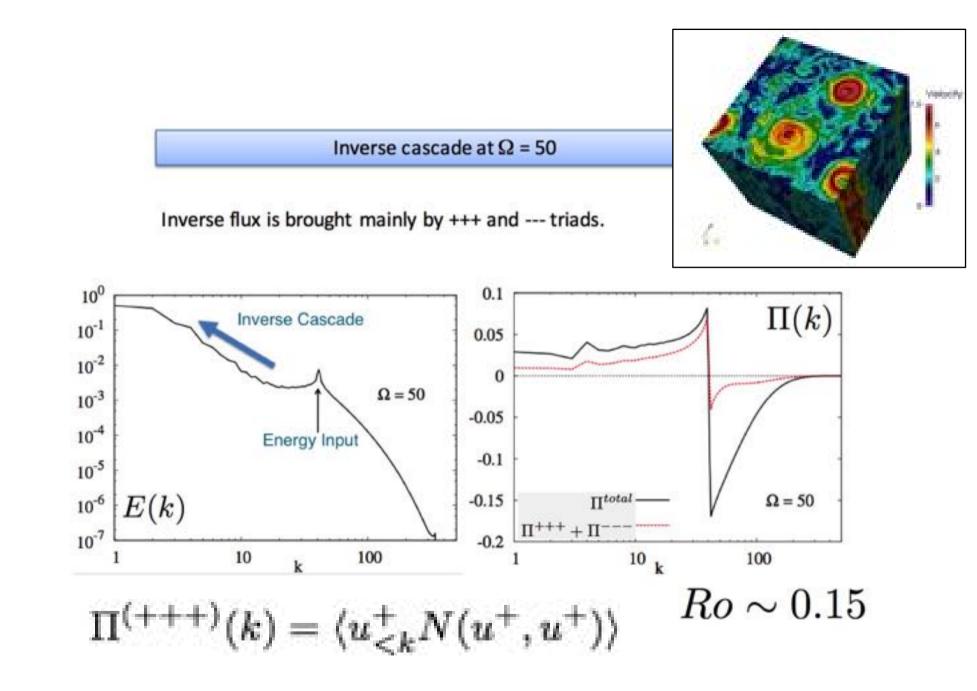
CONSERVATION HELICITY: NEW APRIORI BOUND ON THE VELOCITY

$$\begin{split} \frac{1}{2}\partial_t \sum_{\mathbf{k}} k|u^+(\mathbf{k},t)|^2 + \frac{\nu}{2} \sum_{\cdot} k^3 |u^+(\mathbf{k},t)|^2 &\leq \frac{1}{2\nu} \sum_{\cdot} |f^+(\mathbf{k})|^2 k^{-1}.\\ \frac{1}{2}\partial_t ||v^+||^2_{H^{\frac{1}{2}}} + \frac{\nu}{2} ||v^+||^2_{H^{\frac{3}{2}}} &\leq \frac{1}{2\nu} \sum_{\mathbf{k}} |f^+(\mathbf{k})|^2 k^{-1}.\\ v^+ &\in L^\infty_t H^{\frac{1}{2}}_x; \qquad \sqrt{\nu} v^+ \in L^2_t H^{\frac{3}{2}}_x \end{split}$$

