
Helicity in three dimensional turbulence 

Ganapati Sahoo and Luca Biferale
University of Rome Tor Vergata, Italy 

Presented at University of Nice Sophia-Antipolis, December 7, 2015, France

Supported by European Research Council Advanced Grant “Newturb”



Outline

• Introduction 

• Helically Decimated Navier-Stoke’s equation 

• Energy transfer and helicity 

• Large and small scale structures



Turbulence everywhere

• All environmental flows are turbulent,  

• Atmospheric boundary layer, Ocean 
Currents, interstellar clouds, flow of gas 
and oil in pipe lines, combustion in engines, 

Fumes Clouds Tornado Ocean

Windmills Sun Jupiter Soap Film

Blood flow in Aorta



Conserved quantities

• Navier-Stoke’s equations for incompressible flow 

• Energy 

• Helicity 

• are conserved in un-forced and non-dissipative flows. 

• Helicity is a pseudoscalar: changes sign under parity. 

• Unlike energy, helicity is not positive definite.  

H =

Z
u(x) · !(x)d3x

E =

Z
u(x) · u(x)d3x

Betchov 1961
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Kolmogorov theory (1941)
• For very high Re, the statistical properties of eddies of sizes in the inertial range of 

scales are 

• independent of the forced and dissipative scales, and are locally homogeneous 
and isotropic.

• universally and uniquely determined by the length scale l, viscosity ν, and the 
rate of energy dissipation ε.

• Characteristic velocity of an eddy of size l scales as ul ~ (lε)-1/3. 

• Energy spectrum in the inertial range

• Self-Similarity hypothesis: Structure functions of p-th order scales as

Sp(l) = h�up
l i ⇠ ("l)p/3,

�ul = [u(r+ l)� u(r)] · l
l .

E(k) ⇠ "2/3k�5/3,

for L�1 << k << ⌘�1
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✓
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Effects of helicity

• Nonlinearity: Since u.w is nonzero, there could be decrease in 
the nonlinearity u x w. e.g. linear Bertram flows with maximal 
helicity. 

• Nonlocality: Nonzero u.w also implies stronger coupling 
between large and small scales, i.e. increasing non-locality. e.g. 
production of large scale magnetic fields in conductive fluids.  

• Self-production: At a very high Re, there is a growth of helicity at 
the small scales, even though total helicity remains finite, 
because of the symmetry.



Effects of helicity

• Energy gets distributed among scales by the nonlinear term in Navier-Stoke’s 
equation and  assuming a constant energy flux we observe the scaling behaviour  

• By similar dimensionality argument and assuming a constant helicity flux h [LT-3], 
we obtain 

• But such a scaling is not observed. Why?

�ul = [u(r+ l)� u(r)] · l
l ⇠ "1/3l1/3

�ul = [u(r+ l)� u(r)] · l
l ⇠ h1/3l2/3

" = 2⌫h@jui@iuji

h = 2⌫h@jui@i!ji



Effects of helicity

• There is no purely helicity dominated turbulence since both 
energy and helicity cascade to the small scales. 

• For the joint cascade of energy and helicity we expect 

• But then, we can not determine the exponents, uniquely, 
from dimensionality argument. 

• Presence of helicity changes the geometrical structure in a 
subtle way, which could not be captured by simple 
dimensional analysis.

�ul = [u(r+ l)� u(r)] · l
l ⇠ "�h� l�



Exact results

h�u3
L(r)i = � 4

5"r

h�uL(r)�u(r) · �!(r)i � 1
2 h�!L(r)�u(r) · �u(r)i = � 4

3hr

�u(r) ⌘ u(x+ r)� u(x); �uL(r) ⌘ �u(r) · r
r

�!(r) ⌘ !(x+ r)� !(x); �!L(r) ⌘ �!(r) · r
r

Where

For pure energy cascade 

For pure helicity cascade 



Dimensionality

• The direction of cascade is 
determined by positive-
definite inviscid invariants. 

• In 2D: energy and enstrophy 
are conserved; both positive-
definite. 

• In 3D: energy and helicity are 
conserved; helicity is not 
positive-definite.

3D  

2D  

3D: Kinetic energy is transferred  
       from large to small eddies 

2D: Kinetic energy is transferred  
       from small to large eddies 

Many physical phenomena can 
change of the dimensionality of  
a turbulent flow: 

Confinement in thin fluid layers 

Rotation 

Stable stratification 

Helical flows 



2D or 3D ?

Many geophysical flows (e.g. oceans, atmosphere) 
have quasi-2d aspect ratios  

Complex systems:  

Turbulence 
Waves  
Stratification 
Convection 
Rotation (Coriolis)  
Boundaries 
Cloud physics  

A4 paper (80gr/m2) 
L1= 210 mm 
L2 = 297 mm 
h   = 0.1 mm 

Pacific Ocean 
N-S = 15000 km 
E-W = 19800 km 
average depth = 4.28 km 

• Many flows are quasi-2D, like 
thick films, geophysical flows 
like ocean and atmosphere.  

• Physical phenomenas change 
the dimensionality of the 
system, like rotation. 

• There have been evidence of 
inverse energy cascade in 
such systems. 

• Also conducting fluids transfer 
energy to the large scales.



Transition from 3D to 2D

• If we make helicity positive definite, do we see inverse 
energy transfer in 3D?

• Dimensional transition occurs in turbulent 
fluid layers from 3D direct energy cascade 
to 2D inverse energy cascade as we 
decrease the thickness of the layer. 

• Depending upon the aspect ratio there is a 
coexistence of inverse and direct cascade. 

• Enstrophy (w.w) becomes quasi-invariant 
as only conserved by large scale dynamics 
where the flow is two dimensional. 

