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ELBM: A search for LBGK stabilization

Can we use LBGK to study turbulent flows?
Instabilities arise when τ → 0.5 (ν → 0) making standard LBGK
unadapted to the study of turbulent flows

Entropic Lattice Boltzmann (ELBM) [Karlin et al., 1999]

I Introduced by I. Karlin to overcome instabilities issues at high
Reynolds

I LBGK is built directly from the Boltzmann Equation and is not
equipped with a Boltzmann H-theorem even if BGK collision operator
implies irreversibility

I Stabilization of LBGK has been linked to the existence of an
underlying Lyapunov functional in the form of a H-function

[Succi et al., 2002]

ELBM principle is to equip LBGK with an in-built H-theorem
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ELBM: A LBGK with an in-built H-theorem
I feq is defined as the maxima of a convex H-function under the

constraints of mass and momentum conservation:

H (f) =

q−1∑
0

fi log
(

fi
ωi

)
, ρ =

∑
i

f eq
i , ρ~u =

∑
i

~ci f eq
i

I ELBM introduces a fixed parameter β and a local one α (τeff = 1
αβ )

I Setting fmirror = f− α (f− feq), we can rewrite the ELBM eq.

I α is calculated at each node and each time step as the solution of the
following equation:

H (f) = H
(
fmirror (α)

)

LBGK Equation

fi (~x + ~ci , t + 1)− fi (~x , t) = −1
τ

[
fi (~x , t)− f eq

i (~x , t)
]
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2τ and LBGK is recovered if α ≡ 2
g.tauzin@hpc-leap.eu DSFD 2017 Erlangen - July 13, 2017 5 / 29



ELBM: A LBGK with an in-built H-theorem
I feq is defined as the maxima of a convex H-function under the

constraints of mass and momentum conservation:

H (f) =

q−1∑
0

fi log
(

fi
ωi

)
, ρ =

∑
i

f eq
i , ρ~u =

∑
i

~ci f eq
i

I ELBM introduces a fixed parameter β and a local one α (τeff = 1
αβ )

I Setting fmirror = f− α (f− feq), we can rewrite the ELBM eq.

I α is calculated at each node and each time step as the solution of the
following equation:

H (f) = H
(
fmirror (α)

)

ELBM Equation [Karlin et al., 1999]

fi (x + ci , t + 1) = (1− β) fi (x , t) + β f mirror
i (x , t)

where β = 1
2τ , with 0 < β < 1 as we have 0.5 < τ < +∞

g.tauzin@hpc-leap.eu DSFD 2017 Erlangen - July 13, 2017 5 / 29



ELBM: A LBGK with an in-built H-theorem
I feq is defined as the maxima of a convex H-function under the

constraints of mass and momentum conservation:

H (f) =

q−1∑
0

fi log
(

fi
ωi

)
, ρ =

∑
i

f eq
i , ρ~u =

∑
i

~ci f eq
i

I ELBM introduces a fixed parameter β and a local one α (τeff = 1
αβ )

I Setting fmirror = f− α (f− feq), we can rewrite the ELBM eq.

I α is calculated at each node and each time step as the solution of the
following equation:

H (f) = H
(
fmirror (α)

)
ELBM Equation [Karlin et al., 1999]

fi (x + ci , t + 1) = (1− β) fi (x , t) + β f mirror
i (x , t)

where β = 1
2τ , with 0 < β < 1 as we have 0.5 < τ < +∞

g.tauzin@hpc-leap.eu DSFD 2017 Erlangen - July 13, 2017 5 / 29



Outline

1 Introduction to Entropic LBM (ELBM)

2 Motivation: An implicit Sub-Grid Scale (SGS) model?

3 Analysis tool for hydrodynamic check

4 Statistical analysis

Validation: LBGK vs. Pseudo-spectral - 2D decaying flows

Benchmark: LBGK - Forced 2D turbulent flows

Benchmark: ELBM - Forced 2D turbulent flows

5 Conclusion

g.tauzin@hpc-leap.eu DSFD 2017 Erlangen - July 13, 2017 6 / 29



Is ELBM a LBGK with an implicit SGS?

