
Slide of the seminar

NewTurb Cluster

New cluster for Turbulence simulations

Outline

● Hardware presentation

● Installed software

● Batch usage

● Visualization

● Code development

● Next

Hardware

● Cluster is composed by 3 elements:

– Frontend

● Two 12-cores 2.4GHz intel Xeon server

● 256 GB RAM 1.6GHz DDR3 RAM

● Two 56 Gbit/s QDR Infiniband

● 1 Nvidia Quadro K4000 GPU

– 16 computing nodes, each with

● Two 12-cores 2.4GHz Intel Xeon chip, for a total of 24 cores

● 256 GB 1.6GHz DDR3 RAM

● One 56Gbit/s QDR Infiniband

– Storage server

● 64 GB RAM

● 250 TB disk in RAID5 configuration

● Two 56 Gbit/s QDR Infiniband

4 nodes in 2U

● Highly compact
nodes:

– 4 nodes in a 2U
server

– Energy efficient

● Maintenance

– Hot swappable
node

– Hot swappable
Hds

● We have 4 of these

Storage Server

● 72 x 4TB Hds

– 288 TB raw space

● 64 GB Ram

● Dual Intel XEON
8 cores @
2.60GHz

● Dual Infiniband
FDR 56 Gb/s

● 3 HW Raid
controller

Frontend: newturb

● 256 GB Ram

● Same 2x12core
Intel CPU

● Two Infiniband
FDR 56Gb/s

● Quadro K4000
GPU

1 gb
eth

40 gb
IB

...

visual
192.168.1.100

ups
192.168.1.253

node8
192.168.1.8

node1
192.168.1.1

droemu

141.108.250.247

192.168.1.254

/home
/storage
/storage1 newturb

141.108.251.38

192.168.2.254
10.0.0.254

/storage

1 gb
eth

56 gb
IB

...
node16

192.168.2.16
10.0.0.16

node1

192.168.2.1
10.0.0.1

/storage
/droemu/home
/droemu/storage
/droemu/storage1storturb

192.168.2.201
10.0.0.201

192.168.1.252

Infiniband benchmark: bandwidth

#bytes #iterations

BW peak
MB/s

 BW avg
MB/s

2 10 1 1

16 10 12 11

64 10 49 45

256 10 152 152

512 10 347 312

1k 10 883 880

4k 10 3120 3119

16k 10 4637 4636

32k 10 5221 5221

128k 10 5780 5780

1M 10 5967 5967

2M 10 5976 5976

4M 10 5940 5940

8M 10 5992 5992

Infiniband benchmark: latency
#bytes #iterations t_min

usec
t_max

usec
t_typical

usec

2 10.0 0.9 9.7 1.2

16 10.0 0.9 2.8 1.0

64 10.0 1.0 2.7 1.0

256 10.0 1.4 8.4 1.4

512 10.0 1.5 4.5 1.6

1k 10.0 1.8 9.1 1.9

4k 10.0 3.1 4.7 3.2

16k 10.0 5.0 9.4 5.3

32k 10.0 7.8 11.8 7.8

128k 10.0 23.5 27.8 23.8

1M 10.0 168.7 174.2 169.4

2M 10.0 334.9 340.2 335.3

4M 10.0 666.1 671.6 667.4

8M 10.0 1328.6 1333.3 1330.8

Software

● Operating system is CentOS v6.5 64bit

– Community edition of Redhat OS: very well supported

● Libraries

– OpenMPI v1.8.1

– HDF v1.8.13

– fftw v2, v3

– P3DFFT

– GSL

● Tools

– CMake

– Paraview

– CUDA v6

Users

● Each user logins on newturb.roma2.infn.it

● His/her home is a LOCAL directory

– NOT shared with the whole cluster (SPEED hack)

● Place for job preparation:

– /storage/<<USER>>

– SHARED with the cluster

● NFS v4

● Infiniband link 56Gb/s (hw link speed, not user speed)

Users: filesystems layout

● /storage is the new 250TB area

– Shared via Infiniband

● /droemu area visible in read-only

– Gigabit link

● Symlinks for setting up simulations

Code

● Compile

● Link

● ldd

● valgrind

● efence

● GDB

Code: Valgrind

● Simulate execution on a virtual PC

● Detects memory errors, memory leaks,...

● Simulate the execution

– Slow

● Needs some help with system libs

– Unless you want to contribute to opensource world!

Code: Valgrind

Code: ElectricFence

● Catch memory errors as they occur

– Run-Time Bound checking

– HW based: fast but uses RAM

● One guard-area for each allocation

– 4kb plus your allocation

● Two trips for extra security

– Band after mem

– Band before mem

Code: ElectricFence

Code: ElectricFence + GDB

● Debugger helps!