• Inverse cascade develops because of 
existence of another positive definite 
conserved quantity.

H. Xia, D. Byrne, G. Falkovich, and M. Shats, Nat. Phys. 7, 321 (2011) 
D. Byrne, H. Xia and M. Shats Phys. Fluids, 23, 095109 (2011)  

Inverse cascade 

Condensate 
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D. Byrne, H. Xia and M. Shats Phys. Fluids, 23, 095109 (2011)  
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D. Byrne, H. Xia and M. Shats Phys. Fluids, 23, 095109 (2011)  

Inverse cascade 
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H. Xia, D. Byrne, G. Falkovich, and M. Shats, Nat. Phys. 7, 321 (2011) 
D. Byrne, H. Xia and M. Shats Phys. Fluids, 23, 095109 (2011)  

Inverse cascade 

Condensate 



Inverse energy cascade in 3D

• Making the helicity sign-definite, we observe inverse 
cascade of energy.

Inverse energy cascade in three-dimensional isotropic turbulence,
Biferale, L., Musacchio, S., Toschi, F., Phys. Rev. Lett. 108, 164501 (2012)



Inverse energy cascade in 3D

• Making the helicity sign-definite, we observe inverse 
cascade of energy.

Inverse energy cascade in three-dimensional isotropic turbulence,
Biferale, L., Musacchio, S., Toschi, F., Phys. Rev. Lett. 108, 164501 (2012)

Can direct and inverse cascade of energy co-exist?



Direct Numerical Simulations
Pseudospectral method for DNS

I We solve the Navier-Stokes equations on a triply periodic box of size 2⇡.

I Initial velocity field is in Fourier space on a grid of size N3.

I The nonlocal terms like ~r⇥ ~u, r2~u are evaluated in in Fourier space.

I Terms like ~u ⇥ ~! are calculated in real space.

I Switch between real and Fourier space by using the FFT algorithm FFTW.

I For the first step of evolution a Runge-Kutta scheme is used.

I Then an Adams-Bashforth second-order scheme is used.

For an equation of the form

dq

dt
= �↵q + f (t) (1)

A second-order Adams-Bashforth scheme

q(t + �t) = e�2↵�tq(t � �t) +
1� e�2↵�t

2↵
⇥ [3f (t)� f (t � �t)]. (2)



Navier-Stokes equations

Helical-decomposition of velocity

I In Fourier space, u(k, t) has two degrees of freedom since
k · u(k, t) = 0.

I We chose projection on orthonormal helical waves with
definite sign of helicty.

I Following Wale↵e Phys. Fluids (1992)

u(k, t) = a+(k, t)h+(k) + a�(k, t)h�(k)

where h

±(k) are the complex eigenvectors of
the curl operator ik⇥ h

±(k) = ±kh±(k).

I
h

⇤
s · ht = 2�st ; h

⇤
s = h�s ,

where s and t could be +1 or �1

u̇i(k) +

✓
�ij �

kikj
k2

◆
Nj(k) = �⌫k2ui(k),

where Ni(q) =
X

q=k+p

ikjui(k)uj(p)

• 3D Navier-Stokes equations in Fourier-space



Helical decomposition

Helical-decomposition of velocity

I In Fourier space, u(k, t) has two degrees of freedom since
k · u(k, t) = 0.

I We chose projection on orthonormal helical waves with
definite sign of helicty.

I Following Wale↵e Phys. Fluids (1992)

u(k, t) = a+(k, t)h+(k) + a�(k, t)h�(k)

where h

±(k) are the complex eigenvectors of
the curl operator ik⇥ h

±(k) = ±kh±(k).

I
h

⇤
s · ht = 2�st ; h

⇤
s = h�s ,

where s and t could be +1 or �1
Helical-decomposition of velocity

I Choose h

±(k) = µ̂(k)⇥ k̂± iµ̂,
where µ̂ is an arbitrary unit vector orthogonal to k

I reality of the velocity field requires µ̂(k) = �µ̂(�k)

I Such requirement is satisfied, e.g., by the choice
µ̂(k) = z⇥ k/||z⇥ k||, with z an arbitrary vector.

I Projection operator:

P±(k) ⌘ h

±(k)⌦ h

±(k)⇤

h

±(k)⇤ · h±(k)
u

±(k, t) = P±(k)u(k, t)

u(k, t) = u

+(k, t) + u

�(k, t)

I Eneregy E (t) =
P

k

|u+(k, t)|2 + |u�(k, t)|2.
I Helicity H(t) =

P
k

k(|u+(k, t)|2 � |u�(k, t)|2).

u+ u�



Helically decimated Navier-Stokes equations

Helical-decomposition of velocity

I Choose h

±(k) = µ̂(k)⇥ k̂± iµ̂,
where µ̂ is an arbitrary unit vector orthogonal to k

I reality of the velocity field requires µ̂(k) = �µ̂(�k)

I Such requirement is satisfied, e.g., by the choice
µ̂(k) = z⇥ k/||z⇥ k||, with z an arbitrary vector.

I Projection operator:

P±(k) ⌘ h

±(k)⌦ h

±(k)⇤

h

±(k)⇤ · h±(k)
u

±(k, t) = P±(k)u(k, t)

u(k, t) = u

+(k, t) + u

�(k, t)

I Eneregy E (t) =
P

k

|u+(k, t)|2 + |u�(k, t)|2.
I Helicity H(t) =

P
k

k(|u+(k, t)|2 � |u�(k, t)|2).

Helical-decimated Navier-Stokes equations

I Decimated Navier-Stokes equations in Fourier space:

@tu
±(k, t) = P±(k)Nu±(k, t) + ⌫k2u±(k, t) + f

±(k, t)

where ⌫ is kinematic viscosity and f is external forcing.

