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e |ntroduction
e Helically Decimated Navier-Stoke’s equation
e Energy transfer and helicity

e | arge and small scale structures
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Clouds " Tornado

e All environmental flows are turbulent,

* Atmospheric boundary layer, Ocean
Currents, interstellar clouds, flow of gas
and olil in pipe lines, combustion In engines,

Windmills . Jupiter
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#°  Conserved quantities

e Navier-Stoke’s equations for incompressible flow

?3*1151 + (u-V)u= Vpp - vViu 4+ f,
V-u=0.
* Energy
E = /u(x) cu(x)d’x
* Helicity

H = / w(x)d’x

e are conserved in un-forced and non-dissipative flows.
e Helicity is a pseudoscalar: changes sign under parity.

e Unlike energy, helicity is not positive definite.

Betchov 1961




i - Kolmogorov theory (1941)
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e For very high Re, the statistical properties of eddies of sizes in the inertial range of
scales are

» independent of the forced and dissipative scales, and are locally homogeneous
and 1sotropic.

« universally and uniquely determined by the length scale [, viscosity v, and the
rate of energy dissipation &.

e Characteristic velocity of an eddy of size [ scales as u; ~ (le e

* Energy spectrum in the inertial range E(k) ~ ¢2/3573/3,

V3

1/4
for L' <<k<<n ™t n= (;)

o Self-Similarity hypothesis: Structure functions of p-th order scales as

S, (1) = (6ul) ~ (el)P/3,
ou; = [u(r +1) —u(r)] - 7.



ere - Effects of helicity

e Nonlinearity: Since u.w is nonzero, there could be decrease Iin
the nonlinearity u x w. e.g. linear Bertram tlows with maximal

nelicity.

* Nonlocality: Nonzero u.w also implies stronger coupling
between large and small scales, i.e. increasing non-locality. e.g.
production of large scale magnetic fields in conductive fluids.

e Self-production: At a very high Re, there is a growth of helicity at
the small scales, even though total helicity remains finite,

because of the symmetry.



& Effects of helicity

* Energy gets distributed among scales by the nonlinear term in Navier-Stoke’s
equation and assuming a constant energy flux we observe the scaling behaviour

dup = [u(r +1) —u(r)] - 1 ~ l/311/3
E = 2u<5’jui8iuj>

e By similar dimensionality argument and assuming a constant helicity flux h [LT™],
we obtain

du; = [u(r +1) —u(r)] - % ~ h1/3]2/3
h = 2u<8jui8iwj>

e But such a scaling is not observed. Why?



e"‘ —ffects of helicity

European Research Council

 [here is no purely helicity dominated turbulence since both
energy and helicity cascade to the small scales.

e For the joint cascade of energy and helicity we expect

oup = [u(r +1) —u(r)] - ; ~ePRI1°

e But then, we can not determine the exponents, uniquely,
from dimensionality argument.

e Presence of helicity changes the geometrical structure in a
subtle way, which could not be captured by simple
dimensional analysis.



—xact results
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For pure energy cascade

<5u%(r)> = — %57‘

For pure helicity cascade

(6ur(r)du(r) - dw(r)) — 3 (dwr(r)du(r) - du(r)) = —5hr
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e [he direction of cascade Is
determined by positive-

definite inviscid invariants, 9P ﬁp

e |n 2D: energy and enstrophy é@ @

are conserved; both positive-
definite. SENANSIECS

OO QAL OYM 2D
e |n 3D: energy and helicity are

conserved; helicity Is not 3D: Kinetic energy is transferred
positive-detinite. from large to small eddies

2D: Kinetic energy is transferred
from small to large eddies



e Many flows are quasi-2D, like
thick tilms, geophysical flows
Ike ocean and atmosphere.

e Physical phenomenas change
the dimensionality of the
system, like rotation.

* There have been evidence of
iInverse energy cascade in
such systems.

e Also conducting fluids transter
energy to the large scales.