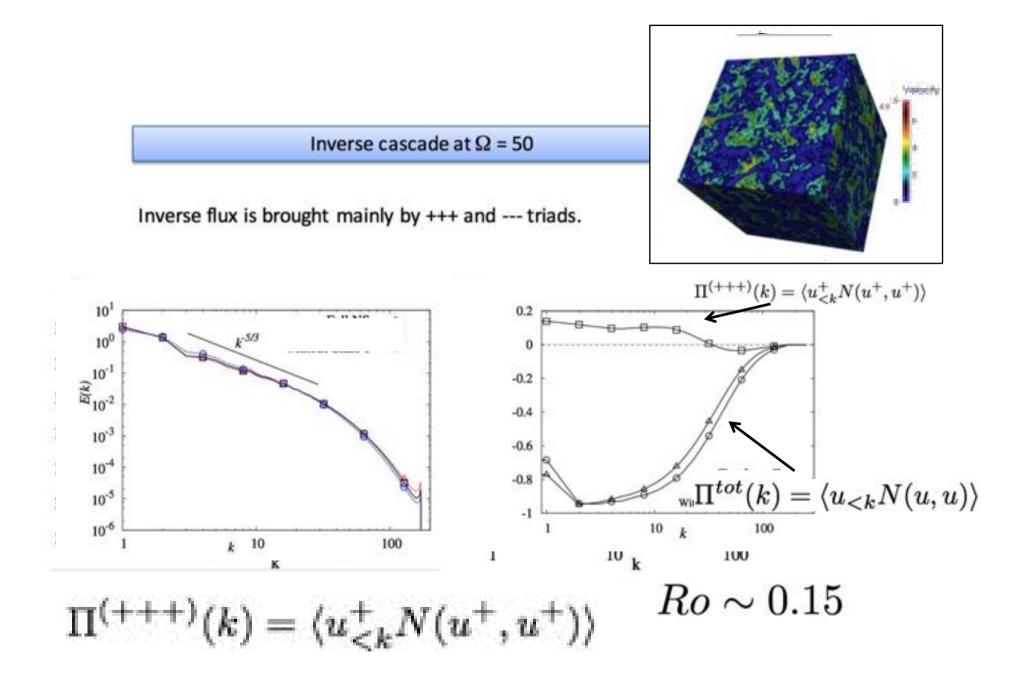
L.B. E. TITI, J. Stat. Phys. (2013)

In this section, we are going to use the fact that for the inviscid and unforced dNS (9) system the helicity is formally conserved, and that it is positivedefinite quadratic quantity, which is equivalent to the square of the  $\dot{H}^{1/2}$ -Sobolev norm. Therefore, obtaining uniform (in time) bounds on the helicity enables us to prove the existence of solutions with a higher degree of regularity, provided the initial data is in  $\dot{H}^{1/2}$ . Furthermore, this additional regularity will allow us to prove, in the next section, the uniqueness of these regular solutions within the class of weak solutions. Let us observe that all the estimates that follow are formal, but can be rigorously justified by obtaining them first for the corresponding solutions of the Galerkin approximating system (9), and then passing to the limit, modulo subsequences, with  $N \to \infty$ . Furthermore, it is worth mentioning that similar ideas and estimates can be found in [19,22] in the study of short time existence and uniqueness of the three-dimensional NS equations with initial data in  $H^{1/2}$ . The advantage of system (7) over the NS equations is that the  $H^{1/2}$  remains finite, which allows to extend the short time existence argument to prove global regularity for all time and all initial data in  $H^{1/2}$ . Indeed, the fact that helicity is a





WITH G. SAHOO AND P. PERLEKAR (unpublished)



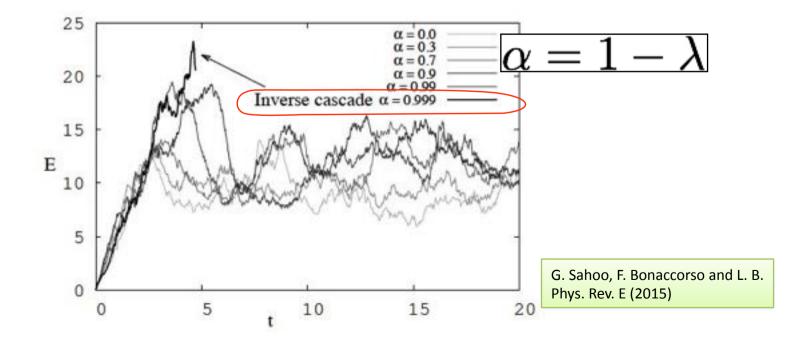
WITH G. SAHOO AND P. PERLEKAR (unpublished)

TRIADIC INTERACTION IN STOCHASTICALLY DECIMATED NAVIER\_STOKES EQS

$$\boldsymbol{u}^{\alpha}(\boldsymbol{x}) \equiv D^{\alpha}\boldsymbol{u}(\boldsymbol{x}) \equiv \sum_{\boldsymbol{k}} e^{i\boldsymbol{k}\boldsymbol{x}} \,\mathcal{D}^{\alpha}_{\boldsymbol{k}} \boldsymbol{u}_{\boldsymbol{k}}, \qquad (4)$$