I The nonlinear term containing all triadic interactions

Nu±(k, t) = FT (u± ·ru

± �rp)



Classes of triadic interactions in NS equations 

F-type: When large wavenumbers 
have opposite sign, smallest one is 
unstable and could transfer energy 
only to large wavenumbers, for both 
Class-III (+, -, +) and Class-IV (-, -, +). 

• Energy and helicity are conserved for 
each individual triad. 

• Triads with only u+, i.e. Class-I, lead to 
reversal of energy cascade. 

• Energy spectra in the inverse 
cascade regime shows a  k-5/3 slope.

R-type: When large wavenumbers have same sign, middle one is unstable and could 
transfer energy to both small and large wavenumbers;  
• predominantly to the smallest wavenumber if it has the same sign [Class-I (+, +, +)]. 
• mixed transfer if smallest wavenumber has the opposite sign [Class-II (+, -, -)].
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Eneregy Injection

E(k)

k

I

All

Direction of energy transfer in triads 

F-type: When large wavenumbers have same sign, middle one is unstable 
and could transfer energy to both small and large wavenumbers;  
• predominantly to the smallest wavenumber if it has the same sign [Class-I (+, +, +)]. 
• mixed transfer if smallest wavenumber has the opposite sign [Class-II (+, -, -)].

R-type: When large wavenumbers have opposite sign, smallest one is 
unstable and could transfer energy only to large wavenumbers, for both 
Class-III (+, -, +) and Class-IV (-, -, +).

p unstable (R-type)

u+(p)

u+(k)

u+(q)

I

u-(p)

u+(k)

u-(q)

u-(p)
u+(k)

u+(q)

u-(p)

u-(k)

u+(q)

k unstable (F-type)

Helical-decimated Navier-Stokes equations

Nu±(k, t) = FT (u± ·ru± �rp)

Nu±(q) = FT
⇥
u±(k) ·ru±(p)

⇤
;q = k+ p; k  p  q

I Four classes of
nonlinear triadic
interactions with
definite helicity signs
under helical
decomposition of NS
equations; k  p  q.

I Energy and helicity
are conserved for
each triads.

II III IV



Partial Helical-decimation

probability 1 probability (1-α)

probability (1-α)2

u+(p)

u+(k)

u+(q)
I

u-(p)

u+(k)

u-(q) II

u-(p)

u+(k)

u+(q) III

u-(p)
u-(k)

u+(q) IV

probability (1-α)2

Helical-decimated Navier-Stokes equations

Nu±(k, t) = FT (u± ·ru± �rp)

Nu±(q) = FT
⇥
u±(k) ·ru±(p)

⇤
;q = k+ p; k  p  q

I Four classes of
nonlinear triadic
interactions with
definite helicity signs
under helical
decomposition of NS
equations; k  p  q.

I Energy and helicity
are conserved for
each triads.

What happens in between??  
when we give different weights to different class of triads…

Helical-decimated Navier-Stokes equations

I Modified projection operator:

P+
↵ (k)u(k, t) = u+(k, t)+✓↵(k)u�(k, t)

where ✓↵(k) is 0 with probability ↵
and is 1 with probability 1� ↵.

I We consider triads of Class-I with
probability 1, Class-III with probability
1� ↵ and Class-II and Class-IV with
probability (1� ↵)2.

I ↵ = 0 ! Standard Navier-Stokes.
↵ = 1 ! Fully helical-decimated NS.

I Critical value of ↵ at which forward
cascade of energy stops?
alternatively, inverse cascade of energy
stops if forced at small scales.

Pseudo-spectral DNS on a triply periodic
cubic domain of size L = 2⇡ with resolutions
upto 5123 collocation points.



Evolution of Energy and helicity

• The peaks suggest the building up of the energy at forced large scales before being able 
to transfer to the small scales.  

• The cascade of energy starts only when helicity becomes active, i.e., modes with 
negative helicity becomes energetic. 

• With increase in α the peak grows, a signature of inverse cascade.

• Pseudo-spectral DNS on a triply periodic cubic domain of size L = 2π with resolutions up to 5123 collocation points. 

Inverse cascade
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Robustness of energy cascade 

• Spectra for all values of α showing 
k-5/3 suggest the forward cascade of    
to be strongly robust. 

• Unless we kill almost all the modes of 
one helicity-type energy always finds 
a way to reach small scales. 

• The energy flux also remains 
unaffected by the decimation until   
 α  is very close to 1. 

• Critical value of α  is ~ 1 !
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Energy in the positive helical modes

• The E+(k) does not change with decimation. 

Chen, Phys. Fluids 2003

Thank you!

E±(k) ⇠ C1✏
2/3
E k�5/3


1± C2

✓
✏H
✏E

◆
k�1

�
,

where ✏E is the mean energy dissipation rate
and ✏H is the mean helicity dissipation rate.

I As we increase ↵, the contribution of triads leading to inverse
energy cascade grows.

I Only when ↵ is very close to 1 inverse energy cascade takes
over the forward cascade.

I Critical value of ↵ may have Reynolds number dependence!

I Can both forward and inverse cascade co-exist?

I What about intermittency in the forward cascade regime at
changing ↵.
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Energy in the negative helical modes
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α = 0.0
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• E-(k) shows that as we have fewer negative helical modes, they 
become more energetic in the inertial range of scales. 



• The forward cascade of energy is though the triads of Class-III 
where two large wavenumber modes have opposite sign of 
helicity. 

• The energy flux is carried by correlations of type  

• This involves two positive helical modes and one negative 
helical modes. 