A4 paper (80gr/m?)
L,=210 mm
L, =297 mm
h =0.1 mm

Pacific Ocean

N-S = 15000 km
E-W = 19800 km
average depth = 4.28 km




erc ~ Transition from 3D to 2D
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106

e Dimensional transition occurs in turbulent
fluid layers from 3D direct energy cascade
to 2D inverse energy cascade as we 10-7
decrease the thickness of the layer.

e Depending upon the aspect ratio thereisa |~
coexistence of inverse and direct cascade. 10-8

e Enstrophy (w.w) becomes quasi-invariant

E

M

as only conserved by large scale dynamics 5 k.
where the flow is two dimensional. 10 100 1.000
Upscale energ’)'l 'a:;ﬂs:f\er in thick turbulent
e |Inverse cascade develops because of fluid layers
existence of another positive definite H. Xia', D. Byrne, G. Falkovich? and M. Shats'*
conserved quantity. Nat. Phys. 7, 321 (2011)

- |If we make helicity positive definite, do we see inverse
energy transfer in 3D?



#  |nverse energy cascade in 3D
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e Making the helicity sign-definite, we observe inverse
cascade of energy.

Inverse energy cascade in three-dimensional 1sotropic turbulence,

Biferale, L., Musacchio, S., Toschi, F., Phys. Rev. Lett. 108, 164501 (2012)
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e Making the helicity sign-definite, we observe inverse
cascade of energy.
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Inverse energy cascade in three-dimensional isotropic turbulence,
Biferale, L., Musacchio, S., Toschi, F., Phys. Rev. Lett. 108, 164501 (2012)

Can direct and inverse cascade of energy co-exist?



# Direct Numerical Simulations
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Pseudospectral method for DNS

We solve the Navier-Stokes equations on a triply periodic box of size 2.
Initial velocity field is in Fourier space on a grid of size N3.

The nonlocal terms like ¥V x i, V2 are evaluated in in Fourier space.
Terms like U X @ are calculated in real space.

Switch between real and Fourier space by using the FFT algorithm FFTW.

For the first step of evolution a Runge-Kutta scheme is used.

vV v v v v v Y

Then an Adams-Bashforth second-order scheme is used.

For an equation of the form
dq

- = —oq +f(1) (1)

A second-order Adams-Bashforth scheme

o e—2a5t

q(t+ ot) = e_2o‘5tq(t—5t)—|—1 o X [3f(t) — f(t —dt)]. (2)




#  Navier-Stokes equations
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e 3D Navier-Stokes equations in Fourier-space

i (k) + (% ’“k? > N;(k) = —vk?u;(k),

» In Fourier space, u(k, t) has two degrees of freedom since
k-u(k,t) =0.

» We chose projection on orthonormal helical waves with
definite sign of helicty.
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» Following Waleffe Phys. Fluids (1992)

u(k,t) = a'(k, t)h" (k) + a~ (k, t)h~ (k)
ut u-
where h—(k) are the complex eigenvectors of
the curl operator ik x h™(k) = +kh~(k).
> hi -h; =264; h, = h_g,
where s and t could be +1 or —1

» Choose h* (k) = fi(k) x k + ifi,
where [i 1s an arbitrary unit vector orthogonal to k
» reality of the velocity field requires fi(k) = —fi(—k)

» Such requirement is satisfied, e.g., by the choice

N\

[i(k) =z x k/||z x k||, with z an arbitrary vector.
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» Decimated Navier-Stokes equations in Fourier space:
Orut (k, t) = PT (k)N = (k, t) + vk?u®(k, t) + f¥(k, t)

where v is kinematic viscosity and f is external forcing.

» The nonlinear term containing all triadic interactions

N,:(k, t) = FT(uF - VuT= — Vp)

» Projection operator:

h*(k) ® h*(k)*
h*(k)* - h™ (k)

u=(k, t) = PE(k)u(k, t)
u(k,t) =ut(k,t) +u (k,t)

Pi(k) =

» Eneregy E(t) = >, [ut(k, t)]* + |u=(k, t)|*.
» Helicity H(t) = >, k(Ju™(k, t)|* — |u(k, t)]?).
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~ Classes of triadic interactions in NS equations
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R-type: When large wavenumbers have same sign, middle one is unstable and could

transter energy to both small and large wavenumbers;
e predominantly to the smallest wavenumber if it has the same sign [Class-l (+, +, +)].
e mixed transfer if smallest wavenumber has the opposite sign [Class-II (+, -, -)].