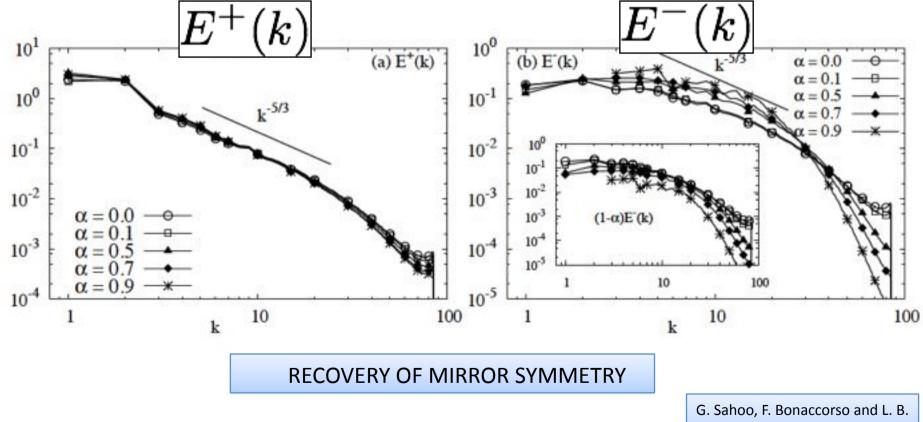
where  $\mathcal{D}_{\mathbf{k}}^{\alpha} \equiv (1 - \gamma_{\mathbf{k}}^{\alpha}) + \gamma_{\mathbf{k}}^{\alpha} \mathcal{P}_{\mathbf{k}}^{+}$  and  $\gamma_{\mathbf{k}}^{\alpha} = 1$  with probability  $\alpha$  or  $\gamma_{\mathbf{k}}^{\alpha} = 0$  with probability  $1 - \alpha$ . The  $\alpha$ -decimated Navier-Stokes equations ( $\alpha$ -NSE) are

$$\partial_t \boldsymbol{u}^{\alpha} = D^{\alpha} [-\boldsymbol{u}^{\alpha} \cdot \boldsymbol{\nabla} \boldsymbol{u}^{\alpha} - \boldsymbol{\nabla} p^{\alpha}] + \nu \Delta \boldsymbol{u}^{\alpha}, \qquad (5)$$