• To maintain the constant flux, u-(k) must be rescaled by (1-α). 
since u-(k) exists with probability (1-α). 
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FIG. 2: (a) Log-log plot of E+(k) =
P

|k|=k

|u+
k |

2 vs k at changing ↵. (b) Log-log plot of E�(k) =
P

|k|=k

(1� �k)|u�
k |

2 vs k at

changing ↵; Inset: rescaled E�(k) with factor (1�↵). (c) Semi-log plot of flux of energy; Inset: flux of helicity, at changing ↵.

transferred forward with a rate " and h respectively, we
expect the usual Kolmogorov 1941 scaling (K41) for both
energy and helicity spectra [12, 17]:

E(k) ⇠ CE "2/3 k�5/3; H(k) ⇠ CH h "�1/3k�5/3,

which reflects in the scaling for each component as

E±(k) = "2/3k�5/3[1± C h ("k)�1], (8)

where C = CH/CE . In Fig. 1 we show the time evolution
of the total energy E↵, given in (6), starting from a null
configuration u

k

= 0 at t = 0 at varying the degree of
decimation from ↵ = 0, for the non-decimated NS case,
to ↵ ⇠ 1. We notice first that the time needed to de-
velop the initial release of energy becomes longer with in-
creasing ↵ and that the oscillations around the stationary
regime, for long times, are also larger when ↵ ⇠ 1. The
most striking phenomenon is that even for very high dec-
imation of negative helical modes, ↵ ⇠ 1, the system is
able to reach a stationary state transferring energy to the
small-scales. In other words, it is enough to have a very
few negative helical modes to develop a stable and sta-
tionary positive energy flux. This is quantified in Fig. 2
where we separately plot the spectra for the two helical
components for various ↵. The spectrum for the positive
helical modes (Fig. 2a) is almost unchanged and indepen-
dent of ↵ with a clearly developed k�5/3 slope. Whereas
the spectrum for the negative helical modes (Fig. 2b)
tends to react back and become more and more energetic
as ↵ increases; this can be explained by looking at the
behaviour of the energy flux. In Fig. 2c we show that
the energy flux is constant and independent of ↵ for all
↵ < 1, it reverts only for ↵ ⇠ 1. The surprising e�ciency
of the nonlinear transfer to find its way to small-scales
suggests that helicity plays a singular role in turbulence:
a tiny mixture of positive and negative helical modes, i.e.,
the existence of a few triads with mixed helicity signs, is
enough to sustain energy transfer across all scales. This
fact was suggested in [16] where the primary role of the
triads with two high-wavenumber modes of opposite he-
licity was realized as the main contribution to the vortex
stretching mechanisms. The constant energy flux must

be mainly carried by triadic correlations with only one
negative and two positive helical modes like

S(k|p, q) = h(k · u�
q

)(u+

k

· u+

p

)i+ h(k · u+

p

)(u+

k

· u�
q

)i. (9)

This is becasue such correlations are present with proba-
bility / (1� ↵) while other correlations, with two nega-
tive helical modes, are present with probability / (1�↵)2

in the dynamics. Thus one can predict that

u�
k

! u�
k

/(1� ↵), (10)

E�(k) =
X

|k|=k

(1� �
k

)|u�
k

|2 ! E�(k)/(1� ↵), (11)

because each u�
k

in (9) must be renormalized by a fac-
tor / 1/(1 � ↵) in order to keep the triadic correlation
constant. As a result, negative helical modes retain more
energy in order to maintain a constant energy flux. This
prediction is shown to be well realized in the inset of
Fig. 2b, where we show that rescaling E�(k) by a factor
(1�↵) leads to a good overlap except for ↵ ⇠ 1 where the
fluctuations due to the onset of the inverse energy trans-
fer becomes very large and the above argument possibly
breaks down. Negative helical modes play a singular role.
They act as ‘bridges’ for the energy transfer; they receive
energy from the large-scale positive helical modes and re-
lease it to the small-scale positive helical modes; fewer
they are more intense their amplitude must be to do it
e�ciently. Moreover, negative helical modes can trans-
fer energy to other negative helical modes only if they
form a triad; an event that has a probability / (1� ↵)2

to be present. When negative helical modes become too
rare or absent, i.e., for ↵ ⇠ 1, this bridging is not possi-
ble anymore and the energy flows up-scale [27]. Helicity
plays the role of a passive catalyst in the energy transfer.
This can also be seen in the behavior of its flux (see in-
set of Fig. 2c) which is independent of ↵ except at very
high dissipative wavenumbers where the mismatch be-
tween energy of the positive and negative helical modes
induce an increase of the helicity transfer [17, 18]. Prov-
ing the existence of a unique ↵c for the inversion of the
energy transfer could be extremely hard and it may not



Reaction of negative helical modes
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• Invariance of parity is restored through scaling of E-(k) by the factor (1-α).  

Thank you!

E±(k) ⇠ C1✏
2/3
E k�5/3


1± C2

✓
✏H
✏E

◆
k�1

�
,

where ✏E is the mean energy dissipation rate and ✏H is the mean helicity dissipation rate.
I As we increase ↵, the contribution of triads leading to inverse energy cascade grows.
I Only when ↵ is very close to 1 inverse energy cascade takes over the forward cascade.
I Critical value of ↵ may have Reynolds number dependence!
I Can both forward and inverse cascade co-exist?
I What about intermittency in the forward cascade regime at changing ↵.
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FIG. 2: (a) Log-log plot of E+(k) =
P

|k|=k

|u+
k |

2 vs k at changing ↵. (b) Log-log plot of E�(k) =
P

|k|=k

(1� �k)|u�
k |

2 vs k at

changing ↵; Inset: rescaled E�(k) with factor (1�↵). (c) Semi-log plot of flux of energy; Inset: flux of helicity, at changing ↵.