F-type: When large wavenumbers
have opposite sign, smallest one is
unstable and could transfer energy
only to large wavenumbers, for both
Class-lll (+, -, +) and Class-IV (-, -, +).

* Energy and helicity are conserved for
each individual triad.

e Triads with only u+, i.e. Class-I, lead to
reversal of energy cascade.

* Energy spectra in the inverse
. 5/3
cascade regime shows a k™ slope.

Ny=(q) = FT [u™(k)- Vu™(p)] ;a=k +p k< p<g

p unstable (R-type)

k unstable (F-type)

()

u*(k) u (k)

10 ¢

E(k)

0.1 L

0.01

0.001

' Standard NS ]
Fully helical-decimated NS

o

Backward transfer

Forward transfer

= Eneregy Injection

1000

100
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& Partial Helical-decimation
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What happens in between??
when we give different weights to different class of triads...

» Modified projection operator:

prObabI|Ity 1 prObablllty (1 'Cl)

P (ku(k, £) = ut (k, £) + 0a (kK)u~ (k, 1)
where 0, (k) is 0 with probability o
and is 1 with probability 1 — a.

» We consider triads of Class-l with

orobability 1, Class-IIl with probability u’(k)
1 — « and Class-ll and Class-1V with
probability (1 — «)?. u'( u*(q)
» o = 0 — Standard Navier-Stokes. 4 (p) u'(p)
« = 1 — Fully helical-decimated NS. u*(k) a (k)
orobability (1-a)” orobability (1-a)’

» Critical value of « at which forward
cascade of energy stops? Ny:(q) = FT [ut(k)- Vut(p)];a=k+p;k<p<gq
alternatively, inverse cascade of energy
stops if forced at small scales.



& Eyolution of Energy and helicity
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* The peaks suggest the building up of the energy at forced large scales before being able
to transfer to the small scales.

* The cascade of energy starts only when helicity becomes active, i.e., modes with
negative helicity becomes energetic.

e With increase in a the peak grows, a signature of inverse cascade.



¢ Robustness of energy cascade
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10 .

e Spectra for all values of a showing

kP suggest the forward cascade of |
to be strongly robust. 0.01 }

e Unless we kill almost all the modes of o0.001 }

one helicity-type energy always finds || @=0999 No forward cascade
a way to reach small scales. 0.0001 Y Am—— — L
1 10 100
/ )
 The energy flux also remains 6 — —
. . . oa=0v ———
unaffected by the decimation until a=01
. L oa0=VUU> —&— |
a is very close to 1. : =05 —me
a=07 —e—
5 L =09 e |
.y s . =0.99
Critical value of a is~ 1! o = 0.999

1 10 100



¢ Energy in the positive helical modes
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Chen, Phys. Fluids 2003

EX(k) ~ Cre*k5/3 [1 + G (6—”) k1] ,
€E

where e is the mean energy dissipation rate
and ey is the mean helicity dissipation rate.

E*(k)

1 10 100

* The E"(k) does not change with decimation.



“®  Energy in the negative helical modes
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* E (k) shows that as we have fewer negative helical modes, they
become more energetic in the inertial range of scales.
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e The forward cascade of energy is though the triads of Class-Il|
where two large wavenumber modes have opposite sign of
helicity.

* The energy flux is carried by correlations of type

S(klp,q) = (k- ug ) (g, -ug)) + (k- upy) (uyg - ug)).

e This involves two positive helical modes and one negative
helical modes.

e Jo maintain the constant flux, u (k) must be rescaled by (1-0).
since u (k) exists with probability (1-a).