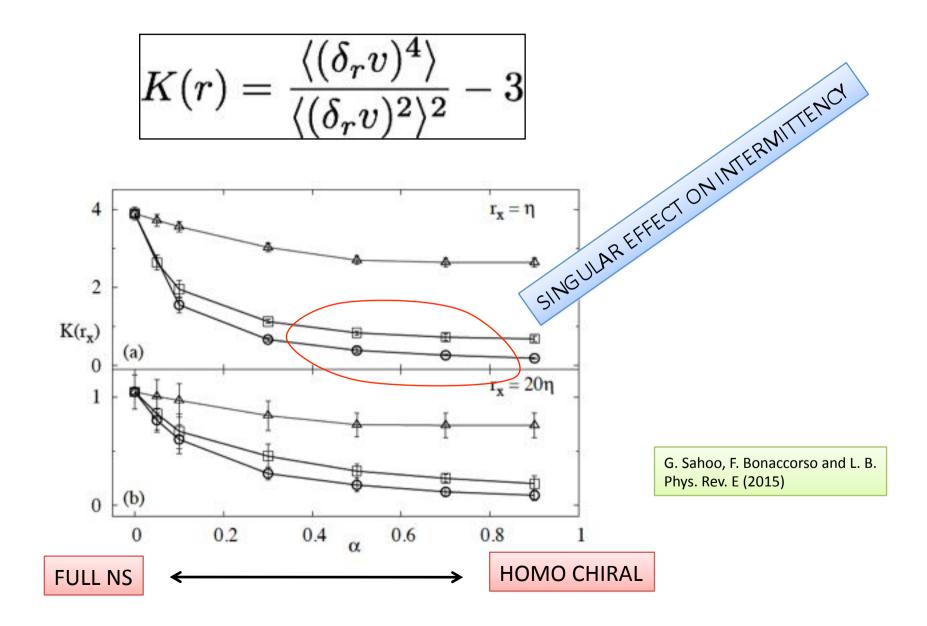
TRIADIC INTERACTION IN STOCHASTICALLY DECIMATED NAVIER\_STOKES EQS

$$E(k) = E^{+}(k) + E^{-}(k)$$
$$H(k) = k(E^{+}(k) - E^{-}(k))$$



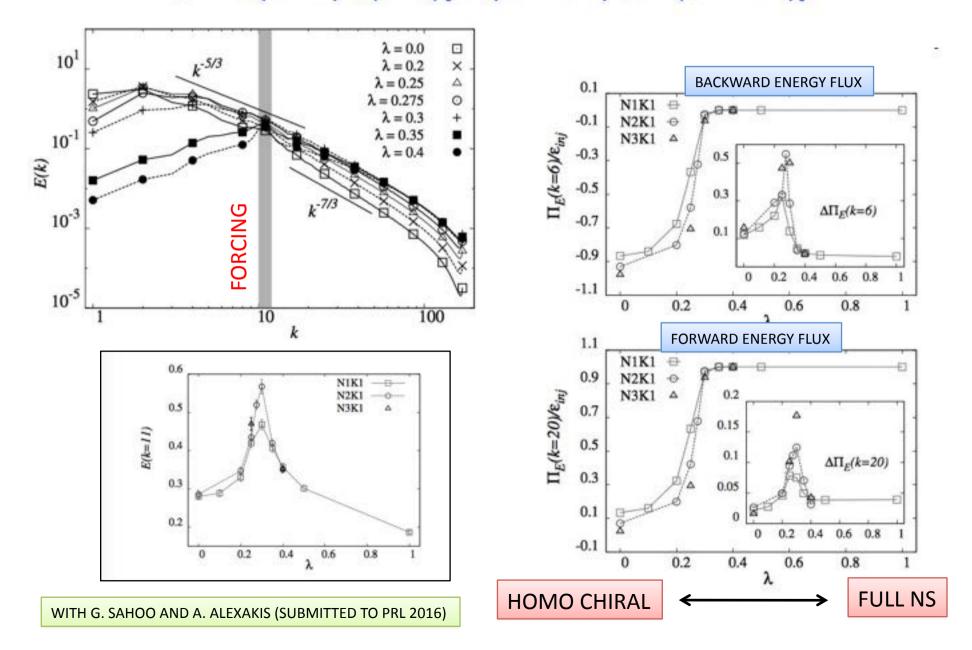
Phys. Rev. E (2015)

#### TRIADIC INTERACTION IN STOCHASTICALLY DECIMATED NAVIER\_STOKES EQS



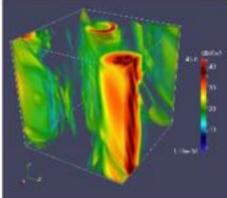
#### TRIADIC INTERACTION IN REWEIGHTED NAVIER\_STOKES EQS

 $\mathcal{N} = \lambda(\mathbf{u} \times \mathbf{w}) + (1 - \lambda)[\mathbb{P}^+(\mathbf{u}^+ \times \mathbf{w}^+) + \mathbb{P}^-(\mathbf{u}^- \times \mathbf{w}^-)]$ 