transferred forward with a rate " and h respectively, we
expect the usual Kolmogorov 1941 scaling (K41) for both
energy and helicity spectra [12, 17]:

E(k) ⇠ CE "2/3 k�5/3; H(k) ⇠ CH h "�1/3k�5/3,

which reflects in the scaling for each component as

E±(k) = "2/3k�5/3[1± C h ("k)�1], (8)

where C = CH/CE . In Fig. 1 we show the time evolution
of the total energy E↵, given in (6), starting from a null
configuration u

k

= 0 at t = 0 at varying the degree of
decimation from ↵ = 0, for the non-decimated NS case,
to ↵ ⇠ 1. We notice first that the time needed to de-
velop the initial release of energy becomes longer with in-
creasing ↵ and that the oscillations around the stationary
regime, for long times, are also larger when ↵ ⇠ 1. The
most striking phenomenon is that even for very high dec-
imation of negative helical modes, ↵ ⇠ 1, the system is
able to reach a stationary state transferring energy to the
small-scales. In other words, it is enough to have a very
few negative helical modes to develop a stable and sta-
tionary positive energy flux. This is quantified in Fig. 2
where we separately plot the spectra for the two helical
components for various ↵. The spectrum for the positive
helical modes (Fig. 2a) is almost unchanged and indepen-
dent of ↵ with a clearly developed k�5/3 slope. Whereas
the spectrum for the negative helical modes (Fig. 2b)
tends to react back and become more and more energetic
as ↵ increases; this can be explained by looking at the
behaviour of the energy flux. In Fig. 2c we show that
the energy flux is constant and independent of ↵ for all
↵ < 1, it reverts only for ↵ ⇠ 1. The surprising e�ciency
of the nonlinear transfer to find its way to small-scales
suggests that helicity plays a singular role in turbulence:
a tiny mixture of positive and negative helical modes, i.e.,
the existence of a few triads with mixed helicity signs, is
enough to sustain energy transfer across all scales. This
fact was suggested in [16] where the primary role of the
triads with two high-wavenumber modes of opposite he-
licity was realized as the main contribution to the vortex
stretching mechanisms. The constant energy flux must

be mainly carried by triadic correlations with only one
negative and two positive helical modes like

S(k|p, q) = h(k · u�
q

)(u+

k

· u+

p

)i+ h(k · u+

p

)(u+

k

· u�
q

)i. (9)

This is becasue such correlations are present with proba-
bility / (1� ↵) while other correlations, with two nega-
tive helical modes, are present with probability / (1�↵)2

in the dynamics. Thus one can predict that

u�
k

! u�
k

/(1� ↵), (10)

E�(k) =
X

|k|=k

(1� �
k

)|u�
k

|2 ! E�(k)/(1� ↵), (11)

because each u�
k

in (9) must be renormalized by a fac-
tor / 1/(1 � ↵) in order to keep the triadic correlation
constant. As a result, negative helical modes retain more
energy in order to maintain a constant energy flux. This
prediction is shown to be well realized in the inset of
Fig. 2b, where we show that rescaling E�(k) by a factor
(1�↵) leads to a good overlap except for ↵ ⇠ 1 where the
fluctuations due to the onset of the inverse energy trans-
fer becomes very large and the above argument possibly
breaks down. Negative helical modes play a singular role.
They act as ‘bridges’ for the energy transfer; they receive
energy from the large-scale positive helical modes and re-
lease it to the small-scale positive helical modes; fewer
they are more intense their amplitude must be to do it
e�ciently. Moreover, negative helical modes can trans-
fer energy to other negative helical modes only if they
form a triad; an event that has a probability / (1� ↵)2

to be present. When negative helical modes become too
rare or absent, i.e., for ↵ ⇠ 1, this bridging is not possi-
ble anymore and the energy flows up-scale [27]. Helicity
plays the role of a passive catalyst in the energy transfer.
This can also be seen in the behavior of its flux (see in-
set of Fig. 2c) which is independent of ↵ except at very
high dissipative wavenumbers where the mismatch be-
tween energy of the positive and negative helical modes
induce an increase of the helicity transfer [17, 18]. Prov-
ing the existence of a unique ↵c for the inversion of the
energy transfer could be extremely hard and it may not



Conclusions

• As we increase decimation of the modes with negative helicity (α), the 
contribution of triads leading to inverse energy cascade grows. 

• The forward cascade of energy is very robust in 3D turbulence. It 
requires only a few negative modes to act as catalyst to transfer 
energy forward. 

• Only when α is very close to 1, i.e., we decimate almost all modes of 
one helical sign, inverse energy cascade takes over the forward 
cascade. 

• We observe a strong tendency to recover parity invariance even in the 
presence of an explicit parity-invariance symmetry breaking (α >0).



• What about abrupt symmetry breaking at some kc?  

• can we stop the cascade by killing all negatives 
modes from k>kc?  

• or can we start it at our wish (killing all modes up to 
kc)? 

• What about intermittency in the forward cascade 
regime at changing α?
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Measure of intermittency: Flatness F
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Small Scale structures

4

FIG. 3: (color online) iso-vorticity surfaces for: (a) ↵ = 0, (b) ↵ = 0.5, (c) ↵ = 0.9. Last plot (d) is obtained applying the
projection with ↵ = 0.5 on the original NSE fields without any dynamical decimation. Color palette is proportional to the
intensity of the helicity.

be crucial. The observed value is so close to unity that it
might also be dependent on the realization of �

k

and/or
on the Reynolds numbers. This issue is left for more
detailed analysis in a future work.
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FIG. 4: Excess Kurtosis measured at the dissipative scale,
r
x

= ⌘ (a) and in the inertial range, r
x

= 20⌘ (b). (⇤):
decimation of negative helical modes only; (�): decimation of
either positive or negative helical modes with 50% probability.
(4): aposteriori decimation of negative helical modes from a
velocity field of standard non-decimated NSE.