#° Reaction of negative helical modes
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U,; %U;/(l—a),

E-(k)= ) (1—w)lugl* = E"(k)/(1—a),

k| =k

(I-E (k)

0.1 4
0.01 -
0.001 ¢ oa=00 — E
i o=0.1 ----x---
a=03 ——
a=05 —=—
0= 0.7 -oomee
0.0001 ' ' — ' ) —
1 10 100
k

* Invariance of parity is restored through scaling of E (k) by the factor (1-0).



=° Conclusions
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* As we increase decimation of the modes with negative helicity (a), the
contribution of triads leading to inverse energy cascade grows.

* The forward cascade of energy is very robust in 3D turbulence. It
requires only a few negative modes to act as catalyst to transfer
energy forward.

* Only when ais very close to 1, i.e., we decimate almost all modes of

one helical sign, inverse energy cascade takes over the forward
cascade.

* We observe a strong tendency to recover parity invariance even in the
presence of an explicit parity-invariance symmetry breaking (a >0).
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o What about abrupt symmetry breaking at some k.?

can we stop the cascade by killing all negatives
modes from k>k.?

or can we start it at our wish (killing all modes up to
Ke)?

* \What about intermittency in the forward cascade
regime at changing a”



erc cinati
local energy dissipation rate
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PDF of dissipation
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Comparison of PDFs of local energy dissipation rates show
reduction of longer tails with increase in fraction of decimation a.
Less of extreme dissipation events show decrease in intermittency
with increaseing o
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Measure of intermittency: Flatness F4(r) = S4(r)/[S>(r)]?

Flatness
6.5 . - ——
o=00 —
oa=01 —
6 a=03 — -
oa=0.5
o=0.7
2 a=09 — |
3.0
N/\
N 5
(@\]
4
< 4.5
75
4
3.5

» Measure of flathess shows the small scale intermittency
reduces significantly when 10% of u™ modes are killed.

» |t reduces further and seems saturated with increase in a
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Small Scale structures
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FIG. 3: (color online) iso-vorticity surfaces for: (a) o = 0, (b) @ = 0.5, (¢c) @ = 0.9. Last plot (d) is obtained applying the

projection with a = 0.5 on the original NSE fields without any dynamical decimation. Color palette is proportional to the
intensity of the helicity.

 There is a strong depletion of filament-like structures with
dynamical decimation of negative helical modes.

However, static decimation of negative helical modes
preserves such structures.



There is drastic reduction of intermittency with decimation.

Vortex tubes usually associated with extreme events of energy
dissipation disappear.

Most importantly, only removal of helical modes dynamically, make
this difference.

Helicity surely plays a role in the direction of energy transter and
iIntermittency in the system.



Role of other triads of different classes

_p unstable (R-type) k unstable (F-type)

.
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u* (k) u'(k) u’(k)

 We keep all triads of Class | by keeping
positive helical modes at all wavenumbers.

« \We add different class of triads to the

dynamics by adding negative helical modes
ONLY at k = km and forcing k = k.

e We tried, two cases,

km <ky and k> ky t

* |n both cases, we reached a steady state as shown! But the
dynamics were different.
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Class-Il is efficient in transferring energy from forced positive
helical modes to negative helical modes at large scales.

Inverse energy cascade does NOT need positive definite
helicity!

Tor Vergata



‘fc  Added- Class IIl and Class IV km > ky
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* C(Class-lll and Class IV transter energy from forced positive
helical modes to negative helical modes at small scales.
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Lerc - Conclusions
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e Two classes of Triads (Class | and Class II') transfer energy to
the large scales.

e |tis possible to observe inverse energy cascade with out
having a sign-definite helicity.

* \When negative helical modes exist at only around one
wavenumber, a large-scale or small-scale condensate is

formed.



&  Thank you!
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* Role of helicity for large-and small-scales turbulent fluctuations,
G Sahoo, F Bonaccorso, and L Biferale.
Phys. Rev. E 92, 051002 (R) (2015).

e Disentangling the triadic interactions in Navier-Stokes equations,
G Sahoo and L Biferale.
Eur. Phys. J. E 38, 114 (2015).

* |nverse energy cascade in three-dimensional isotropic turbulence,
| Biferale, S Musacchio, and F Toschi.
Phys. Rev. Lett. 108, 164501 (2012).