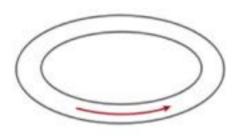


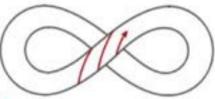
# Large-scale magnetic fields in MHD





Dallas & Alexakis PoF 2015





Lockheed Martin  

$$\partial_t \boldsymbol{u} = -\frac{1}{\rho} \nabla P - (\boldsymbol{u} \cdot \nabla) \boldsymbol{u} + \frac{1}{\rho} (\nabla \times \boldsymbol{b}) \times \boldsymbol{b} + \nu \Delta \boldsymbol{u}$$

$$\partial_t \boldsymbol{b} = (\boldsymbol{b} \cdot \nabla) \boldsymbol{u} - (\boldsymbol{u} \cdot \nabla) \boldsymbol{b} + \eta \Delta \boldsymbol{b}$$

$$\nabla \cdot \boldsymbol{u} = 0 \text{ and } \nabla \cdot \boldsymbol{b} = 0$$

$$H_m(t) = \int_V d\boldsymbol{x} \ \boldsymbol{a}(\boldsymbol{x}, t) \cdot \boldsymbol{b}(\boldsymbol{x}, t) \rightarrow \text{ inverse cascade}$$

$$H_k(t) = \int_V d\boldsymbol{x} \ \boldsymbol{u}(\boldsymbol{x}, t) \cdot \boldsymbol{\omega}(\boldsymbol{x}, t) \rightarrow \text{ dynamo action (e.g. $\alpha$-effect)}$$

WITH M. LINKMANN, G. SAHOO, M MCKAY AND A. BERERA AJP 2017

# Helical Fourier decomposition

$$(\partial_t + \nu k^2) u_k^{s_k*} = \frac{1}{2} \sum_{k+p+q=0} \left( \sum_{s_p, s_q} g_{s_p s_q}^{s_k} (s_p p - s_q q) u_p^{s_p} u_q^{s_q} - \sum_{\sigma_p, \sigma_q} g_{\sigma_p \sigma_q}^{s_k} (\sigma_p p - \sigma_q q) b_p^{\sigma_p} b_q^{\sigma_q} \right), \text{LORENTZ}$$

$$- \sum_{\sigma_p, \sigma_q} g_{\sigma_p \sigma_q}^{s_k} (\sigma_p p - \sigma_q q) b_p^{\sigma_p} b_q^{\sigma_q} \right), \text{LORENTZ}$$

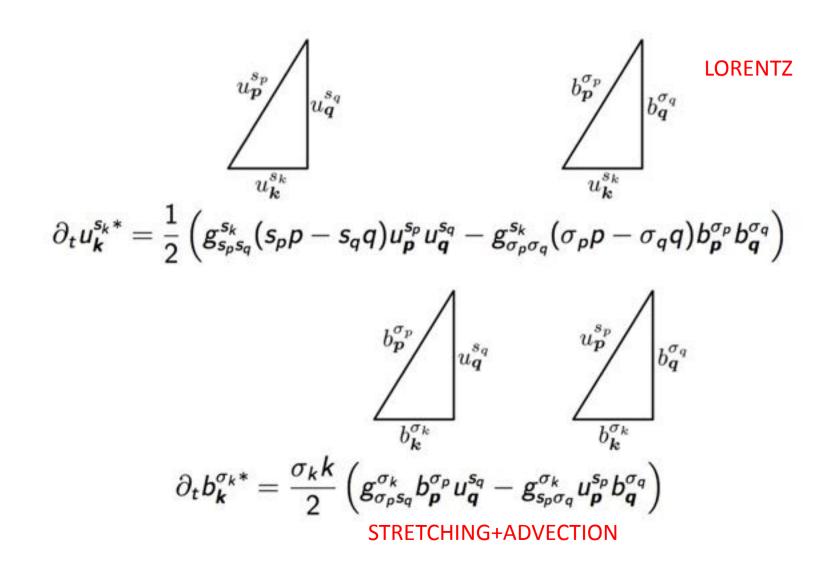
$$\partial_t + \eta k^2) b_k^{\sigma_k*} = \frac{\sigma_k k}{2} \sum_{k+p+q=0} \left( \sum_{\sigma_p, s_q} g_{\sigma_p s_q}^{\sigma_k} b_p^{\sigma_p} u_q^{s_q} - \sum_{s_p, \sigma_q} g_{s_p \sigma_q}^{\sigma_k} u_p^{s_p} b_q^{\sigma_q} \right)$$

