HPC Applications to Turbulence and Complex Flows, October 13, 2016



## Entropic Lattice Boltzmann Method: An implicit Large-Eddy Simulation ?

#### Guillaume Tauzin<sup>12</sup>

Luca Biferale<sup>2</sup>, Mauro Sbragaglia<sup>2</sup>, Andreas Bartel<sup>1</sup>, Mathias Ehrhardt<sup>1</sup> <sup>1</sup>Bergische Universität Wuppertal

<sup>2</sup>Universitá degli Studi di Roma Tor Vergata





#### Lattice Boltzmann Method:

- Adapted to a wide range of physical simulations
- Intrinsic scalability, well suited for HPC implementations
- Can handle very complex (moving) geometry



#### Lattice Boltzmann Method:

- Adapted to a wide range of physical simulations
- Intrinsic scalability, well suited for HPC implementations
- Can handle very complex (moving) geometry

#### Large Eddy Simulation:

- Reduces the number of degrees of freedom by resolving scales only up to a cutoff scale
- Enable cost-effective high Reynolds turbulent flow simulations
- Popular in commercial Computational Fluid Dynamics softwares



#### Lattice Boltzmann Method:

- Adapted to a wide range of physical simulations
- Intrinsic scalability, well suited for HPC implementations
- Can handle very complex (moving) geometry

#### Large Eddy Simulation:

- Reduces the number of degrees of freedom by resolving scales only up to a cutoff scale
- Enable cost-effective high Reynolds turbulent flow simulations
- Popular in commercial Computational Fluid Dynamics softwares

Can we have an equivalent LES turbulence model for LBM?



#### Lattice Boltzmann Method:

- Adapted to a wide range of physical simulations
- Intrinsic scalability, well suited for HPC implementations
- Can handle very complex (moving) geometry

#### Large Eddy Simulation:

- Reduces the number of degrees of freedom by resolving scales only up to a cutoff scale
- Enable cost-effective high Reynolds turbulent flow simulations
- Popular in commercial Computational Fluid Dynamics softwares

#### Can we have an equivalent LES turbulence model for LBM?

# **Current direction:** Study of Entropic Lattice Boltzmann Method as an implicit LBM-LES

## Lattice Boltzmann Equation



#### [Succi, 2001]

## LBGK Equation

$$f_i(\vec{x} + \vec{c}_i, t+1) - f_i(\vec{x}, t) = -\frac{1}{\tau} \left[ f_i(\vec{x}, t) - f_i^{eq}(\vec{x}, t) \right]$$

which is a relaxation of typical time  $\tau$  to the local equilibirum distribution:

$$f_i^{eq}(\vec{x},t) = w_i \,\rho(\vec{x},t) \left[ 1 + \frac{\vec{c}_i \cdot \vec{u}(\vec{x},t)}{c_s^2} + \frac{\left(\vec{c}_i \cdot \vec{u}(\vec{x},t)\right)^2}{2 \, c_s^4} - \frac{|\vec{u}(\vec{x},t)|^2}{2 \, c_s^2} \right]$$

a  $2^{nd}$  order expansion in  $\frac{\vec{u}}{c_s}$  of the Maxwell-Boltzmann distribution

## Lattice Boltzmann Equation



#### [Succi, 2001]

## LBGK Equation

$$f_i(\vec{x} + \vec{c}_i, t+1) - f_i(\vec{x}, t) = -\frac{1}{\tau} \left[ f_i(\vec{x}, t) - f_i^{eq}(\vec{x}, t) \right]$$

which is a relaxation of typical time  $\tau$  to the local equilibirum distribution:

$$f_i^{eq}(\vec{x},t) = w_i \,\rho(\vec{x},t) \left[ 1 + \frac{\vec{c}_i \cdot \vec{u}(\vec{x},t)}{c_s^2} + \frac{\left(\vec{c}_i \cdot \vec{u}(\vec{x},t)\right)^2}{2 \, c_s^4} - \frac{|\vec{u}(\vec{x},t)|^2}{2 \, c_s^2} \right]$$

a  $2^{nd}$  order expansion in  $\frac{\vec{u}}{c_s}$  of the Maxwell-Boltzmann distribution

