Mariehamn, 28-31 May 2014

Clustering of vertically constrained passive particles in homogeneous, isotropic turbulence

Massimo De Pietro¹, Michel A.T. van Hinsberg², Luca Biferale¹, Herman J.H. Clercx², Prasad Perlekar³, Federico Toschi^{2,4}

¹ Dip. di Fisica and INFN, Università "Tor Vergata", Roma, Italy.

² Department of Physics, Eindhoven University of Technology, The Netherlands

³ Centre for Interdisciplinary Sciences, Hyderabad, India.

⁴ IAC, CNR, Roma, Italy and International Collaboration for Turbulence Research

European Research Council

Established by the European Commission



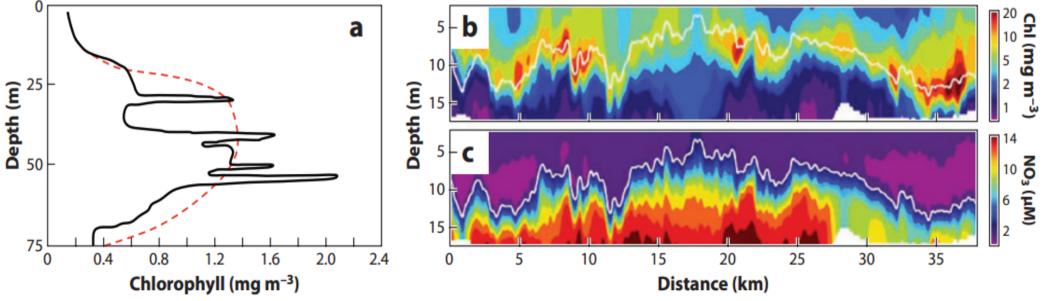
Plankton Layers

Plankton is often found to be distributed in thin layers a few meters under the sea surface.

Characteristics:

- Width/Depth ratio >> 1 (~ 10Km/10m);
- Concentration of "particles" ~1 order of magnitude bigger respect to backgroung;
- temporal persistence: hours to weeks.

There are several hypotheses on the mechanisms of formation / persistence.



Durham, W. M. & Stocker, R. Thin phytoplankton layers: characteristics, mechanisms, and consequences. Ann Rev Mar Sci 4, 177–207 (2012).

Particles in turbulent flow

• Simplified Maxey-Riley equations, for buoyancy driven particles, with 2 parameters:

$$\frac{d\mathbf{u}}{dt} = \beta \frac{D\mathbf{v}}{Dt} - \frac{\mathbf{u} - \mathbf{v}}{\tau_s} + (1 - \beta) \mathbf{g}$$

- Density ratio $\beta = 3 \rho_f / (2 \rho_p + \rho_f)$
- Stokes time

$$au_p = 3
ho_f/(2
ho_p +
ho)$$

 $au_p = a^2/(3eta
u)$

- Preferential concentration (Maxey centrifuge) when $\beta \neq 1$

Objective

- What happens when particles are constrained to stay at a specific depth in a turbulent flow?
 - Situation that usually happens with acquatic microorganisms
- We want to quantify the horizontal clustering of particles
 - Because clustering can have severe consequences on life and biology of these microorganisms

Our model

- Underlying fluid: homogeneous and isotropic turbulence
 - Simulated with DNS pseudo-spectral method. Parameters:
 - Domain: $2\pi^3$; resolution: 128^3

•
$$\nu=0.01$$
 ; $\epsilon=2.39$; $\eta\sim\Delta X/2$

- $Re \sim 830$
- Passive, pointlike, non inertial particles.

Our model

• Vertical confinement by means of a linear restoring force:

$$\begin{cases} u_i = v_i & (i = x, y) \\ u_z = v_z - K (z - z_0) \end{cases}$$

• The equation can formally be obtained in the case of particle motion driven by buoyancy:

$$\frac{d\mathbf{u}}{dt} = \beta \frac{D\mathbf{v}}{Dt} - \frac{\mathbf{u} - \mathbf{v}}{\tau_s} + (1 - \beta) \mathbf{g} \qquad \begin{vmatrix} \beta = 3\rho_f / (2\rho_p + \rho_f) \\ \tau_s = a^2 / (3\beta\nu) \end{vmatrix}$$

