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ELBM: A search for LBGK stabilization

Can we use LBGK to study turbulent flows?
Instabilities arise when 7 — 0.5 (v — 0) making standard LBGK
| unadapted to the study of turbulent flows

Entropic Lattice Boltzmann (ELBM) [Karlin et al., 1999]

» Introduced by I. Karlin to overcome instabilities issues at high
Reynolds

» LBGK is built directly from the Boltzmann Equation and is not
equipped with a Boltzmann H-theorem even if BGK collision operator
implies irreversibility

» Stabilization of LBGK has been linked to the existence of an
underlying Lyapunov functional in the form of a H-function
[Succi et al., 2002]

ELBM principle is to equip LBGK with an in-built H-theorem J




ELBM: A LBGK with an in-built H-theorem

» fe is defined as the maxima of a convex H-function under the
constraints of mass and momentum conservation:

q—1
f; - -
HO = toa (1), o= =Y e
0 ! i i

LBGK Equation

9. = » 1 < <
(X +G,t+1)—fi(X,t) = - [ fi(X,t) — 79X, 1)]
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» ELBM introduces a fixed parameter 5 and a local one « (e = a‘—ﬁ)

ELBM Equation [Karlin et al., 1999]

fi(x + ci,t+1) = f(x, 1) + aB [{7(x, 1) — f(x, 1)]

where 8 = ;- and LBGK is recovered if o = 2
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ELBM: A LBGK with an in-built H-theorem

» fe is defined as the maxima of a convex H-function under the
constraints of mass and momentum conservation:

q—1
f; - -
HO = toa (1), o= =Y e
0 ! i i

» ELBM introduces a fixed parameter 5 and a local one « (e = a‘—ﬁ)
» Setting f™mor — f — o (f — f°9), we can rewrite the ELBM eq.

» « is calculated at each node and each time step as the solution of the
following equation:

H (f) —H (fmirror (a))

ELBM Equation [Karlin et al., 1999]

fi(x+c,t+1) = (1= B) fi(x, t) + B (x, t)

where 8 = 5=, with 0 < 3 < 1 as we have 0.5 < 7 < +00
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Motivation: An implicit Sub-Grid Scale (SGS) model?
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Is ELBM a LBGK with an implicit SGS?

» The viscosity v is allowed to fluctuate locally: [Karlin et al., 1999]
1
v(a) = c2 (07,8 — 0.5)

[Karlin et al., 2015]

» Whenever the simulation is resolved a = 2 and the ELBM equations
is equivalent to the standard LBGK equation (7sax = 7o (2))

[Malaspinas et al., 2013]
» Chapman-Enskog expansion was performed for « ~ 2 and an
additional term of the form v, S;; appeared with:

_ CgAt Se,is,m,879

Smagorinsky-like SGS model
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Is ELBM a LBGK with an implicit SGS?

» The viscosity v is allowed to fluctuate locally: [Karlin et al., 1999]
v(a) = c2 (L705)
S af .

[Karlin et al., 2015]

» Whenever the simulation is resolved a = 2 and the ELBM equations
is equivalent to the standard LBGK equation (7sax = 7o (2))

[Malaspinas et al., 2013]
» Chapman-Enskog expansion was performed for « ~ 2 and an
additional term of the form v, S;; appeared with:
_ CgAt Se,is,m,879
3 (Zﬁ)z SA;L S)\}L

Smagorinsky-like SGS model

Objective: Numerically check the existence of an implied SGS J
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Analysis tool for hydrodynamic check




Check of the hydrodynamic balance

Through Chapman-Enskog expansion, we know that LBGK approximates
the weekly compressible Navier-Stokes equations.
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Check of the hydrodynamic balance

Through Chapman-Enskog expansion, we know that LBGK approximates
the weekly compressible Navier-Stokes equations.