Code: gdb

● Compile with

– -g -O0

● Run the program

– command r

● Step

– command s

● Breakpoint

– command b

● Pops in case of errors

Code: IDE

● Eclipse

● Integrates
with GDB

Code: ldd

● Shows the shared libs that will be used

Batch system

● Torque v4.2.7

– Defines the queue

– The server that accepts jobs

● Maui Scheduler v3.3.1

– Selects job to run

– The server that shows which job is running

Batch system: 2

● 4 Queues defined:

– 1 “routing” queue

● Named route

● Routes job to the final destination queue based on requested resources

– 3 “execution” queue

● Reg_256

– Highest priority: reserved to jobs of 256 processes

● Reg_64

– Middle prio: for jobs of 64 processes

● Batch

– Lowest prio: until 64 processes

Batch system: 3

● Job script

– Text shell script with PBS keywords...

● #PBS -l nodes=xx:ppn=yy,walltime=zz:zz:zz

● nodes: number of computing nodes you want

● ppn: number of processes in each node

● walltime: maximum time allowed

– ...and commands

● mpiexec -np zz -mca btl openib,self -hostfile $PBS_NODEFILE exec-file

– np: real number of process created

● Submit a job:

– qsub jobScript.pbs

● Check the queue:

– showq

– pbstop

Batch system: 4

● The Job is running...

– PIC

● StdOut and StdErr will be given back at the END

– JobScript.oxxx

– JobScript.exxx

– Xxx is the jobID queuing number

● Job preparation:

– Create a directory fo each job under /storage/USER/jobxxx

– qsub from here

– Files will not interfere with each other

– “Easy” debugging

Batch system: 5

● Scheduler policy:

– 256 cores -> Prio 1256

– 64 cores -> Prio 164

– 1-63 cores -> Prio 1-63

● Backfill active:

– Small jobs can be scheduled if they don't prevent big ones from running

– to fill the machine meanwhile

● Queue time into account

● Soon will have a factor for Fair share usage

Queue: showq

ACTIVE JOBS

JOBNAME USERNAME STATE PROC REMAINING STARTTIME

372 malapaka Running 64 14:10:00 06:52:26 AM

373 malapaka Running 64 17:38:50 10:21:16 AM

380 sahoo Running 64 22:43:14 03:25:40 PM

3 Active Jobs 192 of 384 Processors Active (50.00%)

8 of 16 Nodes Active (50.00%)

IDLE JOBS

JOBNAME USERNAME STATE PROC WCLIMIT QUEUETIME

0 Idle Jobs

BLOCKED JOBS

JOBNAME USERNAME STATE PROC WCLIMIT QUEUETIME

374 malapaka Hold 64 23:00:00 21:31:34

Total Jobs:4 Active Jobs:3 Idle Jobs:0 Blocked Jobs: 1

Queue: pbstop

Visualization

● Paraview

– Can handle VTK, HDF5 files

– Lots of filters

– Can be used with a remote machine that has the
data

● No need to move data

Visualization:2

● VTK files are native

– Serial and parallel

– ASCII and BINARY

● HDF5 files need a wrapper

– XDMF, xml based describes underlying data

– Can handle scalar, 3D, time-varying,....

Visualization: HDF5 files

● Example HDF5 file

HDF5 "cb_outP24_000001.h5" {

GROUP "/" {

 GROUP "PS3D" {

 DATASET "b" {

 DATATYPE H5T_IEEE_F64LE

 DATASPACE SIMPLE { (256,
256, 129) / (256, 256, 129) }

 }

 }

}

}

● Wrapper file

<?xml version="1.0" ?> <!DOCTYPE Xdmf SYSTEM "Xdmf.dtd" []>

<Xdmf>

<Domain>

<Grid Name="my_Grid" GridType="Uniform">

<Topology TopologyType="3DCoRectMesh" Dimensions="256 256 129" />

<Geometry GeometryType="Origin_DxDyDz">

 <DataItem Dimensions="3" NumberType="Integer" Format="XML">0 0 0</DataItem>

<DataItem Dimensions="3" NumberType="Integer" Format="XML"> 1 1 1</DataItem>

</Geometry>

 <Attribute Name="b" AttributeType="Scalar" Center="Node">

<DataItem Dimensions="256 256 129" NumberType="Double" Precision="8"
Format="HDF">

cb_outP24_000001.h5:/PS3D/b

</DataItem>

</Attribute>

 </Grid>

 </Domain>

</Xdmf>

Paraview: Filters

● Load data

● Manipulate with filters

– Isosurfaces

– Streamlines

– Cutting

– Projecting

● Pipelining metaphore

– 1st filter output is 2nd filter input

Paraview: demo

Paraview:example

Paraview: client+server

● Version match

– v4.0.1

● Load Config file

– First time only

● File → Connect

● You're on newturb!

Quadro K4000 GPU

● 768 Kepler Cuda
cores

● 800 Mhz, 2 FLOP/cyc

● ~1250TFlop/s SP

BUT

● 3 GB RAM

● HOST <-> GPU BW

NEXT

● Other nodes are arriving

– Cluster will soon have little more then 512 procs

● 2.5 TFLOP/s DP

– RAM will be upgraded to 5.5 TB