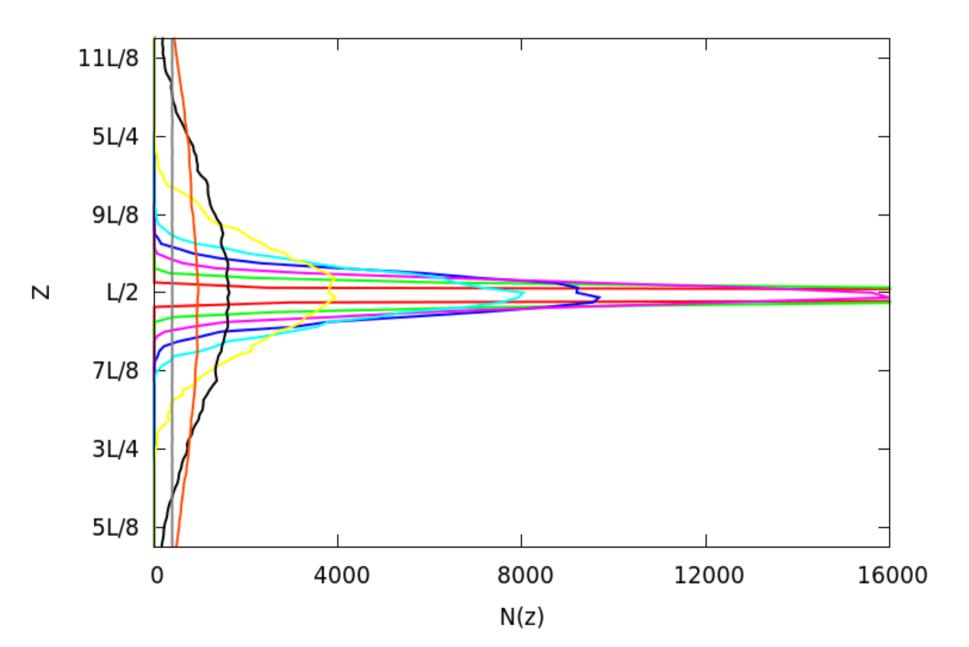
(4) $\frac{du}{dt} \ll g$

if we assume:

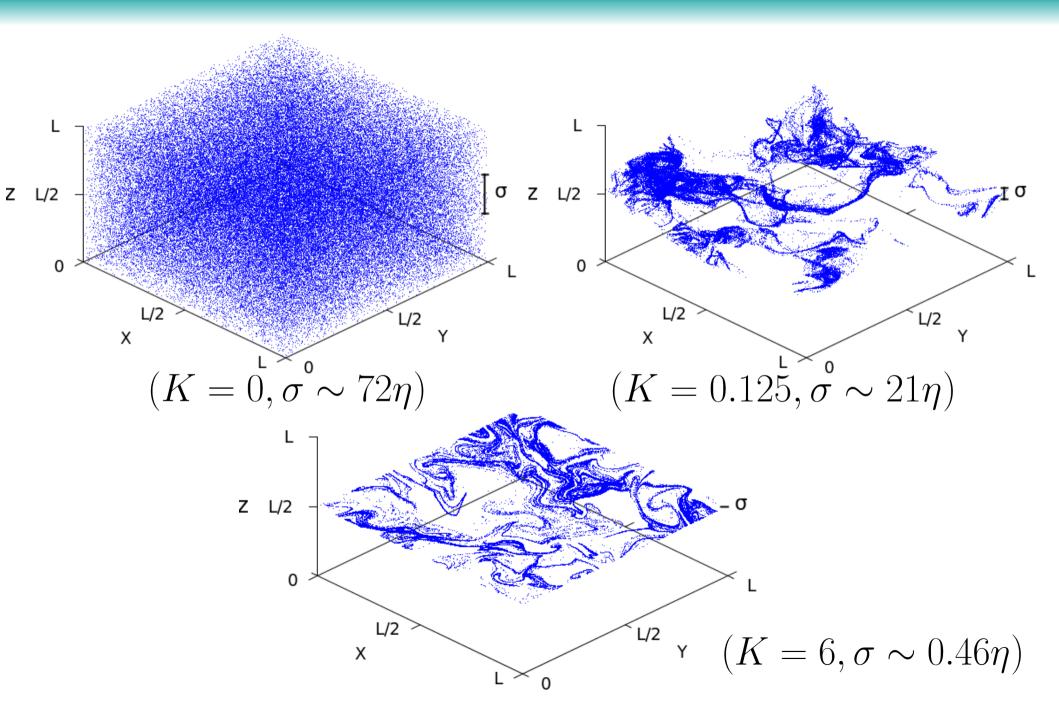
(1)
$$\tau_s \ll 1 \to Dv/Dt = du/dt + O(\tau_s)$$