The second important problem addressed concerns
with intermittency, the presence of strong non-Gaussian
fluctuations at small scales, usually interpreted as a build
up of instabilities in the vortex-stretching mechanisms.
Here we want to understand how intermittency changes
under the helical mode-reduction. A visual inspection of
the vorticity field, in Fig. 3, shows a strong depletion of
filament-like structures, starting from the standard 3D
NSE (Fig. 3a), as a function of the degree of decimation
of the negative helical modes (see Fig. 3b and Fig. 3c).
In Fig. 4 we show the evolution of the excess Kurtosis,

K(rx) =
h(�r

x

u↵
y )

4i
h(�r

x

u↵
y )

2i2 � 3,

of the transverse velocity increments �r
x

u↵
y = u↵

y (rx) �

u↵
y (0) for two values of rx and at changing ↵, where the

selection of the x � y components is arbitrary because
of isotropy. We found that intermittency is very sensi-
tive to ↵-decimation; it is enough to remove, from the
dynamics, a small fraction of negative helical modes to
strongly deplete the non-Gaussian character as measured
by the fact that the excess Kurtosis is approaching 0.
We show in Fig. 4 also the results of another numerical
experiment, where we repeated the measurements in a
set of simulations (RUN 9-13) with random decimation;
this time either a positive or a negative helical mode is
decimated with a global probability ↵. The reduction
in the intensity of intermittency is comparable with the
previous case; suggesting that it is mainly due to the de-
crease in the total number of dynamically active modes
than due to their helical nature. This result is another
manifestation of the passive role of helicity in the energy
transfer mechanism. To further investigate the role of dy-
namic helical mode-reduction, we performed a projection
aposteriori, applying the operator Dalpha to the velocity
field obtained from a fully resolved non-decimated NSE
(↵ = 0). In this case, intermittency remains almost un-
changed, independently of ↵, suggesting that only the
dynamical mode-reduction is crucial to deplete the vor-
tex stretching mechanism. For the original NSE positive
and negative helical modes develop the same content of
intermittency (see Fig. 3d for a visual confirmation of this
fact). In conclusion, we have highlighted and quantified
the singular role played by the helical Fourier modes in
the energy flux reversal, showing that a forward transfer
is always preferred as soon as a very small percentage of
modes with opposite helicity are present. In contrast, the
leading intermittent fluctuations are very fragile to any
mode-reduction (helical or not helical) suggesting that
the origin of real-space intermittency must rely on highly
non-trivial and non-local correlations in Fourier space.

We acknowledge funding from the European Research
Council under the European Union’s Seventh Framework
Programme, ERC Grant Agreement No 339032.

• There is a strong depletion of filament-like structures with 
dynamical decimation of negative helical modes.

• However, static decimation of negative helical modes 
preserves such structures.



Conclusion

• There is drastic reduction of intermittency with decimation. 

• Vortex tubes usually associated with extreme events of energy 
dissipation disappear. 

• Most importantly, only removal of helical modes dynamically, make 
this difference.  

• Helicity surely plays a role in the direction of energy transfer and 
intermittency in the system.
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Fig. 1. (Color online) Schematic presentation of triads [8]: Triads where the two largest wave numbers have the same sign of
helicity are responsible for a reverse transfer of energy and are called of R-type. They include triads of Class I and of Class
II. Triads where the two largest wave numbers have opposite sign of helicity are responsible for forward transfer of energy and
are called of F-type. They include triads in Class III and Class IV. For R-type (F-type) the Fourier mode with the medium
(smallest) wave number is unstable and transfers energy to the other two Fourier modes. The arrows (green for reverse and red
for forward) show the direction of energy transfer.

where the modes ûk satisfy the incompressibility condi-
tion k · ûk = 0 and can be exactly decomposed in terms
of the helically polarized waves as [8,9]

ûk = u+
k h+

k + u−
k h−

k . (2)

The eigenvectors of the curl h±
k are given by

h±
k = ν̂k × k̂ ± iν̂k, (3)

so that ik × h±
k = ±kh±

k , where ν̂k is a unit vector or-
thogonal to k such that ν̂k = −ν̂−k to enforce reality of
the field. One can choose, for example [8]

ν̂k =
z × k

||z × k||
, (4)

where z is any arbitrary vector. The eigenvectors h±
k sat-

isfy the orthogonality condition hs
k · ht∗

k = 2δst, where
s, t = ± denote the signs of the helicity and ∗ is for the
complex conjugate. We define a projector

P±
k ≡

h±
k ⊗ h±∗

k

h±∗
k · h±

k

, (5)

which projects the Fourier modes of the velocity on eigen-
vectors h±

k as

P±
k ûk = û±

k = u±
k h±

k . (6)

The Navier-Stokes equations can be decomposed in terms
of the evolution of velocities with positive or negative sign
of helicity as follows:

∂u±(x)

∂t
+ D±

N[u(x),u(x)] = ν∇2u±(x) + f
±, (7)

where the operator D±(u) acts on a generic three-
dimensional vector field by projecting all Fourier compo-
nents on h±

k

D±u(x) ≡
∑

k

eikx P±
k ûk (8)

and N[u(x),u(x)] is the nonlinear terms of the Navier-
Stokes equations [25]. The total energy and the total he-
licity can also be easily expressed in terms of the helical
modes

E =

∫

d3x |u(x)|2 =
∑

k

|u+
k |

2 + |u−
k |

2, (9)