**ADVECTION + STRETCHING** 

$$\begin{split} E_{kin} &= \sum_{k} |u_{k}^{+}|^{2} + |u_{k}^{-}|^{2} & H_{kin} = \sum_{k} k(|u_{k}^{+}|^{2} - |u_{k}^{-}|^{2}) \\ E_{mag} &= \sum_{k} (|b_{k}^{+}|^{2} + |b_{k}^{-}|^{2}) & H_{mag} = \sum_{k} k^{-1}(|b_{k}^{+}|^{2} - |b_{k}^{-}|^{2}) \end{split}$$

2

Generic two-triads system



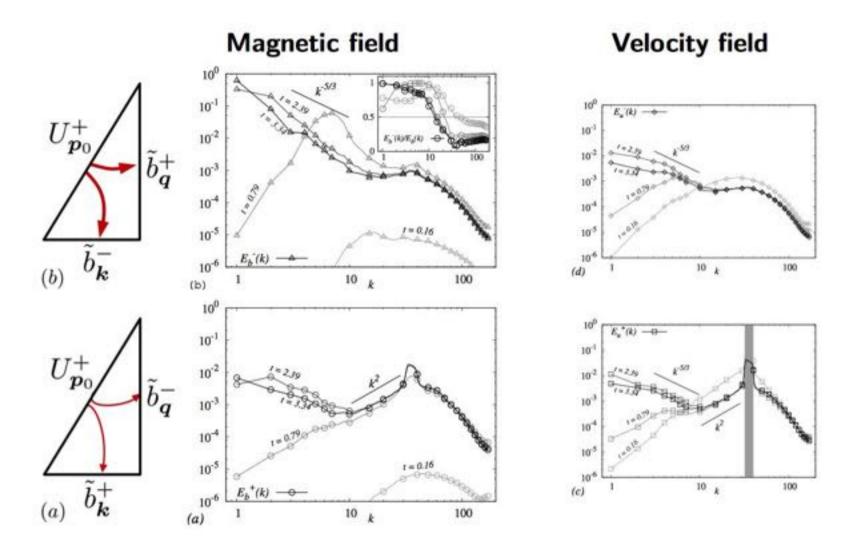
Ĩ

# Stability analysis

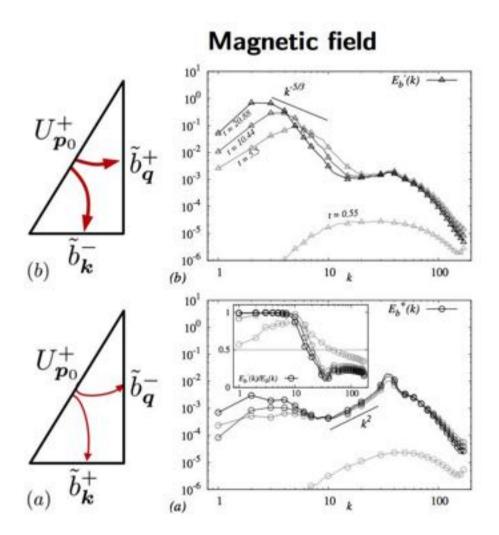
$$\partial_{t} u_{k}^{s_{k}*} = g_{s_{p}s_{q}}^{s_{k}} (s_{p}p - s_{q}q) u_{p}^{s_{p}} u_{q}^{s_{q}} - g_{\sigma_{p}\sigma_{q}}^{s_{k}} (\sigma_{p}p - \sigma_{q}q) b_{p}^{\sigma_{p}} b_{q}^{\sigma_{q}} \partial_{t} u_{p}^{s_{p}*} = g_{s_{q}s_{k}}^{s_{p}} (s_{q}q - s_{k}k) u_{q}^{s_{q}} u_{k}^{s_{k}} - g_{\sigma_{q}\sigma_{k}}^{s_{p}} (\sigma_{q}q - \sigma_{k}k) b_{q}^{\sigma_{q}} b_{k}^{\sigma_{k}} \partial_{t} u_{q}^{s_{q}*} = g_{s_{k}s_{q}}^{s_{q}} (s_{k}k - s_{p}p) u_{k}^{s_{k}} u_{q}^{s_{q}} - g_{\sigma_{k}\sigma_{p}}^{s_{q}} (\sigma_{k}k - \sigma_{p}p) b_{k}^{\sigma_{k}} b_{p}^{\sigma_{p}} \partial_{t} b_{k}^{\sigma_{k}*} = \sigma_{k}k \left( g_{\sigma_{p}s_{q}}^{\sigma_{k}} b_{p}^{\sigma_{p}} u_{q}^{s_{q}} - g_{s_{p}\sigma_{q}}^{\sigma_{k}} u_{p}^{s_{p}} b_{q}^{\sigma_{q}} \right) \partial_{t} b_{p}^{\sigma_{p}*} = \sigma_{p}p \left( g_{\sigma_{q}s_{k}}^{\sigma_{p}} b_{q}^{\sigma_{q}} u_{k}^{s_{k}} - g_{s_{q}\sigma_{k}}^{\sigma_{p}} u_{q}^{s_{q}} b_{k}^{\sigma_{p}} \right) \partial_{t} b_{q}^{\sigma_{q}*} = \sigma_{q}q \left( g_{\sigma_{k}s_{p}}^{\sigma_{q}} b_{k}^{\sigma_{k}} u_{p}^{s_{p}} - g_{s_{k}\sigma_{p}}^{\sigma_{q}} u_{k}^{s_{k}} b_{p}^{\sigma_{p}} \right)$$