» Kinetic energy E = %‘72 balance equation:

pFF

Oy — — Cs U,B,p vp (Bju,- + 8,-u,-) 8,-u,- + UiF;

plP
+ 9 [— Ui + vpu; (Oju; + 8,u,)]

2
» Enstrophy Q = % balance equation:

PP L e ;
Of— = — ?81'”/ + w;wjaju; +vH - (V X (3) + @ - <V X

—2

w - 1o = AT
— Ui+ vejwiHk | ,where H= -V - |p | Vi + (Vu)
2 p

-




Averaging of balance equations over a sub-volume

We will focus on 2D flows and 2D sub-volumes in this presentation J
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Averaging of balance equations over a sub-volume

We will focus on 2D flows and 2D sub-volumes in this presentation J

. . na .
» Average of the Kinetic energy E = 27~ balance equation:
PUQ 2
8t<7> = — CS<U,'8/p> — I/<p (6,-u,- + 8,'U/) 8/'U,'> + <U,'F,'>

- <8lﬁu-8lu'> + v{9ipu; (Oju; + Ay Gjuy)
1o UGt jpUi \OjUi ilj) OjUj

» Average of the enstrophy Q2 = %2 balance equation:
2

2
8,<°L> =- <%8juj> + v{Hdyw — Hydxw) + (w <8x% - @%) )

-2 L
— <8,—%u,-> + V(e,-,-kw,-Hk>, where H = ;8,‘[;) (Ojui + 9iyy)

where (... ) denotes average over a sub-volume V
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Example of a term by term balance of E and 2
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What is the accuracy with which LBGK/ELBM can recover the
hydrodynamic balance equations? J




Measurement of the relative effective viscosity

In order to evaluate the inaccuracy of the recovery of the balance equation
averaged over a sub-volume, we can define an effective viscosity:




Measurement of the relative effective viscosity

In order to evaluate the inaccuracy of the recovery of the balance equation
averaged over a sub-volume, we can define an effective viscosity:

» From kinetic energy balance:

E 8t<¢> + C§<Ui3ip> — <UiFi> + <t9jp2—‘72uj8jul‘>

Veff =

—(p (Byui + Oiy) Bjui) + (Djpu; (Bju; + diuy) Bjuy )




Measurement of the relative effective viscosity

In order to evaluate the inaccuracy of the recovery of the balance equation
averaged over a sub-volume, we can define an effective viscosity:

» From kinetic energy balance:

JE, — (5 ) + GE(udip) — (uFi) + (925 udyur)
T o (i + Owy) i) + (ypu (Bjus + D) Dyui)

» From enstrophy balance:

w? w? X &2
0 0(5)+(Fou) —(w (3x% - 3y%) )+ (0% )

Veff =

(HxOyw — HyOxw) + {ejxwity)




Measurement of the relative effective viscosity

In order to evaluate the inaccuracy of the recovery of the balance equation
averaged over a sub-volume, we can define an effective viscosity:

» From kinetic energy balance:

JE 6t<¢> + CE(Ui@ip> - <UiFi> + <ajp212Uj8jUi>
T —(p (B + 0uwy) yuiy + (Fjpu; (Byui + Oiuy) Dyui)

» From enstrophy balance:

o Og)+{Fou) — (w (05 - 0,5)) + (95 u)
Vet = (HxOyw — HyOxw) + {ejxwity)

Relative effective viscosity

Vett _ Verr ~ 1
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m Validation: LBGK vs. Pseudo-spectral - 2D decaying flows

m Benchmark: LBGK - Forced 2D turbulent flows
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Statistical analysis of "

» Calculation on random
sub-volumes of 2" for both
kinetic energy and enstrophy
balance equations.

» Sorting the results based on L,
characteristic length of the
sub-volume V defined as the
square root of its volume V.




Numerical apparatus: 2D homogeneous turbulence

D2Q9 forced simulation on a periodic 256 x 256 grid.
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Numerical apparatus: 2D homogeneous turbulence

D2Q9 forced simulation on a periodic 256 x 256 grid.

k) When forcing at k¢, we have:

> a direct energy cascade to
large scales

» an indirect enstrophy cascade
to small scales

kf k >
v
Forcing on a shell of wavenumber Energy removal at large scale
! 2w 2 Aera
T_ =" 7o o _ E =7 2r R
Fy =Fo ”%: cos (Tk.x+¢) FE(X, t) = —F ”; O(k, t)et
k||=5 k||=1

where ¢ is an arbitrary constant




Validation: LBGK vs. Pseudo-spectral - Decaying spectrum

—8&— PS, v=0.0045 — First conf. —&— LBGK, 7=0.54 — First conf.
-B- PS, v=0.0045 — Last conf. -©- LBGK, 7=0.54 — Last conf.