H =

∫

d3xu(x) · ω(x) =
∑

k

k(|u+
k |

2 − |u−
k |

2), (10)

where ω(x) = ∇× u(x) is the vorticity. From the above
expression one can introduce the energy spectrum for pos-
itive and for negative helical modes [19,20]

E+(k) =
∑

|k|∈[k,k+1]

|u+
k |

2, (11)

E−(k) =
∑

|k|∈[k,k+1]

|u−
k |

2. (12)

Plugging the decomposition (2) into the Navier-Stokes
equations (7), it is easy to realize that the nonlinear term
consists of triadic interactions with eight (four for the
evolution of u+ and four for the evolution of u−) pos-
sible helical combinations of the generic modes usk

k , u
sp
p ,

u
sq
q forming an interacting triad, i.e., k + p + q = 0, for

sk = ±, sp = ±, sq = ± [8] (see fig. 1 where for sim-
plicity we assume that k ≤ p ≤ q). The four classes of
triads are classified as follows: Class I, containing triads
formed with all wave numbers having the same sign of he-
licity, i.e., (+,+,+); Class II, made of triads where the
two smallest wave numbers have opposite sign of helicity
and the two largest wave numbers have the same sign of
helicity, i.e., (−,+,+); Class III, containing triads where
the two smallest wave numbers have the same sign of he-
licity and the two largest wave numbers have an opposite
sign of helicity, i.e., (+,+,−); and Class IV, made of tri-
ads where the two smallest wave numbers and the two
largest wave numbers have opposite sign of helicity, i.e.,
(+,−,+) (see fig. 1). In [8], studying the instability of the
energy exchange among modes of each single triad, it was

• We keep all triads of Class I by keeping 
positive helical modes at all wavenumbers.

• We add different class of triads to the 
dynamics by adding negative helical modes 
ONLY at k = km and forcing k = kf.
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Fig. 4. The same of fig. 3 but for the case when km = 6, except for (d) where energy flux and dissipation are compared at
t ∼ 40 when the simulation is stopped (see fig. 2).

large scales (k < kf ) also lose their energy by a forward
cascade, probably highly nonlocal. Figure 6(c) shows the
evolution of the energy flux during the backward and for-
ward regimes. Panel (d) of the same figure compares the
viscous contribution and the nonlinear flux. The figure
shows that in the late stationary regime the viscous drag,
induced by the high energy content of the negative helical
modes, is balanced with the nonlinear flux. In this case
we have a small-scales condensate that adsorbs all energy
flowing between modes at k ∼ kf and k ∼ km. This is pos-
sibly due to the fact that positive helical modes at k > km

do not receive energy from the negative helical modes at
k ∼ km as they could only form triads of Class II which
are responsible for inverse energy transfer.

3.3 Coherent structures

As discussed in the previous sections, both experiments
lead to a sort of helical condensate concentrated on the
wave numbers where the negative helical modes exists.
This is a different way to produce (and stabilize) strong
nonlinear structures in Navier-Stokes equations with re-
spect to the well-known case of two-dimensional turbu-
lence [32–37]. A visualization of the vorticity field where

 0

 10

 20

 30

 0  1  2  3  4  5  6  7  8  9  10

t

E(t)

E
+
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Fig. 5. Time evolution of total energy E(t), energy of posi-
tive helical modes E+(t), and energy of negative helical modes
E−(t) when kf ∈ [4, 6] and km = 16.

an inverse cascade of energy is observed is shown in
fig. 7(a). The presence of helical stable structures is clearly
detectable. In panel (b) of the same figure we show simi-
lar small-scale condensates that populate the flow when
kf ∈ [4, 6] and km = 16. It would be interesting to

• In both cases, we reached a steady state as shown! But the 
dynamics were different.

• We tried, two cases, 
km < kf and km > kf



Added- Class II

• Class-II is efficient in transferring energy from forced positive 
helical modes to negative helical modes at large scales.

km < kfEur. Phys. J. E (2015) 38: 114 Page 5 of 8
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Fig. 3. (a) Log-log plot of total energy spectra at different times. (b) The same of (a) for the positive helical modes spectrum.
The mismatch between the two spectra for k = km is due to the energy of the negative helical modes. We have drawn a dashed
line with slope of −5/3 to highlight the possible growth of inverse cascade spectrum when there is a large inertial range of
scales. (c) Fluxes of energy (see definition (17)). (d) Comparision of energy flux ΠE(k) and dissipation D(k) (see text) at the
time when the simulation is stopped (t ∼ 32, see fig. 2). The forced wave numbers at kf ∈ [10, 12] are marked with a light grey
band, while the wave numbers with negative helical modes around km = 2 are in dark grey.

wave numbers fall in the forced range and the other be-
long to the negative helical modes then we have v = 0.6
for km = 6 and v = 0.2 for km = 2. As seen in fig. 4 we
observe an inverse energy transfer also for v = 0.6 con-
tradicting the prediction made by [8]. This is probably
due to the absence of any scaling regime for the configu-
ration of forced and negative helical modes chosen here,
as shown by panel (a) and (b) of fig. 4, and therefore our
configuration does not satisfy the assumptions made in [8].
Figure 4(d) shows the balance of ΠE(k) and D(k) for the
wave numbers k ∈ [km, kf ] which confirms that negative
helical modes lose energy due to molecular dissipation in
such case.