 $\blacksquare$  Chapman-Enskog expansion shows the relation between viscosity  $\nu$  and the relaxation time  $\tau$ 

$$u = c_s^2 \left(\frac{1}{\tau} - 0.5\right)$$
 where  $c_s$  is the speed of sound in the lattice



#### Can we use LBM to study turbulent flows?

Instabilities arise when  $\tau \to 0.5~(\nu \to 0)$  making standard LBGK irrelevant to the study of turbulent flows



#### Can we use LBM to study turbulent flows?

Instabilities arise when  $\tau \to 0.5 \ (\nu \to 0)$  making standard LBGK irrelevant to the study of turbulent flows

## Entropic Lattice Boltzmann (ELBM)

[Karlin et al., 1999]

 Introduced by I. Karlin to overcome instabilities issues at high Reynolds



## Can we use LBM to study turbulent flows?

Instabilities arise when  $\tau \to 0.5~(\nu \to 0)$  making standard LBGK irrelevant to the study of turbulent flows

## Entropic Lattice Boltzmann (ELBM)

[Karlin et al., 1999]

- Introduced by I. Karlin to overcome instabilities issues at high Reynolds
- While BGK collision implies irreversibility, LBGK is not equipped with a Boltzmann H-theorem

#### Can we use LBM to study turbulent flows?

Instabilities arise when  $\tau \to 0.5~(\nu \to 0)$  making standard LBGK irrelevant to the study of turbulent flows

#### Entropic Lattice Boltzmann (ELBM)

- Introduced by I. Karlin to overcome instabilities issues at high Reynolds
- While BGK collision implies irreversibility, LBGK is not equipped with a Boltzmann H-theorem
- Stabilization of LBM has been linked to the existence of an underlying Lyapunov functional in the form of a H-function

[Succi et al., 2002]

[Karlin et al., 1999]



#### Can we use LBM to study turbulent flows?

Instabilities arise when  $\tau \to 0.5 \ (\nu \to 0)$  making standard LBGK irrelevant to the study of turbulent flows

#### Entropic Lattice Boltzmann (ELBM)

- Introduced by I. Karlin to overcome instabilities issues at high Reynolds
- While BGK collision implies irreversibility, LBGK is not equipped with a Boltzmann H-theorem
- Stabilization of LBM has been linked to the existence of an underlying Lyapunov functional in the form of a H-function

[Succi et al., 2002]

## ELBM principle is to equip LBM with an in-built H-theorem



[Karlin *et al.*, 1999]

## ELBM: A LBM with an in-built H-theorem



#### **ELBM Equation**

$$f_i(x + c_i, t + 1) = f_i(x, t) + \alpha \beta (f_i^{eq}(x, t) - f_i(x, t))$$

where  $\beta = \frac{1}{2\tau}$ . If  $\alpha = 2$ , the ELBM eq. becomes the LBGK eq.

## ELBM: A LBM with an in-built H-theorem



#### **ELBM Equation**

$$f_i(x + c_i, t + 1) = f_i(x, t) + \alpha \beta (f_i^{eq}(x, t) - f_i(x, t))$$

where  $\beta = \frac{1}{2\tau}$ . If  $\alpha = 2$ , the ELBM eq. becomes the LBGK eq.

 f<sup>eq</sup> is defined as the maxima of a convex H-function under the constraints of mass and momentum conservation: [Karlin *et al.*, 1999]

$$H(\mathbf{f}) = \sum_{0}^{q-1} f_i \log\left(\frac{f_i}{\omega_i}\right), \qquad \rho = \sum_i f_i^{eq}, \quad \rho \vec{u} = \sum_i \vec{c}_i f_i^{eq}$$

## ELBM: A LBM with an in-built H-theorem



#### **ELBM Equation**

$$f_i(x + c_i, t + 1) = f_i(x, t) + \alpha \beta (f_i^{eq}(x, t) - f_i(x, t))$$

where  $\beta = \frac{1}{2\tau}$ . If  $\alpha = 2$ , the ELBM eq. becomes the LBGK eq.