10-10
10-12

10-14

10-16
100 101 102




Validation: LBGK vs. Pseudo-spectral - Error in (%)

1= (%

)| against sub-volume characteristic length L
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Validation: LBGK vs. Pseudo-spectral - Variation of %"

el against sub-volume characteristic length L
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Validation: LBGK vs. Pseudo-spectral - Variation of %"

el against sub-volume characteristic length L

v

—&— PS, v=0.0045 —— LBGK, 7=0.54
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Good agreement for both Pseudo-Spectral and LBGK J




Benchmark: Forced LBGK - Superposed spectrum
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Benchmark: Forced LBGK - Error in (“)

|1 — (%) against sub-volume characteristic length L
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Benchmark: Forced LBGK - Variation of %"

vel! against sub-volume characteristic length L
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Benchmark: Forced LBGK - Variation of %"

vel! against sub-volume characteristic length L
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Reynolds number effect + proximity to 7 jica/? |




Benchmark: Forced ELBM - Superposed spectrum
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Benchmark: Forced ELBM - Error in (%)

|1 — (%) against sub-volume characteristic length L
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Benchmark: Forced ELBM - Variation of ’%”

el against sub-volume characteristic length L
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Benchmark: Forced ELBM - Variation of ’%”

el against sub-volume characteristic length L

v
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No agreement expected for ELBM: An extra term in the balance eqs?J




Benchmark: Forced ELBM - Dissipative properties

Going further to 7 — 0.5, we observe an extension of the inertial range
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Benchmark: Forced ELBM - Dissipative properties

Going further to 7 — 0.5, we observe an extension of the inertial range
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ELBM has the dissipative properties expected from a LES J
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Conclusion & Outlook

Conclusions:

» Developped a tool to check the balance equations and validated it on
configurations obtained from a Pseudo-Spectral code.

» LBGK'’s recovery of hydrodynamics gets broken as the critically
stable 7 is approached.

» ELBM's effective visocisty ve as 7 — 0.5 cannot be represented by
a simple renormalization of the input viscosity v:
Presence of an extra SGS to be taken into account in the balance
equations?

» ELBM dissipative properties as = — 0.5 are as expected for a LES.




Conclusion & Outlook

Conclusions:
» Developped a tool to check the balance equations and validated it on
configurations obtained from a Pseudo-Spectral code.

» LBGK'’s recovery of hydrodynamics gets broken as the critically
stable 7 is approached.

» ELBM's effective visocisty ve as 7 — 0.5 cannot be represented by
a simple renormalization of the input viscosity v:
Presence of an extra SGS to be taken into account in the balance
equations?

» ELBM dissipative properties as = — 0.5 are as expected for a LES.
Outlook:

» Validate Malaspinas’ suggested implicit SGS to the balance
equations on ELBM simulations

» Switch to 3D turbulent simulations.
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What is Large Eddy Simulation (LES)?

» Reduces the number of degrees of freedom by resolving scales only up to a
cutoff scale and modeling the remaining smaller scales

» Enables cost-effective high Reynolds turbulent flow simulations

LES equation: Filtered Navier-Stokes + SGS model

o + 05 (Ui uy) = —%8,-p +v;Sij — Tij, where Si; = (0U; + 9iU;)

Tij = Uit; — U; U; must be modeled using a Sub-Grid Scale (SGS) Model
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ELBM: Perspective from H-functional hypersurface

Calculation of o and convexity of H insure monotonic decreases of H




Solving the Entropic step equation

Entropic step Equation

H(f) = H{ — o (f - 29))

with H (f) = 9" £ log (WL)

» Nont-trivial: typically solved using Newton-Raphson in 6-8
iterations for a tolerance of 10—°

» When Newton-Raphson does not converge, 2, the LBGK’s
value of « is used
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