I The viscosity ν is allowed to fluctuate locally: [Karlin et al., 1999]

ν (α) = c2
s

(
1
αβ

− 0.5
)

[Karlin et al., 2015]

I Whenever the simulation is resolved α = 2 and the ELBM equations
is equivalent to the standard LBGK equation (τBGK = τα (2))

[Malaspinas et al., 2013]

I Chapman-Enskog expansion was performed for α ≈ 2 and an
additional term of the form νr Si j appeared with:

νr = − c2
s ∆t

3 (2β)2

SθκSκγSγθ
SλµSλµ

Smagorinsky-like SGS model

Objective: Numerically check the existence of an implied SGS
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Check of the hydrodynamic balance

Through Chapman-Enskog expansion, we know that LBGK approximates
the weekly compressible Navier-Stokes equations.

I Kinetic energy E = ρ~u2

2 balance equation:

∂t
ρ~u2

2
=− c2

s ui∂iρ− νρ (∂jui + ∂iuj) ∂jui + uiFi

+ ∂j

[
−ρ

~u2

2
uj + νρui (∂jui + ∂iuj)

]

I Enstrophy Ω =
~ω2

2 balance equation:

∂t
~ω2

2
=− ~ω2

2
∂juj + ωiωj∂jui + ν~H ·

(
~∇× ~ω

)
+ ~ω ·

(
~∇× 1

ρ
~F
)

+ ∂j

[
−~ω

2

2
uj + νεijkωiHk

]
, where ~H =

1
ρ
~∇ ·
[
ρ

(
~∇~u +

(
~∇~u
)T
)]
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Averaging of balance equations over a sub-volume

We will focus on 2D flows and 2D sub-volumes in this presentation

I Average of the Kinetic energy E = ρ~u2

2 balance equation:

∂t
〈ρ~u2

2

〉
=− c2

s

〈
ui∂iρ

〉
− ν
〈
ρ (∂jui + ∂iuj) ∂jui

〉
+
〈
uiFi
〉

−
〈
∂j
ρ~u2

2
uj∂jui

〉
+ ν
〈
∂jρui (∂jui + ∂iuj) ∂jui

〉
I Average of the enstrophy Ω =

~ω2

2 balance equation:

∂t
〈ω2

2

〉
=−

〈ω2

2
∂juj
〉
+ ν
〈
Hx∂yω − Hy∂xω

〉
+
〈
ω

(
∂x

Fy

ρ
− ∂y

Fx

ρ

)〉
−
〈
∂j
~ω2

2
uj
〉
+ ν
〈
εijkωiHk

〉
, where ~H =

1
ρ
∂j [ρ (∂jui + ∂iuj) ]

where
〈
. . .
〉

denotes average over a sub-volume V
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Example of a term by term balance of E and Ω

From energy balance

What is the accuracy with which LBGK/ELBM can recover the
hydrodynamic balance equations?
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Measurement of the relative effective viscosity

In order to evaluate the inaccuracy of the recovery of the balance equation
averaged over a sub-volume, we can define an effective viscosity:

I From kinetic energy balance:

νE
eff =

∂t
〈
ρ~u2

2

〉
+ c2

s

〈
ui∂iρ

〉
−
〈
uiFi
〉
+
〈
∂j
ρ~u2

2 uj∂jui
〉

−
〈
ρ (∂jui + ∂iuj) ∂jui

〉
+
〈
∂jρui (∂jui + ∂iuj) ∂jui

〉
I From enstrophy balance:

νΩ
eff =

∂t
〈
ω2

2

〉
+
〈
ω2

2 ∂juj
〉
−
〈
ω
(
∂x

Fy
ρ
− ∂y

Fx
ρ

) 〉
+
〈
∂j
~ω2

2 uj
〉〈

Hx∂yω − Hy∂xω
〉
+
〈
εijkωiHk

〉
Relative effective viscosity

νE,Ω
eff

ν
=

νE,Ω
eff

c2
s

(
τ − 1

2

) ≈ 1
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Measurement of the relative effective viscosity
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Outline

1 Introduction to Entropic LBM (ELBM)

2 Motivation: An implicit Sub-Grid Scale (SGS) model?

3 Analysis tool for hydrodynamic check

4 Statistical analysis

Validation: LBGK vs. Pseudo-spectral - 2D decaying flows

Benchmark: LBGK - Forced 2D turbulent flows

Benchmark: ELBM - Forced 2D turbulent flows

5 Conclusion
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Statistical analysis of νeff
ν

I Calculation on random
sub-volumes of νe ff

ν for both
kinetic energy and enstrophy
balance equations.