 f<sup>eq</sup> is defined as the maxima of a convex H-function under the constraints of mass and momentum conservation: [Karlin *et al.*, 1999]

$$H(\mathbf{f}) = \sum_{0}^{q-1} f_i \log\left(\frac{f_i}{\omega_i}\right), \qquad \rho = \sum_i f_i^{eq}, \quad \rho \vec{u} = \sum_i \vec{c}_i f_i^{eq}$$

■ For *DdQ*3<sup>*d*</sup> lattices:

$$f_i^{eq} = \rho w_i \prod_{a=1}^d \left(2 - \sqrt{1+3 u_a^2}\right) \left(\frac{2 u_a + \sqrt{1+3 u_a^2}}{1 - u_a}\right)^{c_{i,a}}$$

## **ELBM: Entropic step**



#### [Karlin et al., 1999]

ELBM adds a single extra step to the LBM algorithm. At each time step, at each node, the value of α is calculated to insure the monotonic decrease of H.

## **ELBM: Entropic step**



[Karlin et al., 1999]

- ELBM adds a single extra step to the LBM algorithm. At each time step, at each node, the value of α is calculated to insure the monotonic decrease of H.
- Defining  $\mathbf{f}^{\text{mirror}} = \mathbf{f} \alpha \ (\mathbf{f} \mathbf{f}^{\text{eq}})$ , we can rewrite the ELBM eq:

**ELBM Equation** 

$$f_i(x + c_i, t + 1) = (1 - \beta) f_i(x, t) + \beta f_i^{mirror}(x, t)$$

with  $0 < \beta < 1$  as we have  $0.5 < \tau < +\infty$ 

## **ELBM: Entropic step**



[Karlin et al., 1999]

- ELBM adds a single extra step to the LBM algorithm. At each time step, at each node, the value of α is calculated to insure the monotonic decrease of H.
- Defining  $\mathbf{f}^{\text{mirror}} = \mathbf{f} \alpha \ (\mathbf{f} \mathbf{f}^{\text{eq}})$ , we can rewrite the ELBM eq:

**ELBM Equation** 

$$f_i(x + c_i, t + 1) = (1 - \beta) f_i(x, t) + \beta f_i^{mirror}(x, t)$$

with  $0 < \beta < 1$  as we have  $0.5 < \tau < +\infty$ 

•  $\alpha$  is calculated at each node and each time step as the solution of the following equation:

$$H\left(\mathbf{f}\right) = H\left(\mathbf{f}^{\mathbf{mirror}}\right)$$

# ELBM: Perspective from H-functional hypersurface



# Calculation of $\alpha$ and the convexity of H insure monotonic decreases of H



## Solving the Entropic step equation



Entropic step Equation

$$H(\mathbf{f}) = H(\mathbf{f} - \alpha \ (\mathbf{f} - \mathbf{f}^{\mathbf{eq}}))$$

with  $H(\mathbf{f}) = \sum_{0}^{q-1} f_i \log\left(\frac{f_i}{\omega_i}\right)$ 

Nont-trivial: typically solved using Newton-Raphson in 6-8 iterations for a tolerance of 10<sup>-5</sup>



Entropic step Equation

$$H(\mathbf{f}) = H(\mathbf{f} - \alpha \ (\mathbf{f} - \mathbf{f}^{\mathbf{eq}}))$$

with  $H(\mathbf{f}) = \sum_{0}^{q-1} f_i \log\left(\frac{f_i}{\omega_i}\right)$ 

- Nont-trivial: typically solved using Newton-Raphson in 6-8 iterations for a tolerance of 10<sup>-5</sup>
- When Newton-Raphson does not converge, 2, the LBGK's value of α is used

The results is a (seemingly) unconditonnaly stable LBM when  $\beta \to 1 \Leftrightarrow \nu \to 0 ...$ 



Entropic step Equation

$$H(\mathbf{f}) = H(\mathbf{f} - \alpha \ (\mathbf{f} - \mathbf{f}^{\mathbf{eq}}))$$

with  $H(\mathbf{f}) = \sum_{0}^{q-1} f_i \log\left(\frac{f_i}{\omega_i}\right)$ 

- Nont-trivial: typically solved using Newton-Raphson in 6-8 iterations for a tolerance of 10<sup>-5</sup>
- When Newton-Raphson does not converge, 2, the LBGK's value of α is used