3.2 Energy transfer for km > kf

In this second set of simulations we forced at kf ∈ [4, 6]
and kept the negative helical modes only for larger wave
numbers, km = 10 and km = 16. The behavior of the

growth of energy is similar to the cases of km < kf (see
fig. 5). After the negative helical modes become ener-
getic they continue to accumulate energy and then reach
a steady state by dissipating energy directly via molec-
ular viscosity. However the dynamics of energy transfer
is entirely different from previous cases as seen in fig. 6.
In fig. 6(a) and (b) we show the spectrum for the total
energy and for the positive helical modes respectively. As
before, the difference between the two gives the energy
content in the negative helical modes. In the beginning
we initialize the field at the forced scales and we observe
a clear inverse cascade of energy to large scales, shown by
the energy spectra in fig. 6(a) and (b) and in the positive
energy flux in fig. 6(c) at t ∼ 2.2. This transfer is due to
the triads of Class I. Then, as soon as the negative he-
lical modes become energetic enough, the triads of Class
III and Class IV take the lead and the energy flux is re-
versed toward the negative helical modes at scales smaller
than the forced ones from times t ∼ 4 and larger. It is
interesting to observe that the positive helical modes at

kfkm

• Inverse energy cascade does NOT need positive definite 
helicity!
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Fig. 6. The same of fig. 3 but for the case when kf ∈ [4, 6] and km = 16, except for (d) where energy flux and dissipation are
compared at t 10 when the simulation is stopped (see fig. 5).

understand if one can highlight some universality proper-
ties of such configurations as done for the two-dimensional
case [37].

4 Summary

We have performed several numerical simulations of a
modified (decimated) version of the three-dimensional
Navier-Stokes equations by keeping only some subsets of
Fourier modes with different helical properties. The aim
is to further understand the different roles played by tri-
ads with different helical structures in the dynamics of
the nonlinear energy transfer mechanism. We have shown
that as predicted in [8] there exist two classes (Class I and
Class II) of triads that transfer energy to large scales, i.e.,
which can support an inverse cascade even in fully homo-
geneous and isotropic turbulence (but not mirror symmet-
ric). This result for Class I where all modes have the same
helical sign was already known [10,25]. The second class
(here called Class II) is made of triads where helicity is
not globally sign-definite. The structure is such that the
mode with the different helicity is the one at the smallest
wave numbers. Hence, when the small scales are strongly

helically signed the forward energy transfer is depleted.
The existence of an inverse cascade even when helicity is
not positive-definite contradicts the predictions based only
on the absolute equilibrium in the inviscid and unforced
limit [27,28].

By concentrating the negative helical modes at small
scales (high wave numbers) we showed that as soon as
triads of the other two classes (Class III and Class IV)
become competitive, they take the leadership in the en-
ergy transfer mechanisms and the energy flux is reversed,
reaching a more standard forward-cascade regime. In both
cases the energy is preferentially transferred to the minor-
ity helical modes (here negative), leading to either a large-
scale condensate or to a small-scale condensate. Our study
further supports the idea that the direction of the energy
transfer in a turbulent flow might strongly be influenced
by the helicity distribution among different scales [10,25,
26,38,39].

We acknowledge useful discussions with F. Bonaccorso and
funding from the European Research Council under the Eu-
ropean Union Seventh Framework Programme, ERC Grant
Agreement No. 339032. Numerical simulations have been par-
tially supported by the INFN initiative INF14 fldturb.

kmkf

km > kf

• Class-III and Class IV transfer energy from forced positive 
helical modes to negative helical modes at small scales.



8

FIG. 7: (Color online) Iso-vorticity surfaces for: (a) kf = [10, 12], km = 4, (b) kf = [4 : 6], km = 16. Color palette is
proportional to the intensity of the helicity: red for high positive values (⇠ 103) to blue for high negative values (⇠ �103).

show similar small-scales condensates that populate the
flow when kf 2 [4, 6] and km = 16. It would be inter-
esting to understand if one can highlight some univer-
sality properties of such configurations as done for the
two-dimensional case [37].

SUMMARY

We have performed several numerical simulations of
a modified (decimated) version of the three-dimensional
Navier-Stokes equations by keeping only some subsets
of Fourier modes with di↵erent helical properties. The
aim is to further understand the di↵erent roles played by
triads with di↵erent helical structures in the dynamics of
the nonlinear energy transfer mechanism. We have shown
that as predicted in [8] there exist two classes (Class I and
Class II) of triads that transfer energy to large scales,
i.e. which can support an inverse cascade even in fully
homogeneous and isotropic turbulence (but not mirror
symmetric). This result for Class I where all modes have
the same helical sign was already known [10, 25]. The sec-
ond class (here called Class II) is made of triads where
helicity is not globally sign-definite. The structure is such
that the mode with the di↵erent helicity is the one at the
smallest wavenumbers. Hence, when the small-scales are
strongly helically-signed the forward energy transfer is
depleted. The existence of inverse cascade even when he-
licity is not positive-definite contradicts the predictions
based only on the absolute equilibrium in the inviscid
and unforced limit [27, 28].
By concentrating the negative helical modes at small

scales (high wavenumbers) we showed that as soon as
triads of the other two classes (Class III and Class IV)
become competitive, they take the leadership in the en-
ergy transfer mechanisms and the energy flux is reversed,
reaching a more standard forward-cascade regime. In
both cases the energy is preferentially transferred to the
minority helical modes (here negative), leading to either
a large-scale condensate or to a small-scales condensate.
Our study further supports the idea that the direction
of the energy transfer in a turbulent flow might strongly
be influenced by the helicity distribution among di↵erent
scales [10, 25, 26, 38, 39].
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Conclusions

• Two classes of Triads (Class I and Class II ) transfer energy to 
the large scales. 

• It is possible to observe inverse energy cascade with out 
having a sign-definite helicity. 

• When negative helical modes exist at only around one 
wavenumber, a large-scale or small-scale condensate is 
formed.
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