Ľ

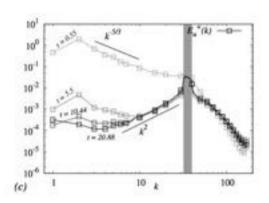
Large-scale dynamo: DNS - laminar flow ( $Re_{\lambda} = 15$ )



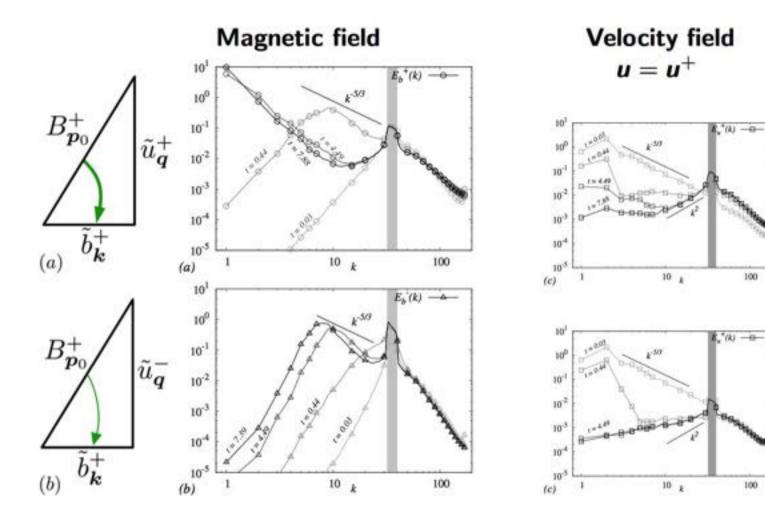
Large-scale dynamo: DNS - turbulent flow ( $Re_{\lambda} = 140$ )



Velocity field  $u = u^+$ 



Inverse cascade of magnetic helicity: DNS



## CONCLUSIONS

#### ROLE OF HELICITY IN THE FORWARD/BACWARD 3D ENERGY TRANSFER (FOURIER)

ROLE OF HOMO-CHIRAL TRIADS VISIBLE ALSO IN ROTATING TURBULENCE

EXISTENCE OF A SHARP PHASE-TRANSITION BAKWARD/FORWARD IF SOME NON-LINEAR INTERACTION ARE REWEIGHTED

HETERO-CHIRAL TRIADS PLAY A SINGULAR ROLE FOR INTERMITTENCY IF PARTICIPATING WITH THE CORRECT PREFACTOR

IMPLICATION FOR REGULARITY OF SOLUTIONS

IMPLICATION FOR SMALL AND LARGE SCALE DYNAMO

IMPLICATION FOR REAL-SPACE INTERMITTENCY AND ENERGY BACKSCATTER?