(2) $\rho_f = \rho_0 + \frac{d\rho_f}{dz}(z - z_0) + O((z - z_0)^2)$
(3) $\rho_p \simeq \rho_0 \to \beta \simeq 1 + \frac{2N^2}{3g}(z - z_0)$

Particles - Vertical distribution



Particles – 3D distribution



Clustering - definitions

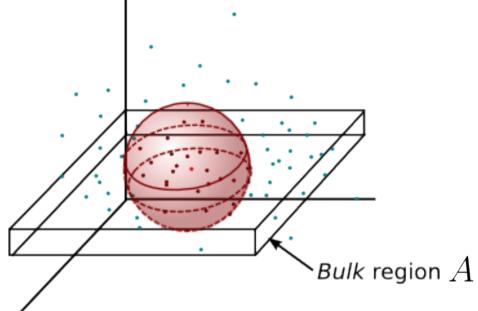
Standard Correlation Integral:

$$C_2(r) = \frac{1}{N_p(N_p - 1)} \sum_{i=1}^{N_p} \sum_{j>i=1}^{N_p} \Theta(r - |x_i - x_j|)$$

Scaling: $\lim_{r \to 0} C_2(r) \propto r^\epsilon$

Local scaling exponent:

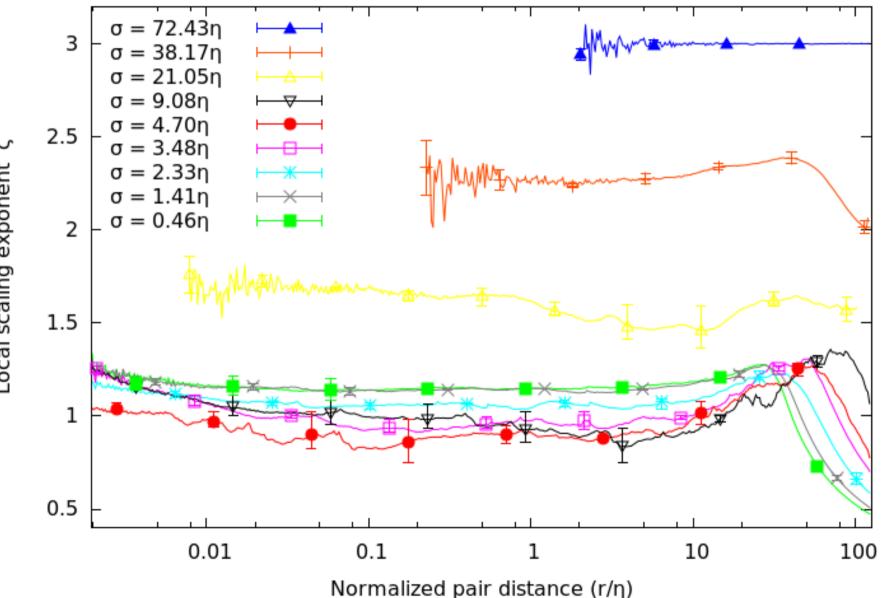
$$\epsilon(r) = \frac{d \log \left(C_2(r') \right)}{d \log \left(r' \right)} \Big|_{r'=r}$$



Our Correlation Integral:

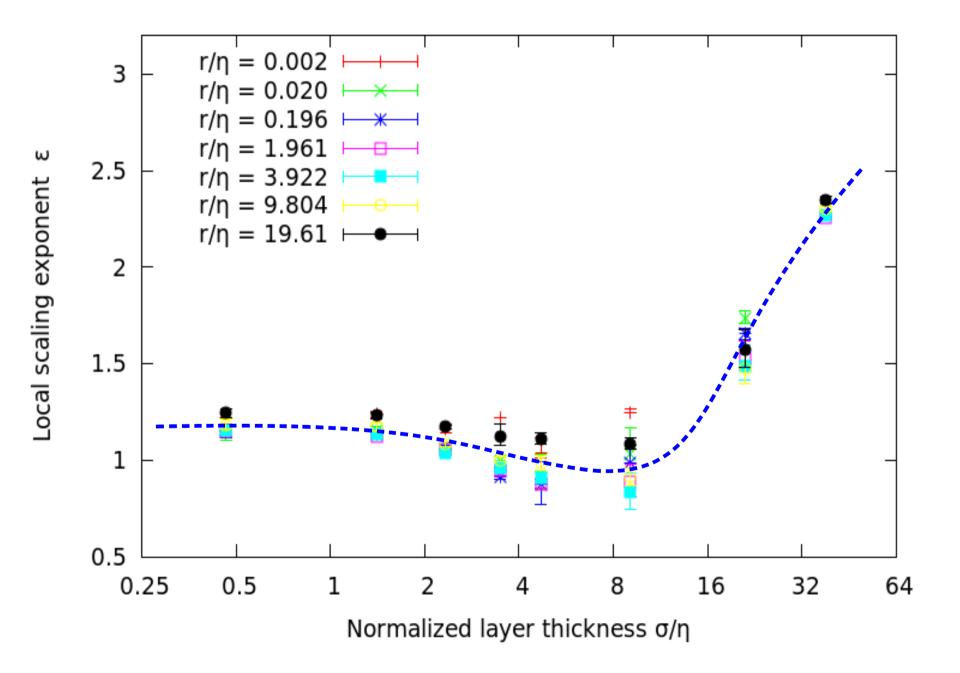
$$C_2(r) = \frac{1}{N_A(N_p - 1)} \sum_{i=1}^{N_A} \sum_{j \neq i}^{N_p} \Theta(r - |x_i - x_j|)$$
$$A = \{i | z_i \in [L/2 - 0.25\eta; L/2 + 0.25\eta]\}$$

Local scaling exponent vs. r



Local scaling exponent

Local scaling exponent vs. σ



Conclusions

- Plankton has been modelized as <u>passive</u>, <u>pointlike</u>, <u>non inertial</u> <u>particles</u>.
- Vertical <u>confinement</u> obtained using a <u>linear restoring force</u>.
- Underlying flow: omogeneous and isotropic turbulence.
- The spatial (horizontal) distribution of particles has been investigated. The degree of clustering was quantified using the correlation integral.
- We found it exists an optimal value for the restoring force constant, that <u>maximizes the clustering</u> of particles; this value of the constant corresponds to a <u>thickness of the particle layer around a few</u> <u>Kolmogorov lengths η</u>.

Future directions:

- Add interactions between particles, to model plankton biology
 - Also populations with different equilibrium depth
- Add effects induced by swimming, to model those species of plankton that are able to swim

More on the equations of motion...

Maxey-Riley with only stokes drag and buoyancy: •

$$\frac{d\mathbf{u}}{dt} = \beta \frac{D\mathbf{v}}{Dt} - \frac{\mathbf{u} - \mathbf{v}}{\tau_s} + (1 - \beta) \mathbf{g}$$

$$\beta = 3\rho_f / (2\rho_p + \rho_f)$$

$$\tau_s = a^2 / (3\beta\nu)$$

Assuming: ullet

• Assuming:
(1)
$$\tau_s \ll 1 \rightarrow Dv/Dt = du/dt + O(\tau_s)$$
(4) $\frac{du}{dt} \ll g$
(2) $\rho_f = \rho_0 + \frac{d\rho_f}{dz}(z - z_0) + O((z - z_0)^2)$
(3) $\rho_p \simeq \rho_0 \rightarrow \beta \simeq 1 + \frac{2N^2}{3g}(z - z_0)$

We get: ullet

$$\mathbf{v} - \mathbf{u} = \tau_s \frac{d\mathbf{u}}{dt} - \tau_s \beta \frac{d\mathbf{u}}{dt} + O(\tau_s^2) - \tau_s (1 - \beta) g \mathbf{\hat{z}}$$
$$\mathbf{v} - \mathbf{u} = \tau_s (1 - \beta) (\frac{d\mathbf{u}}{dt} - g \mathbf{\hat{z}})$$
$$\mathbf{v} - \mathbf{u} = \tau_s \frac{2N^2}{3} (z - z_0) \mathbf{\hat{z}}$$