I Sorting the results based on L,
characteristic length of the
sub-volume V defined as the
square root of its volume V .
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Numerical apparatus: 2D homogeneous turbulence

D2Q9 forced simulation on a periodic 256× 256 grid.

When forcing at kf , we have:

I a direct energy cascade to
large scales

I an indirect enstrophy cascade
to small scales

Forcing on a shell of wavenumber

F T
Ψ = F T

0

7∑
‖~k‖=5

cos
(

2π
L
~k .~x + φ

)

where φ is an arbitrary constant

Energy removal at large scale

~F E (~x , t) = −F E
0

2∑
‖~k‖=1

~̂u(~k , t)e
2 π

L
~k·~x
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Validation: LBGK vs. Pseudo-spectral - Decaying spectrum
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Validation: LBGK vs. Pseudo-spectral - Error in
〈
νeff
ν

〉
∣∣1− 〈νe ff

ν

〉∣∣ against sub-volume characteristic length L

From energy balance From enstrophy balance
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Validation: LBGK vs. Pseudo-spectral - Variation of νeff
ν

νe ff
ν against sub-volume characteristic length L

From energy balance From enstrophy balance

Good agreement for both Pseudo-Spectral and LBGK
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Benchmark: Forced LBGK - Superposed spectrum
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Benchmark: Forced LBGK - Error in
〈
νeff
ν

〉
∣∣1− 〈νe ff

ν

〉∣∣ against sub-volume characteristic length L

From energy balance From enstrophy balance
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Benchmark: Forced LBGK - Variation of νeff
ν

νe ff
ν against sub-volume characteristic length L

From energy balance From enstrophy balance

Reynolds number effect + proximity to τcritical?
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Benchmark: Forced ELBM - Superposed spectrum
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Benchmark: Forced ELBM - Error in
〈
νeff
ν

〉
∣∣1− 〈νe ff

ν

〉∣∣ against sub-volume characteristic length L

From energy balance From enstrophy balance
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Benchmark: Forced ELBM - Variation of νeff
ν

νe ff
ν against sub-volume characteristic length L

From energy balance From enstrophy balance

No agreement expected for ELBM: An extra term in the balance eqs?
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Benchmark: Forced ELBM - Dissipative properties
Going further to τ → 0.5, we observe an extension of the inertial range

ELBM has the dissipative properties expected from a LES
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Conclusion & Outlook

Conclusions:

I Developped a tool to check the balance equations and validated it on
configurations obtained from a Pseudo-Spectral code.

I LBGK’s recovery of hydrodynamics gets broken as the critically
stable τ is approached.

I ELBM’s effective visocisty νeff as τ → 0.5 cannot be represented by
a simple renormalization of the input viscosity ν:
Presence of an extra SGS to be taken into account in the balance
equations?

I ELBM dissipative properties as τ → 0.5 are as expected for a LES.

Outlook:

I Validate Malaspinas’ suggested implicit SGS to the balance
equations on ELBM simulations

I Switch to 3D turbulent simulations.
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Thank you for your attention!
Any questions?

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No’ 642069
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What is Large Eddy Simulation (LES)?
I Reduces the number of degrees of freedom by resolving scales only up to a

cutoff scale and modeling the remaining smaller scales
I Enables cost-effective high Reynolds turbulent flow simulations

LES equation: Filtered Navier-Stokes + SGS model

∂t u i + ∂j (u i u j) = −
1
ρ
∂ip + ν ∂jS i j − ∂jτi j , where S i j = (∂ju i + ∂iu j)

τi j = uiuj − u i u j must be modeled using a Sub-Grid Scale (SGS) Model
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ELBM: Perspective from H-functional hypersurface

Calculation of α and convexity of H insure monotonic decreases of H
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Solving the Entropic step equation

Entropic step Equation

H (f) = H (f− α (f− feq))

with H (f) =
∑q−1

0 fi log
(

fi
ωi

)
I Nont-trivial: typically solved using Newton-Raphson in 6-8

iterations for a tolerance of 10−5

I When Newton-Raphson does not converge, 2, the LBGK’s
value of α is used
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