The results is a (seemingly) unconditionnaly stable LBM when  $\beta \to 1 \Leftrightarrow \nu \to 0...$ 

# ... but we need to understand if the right physics is represented

## Is ELBM a LBM with an implicit LES?



[Karlin et al., 1999]

• The viscosity  $\nu$  is allowed to fluctuate locally:

$$\nu\left(\alpha\right) = c_s^2 \left(\frac{1}{\alpha\beta} - 0.5\right)$$

## Is ELBM a LBM with an implicit LES?



[Karlin et al., 1999]

• The viscosity  $\nu$  is allowed to fluctuate locally:

$$\nu\left(\alpha\right) = c_s^2 \left(\frac{1}{\alpha\beta} - 0.5\right)$$

[Karlin et al., 2015]

• Whenever the simulation is resolved  $\alpha = 2$  and the ELBM equations is equivalent to the standard LBGK equation

## Is ELBM a LBM with an implicit LES?



[Karlin et al., 1999]

• The viscosity  $\nu$  is allowed to fluctuate locally:

$$\nu\left(\alpha\right) = c_s^2 \left(\frac{1}{\alpha\beta} - 0.5\right)$$

[Karlin et al., 2015]

Whenever the simulation is resolved α = 2 and the ELBM equations is equivalent to the standard LBGK equation

[Malaspinas et al., 2008]

Chapman-Enskog expansion was performed for  $\alpha \approx 2$  and an additional term of the form  $\nu_r S_{ij}$  appeared with:

$$\nu_{r} = -\frac{c_{s^{2}}\Delta t}{3\left(2\beta\right)^{2}} \frac{S_{\theta\kappa}S_{\kappa\gamma}S_{\gamma\theta}}{S_{\lambda\mu}S_{\lambda\mu}}$$

#### Very similar to a Smagorinsky subgrid scale model

## Brief introduction to KBC ELBM



KBC: Multi-relaxation time variation of ELBM

[Bosch et al., 2015]

$$f_i = k_i + s_i + h_i$$
  
$$f_i^{mirror} = k_i + [2s_i^{eq} - s_i] + [\gamma h_i^{eq} + (1 - \gamma)h_i]$$

where  $k_i$  is the contribution of locally conserved fields

- s<sub>i</sub> are stresses
- $h_i$  are the remaining high order moments

 $\gamma$  is calculated to minimize the entropy of the post-collision distribution:

$$\frac{\mathrm{d}H\left[\mathbf{f}'\right]}{\mathrm{d}\gamma} = \frac{\mathrm{d}H\left[(1-\beta)\mathbf{f} + \beta f^{mirror}\right]}{\mathrm{d}\gamma} = 0$$



## Is the subgrid model nothing else than an artifact of the ELBM, or is it a realistic representation of the unresolved physics? [Malaspinas *et al.*, 2008]



## Is the subgrid model nothing else than an artifact of the ELBM, or is it a realistic representation of the unresolved physics? [Malaspinas *et al.*, 2008]

#### **Objective:**

Numerically check the existence of an implicit Sub-Grid Scale model and its impact on the physics for both 2D and 3D turbulence



## Is the subgrid model nothing else than an artifact of the ELBM, or is it a realistic representation of the unresolved physics? [Malaspinas *et al.*, 2008]

#### **Objective:**

Numerically check the existence of an implicit Sub-Grid Scale model and its impact on the physics for both 2D and 3D turbulence

#### Collaborations:

- Abhineet Gupta and Federico Toschi from TU/e
- Ilya Karlin from ETH Zurich

## Thank you for your attention!



## References

| [Pope, 2000]                      | Pope, S.B.<br>Cambridge University Press, 2000                                                |
|-----------------------------------|-----------------------------------------------------------------------------------------------|
| [Succi, 2001]                     | Succi, S.<br>Oxford University Press, 2001                                                    |
| [Karlin <i>et al.</i> , 1999]     | Karlin, I.V., Ferrante, A., and Ottinger, H.C.<br>Europhysical Letters, 1999, 47; 182         |
| [Succi <i>et al.</i> , 2002]      | Succi, S., Karlin, I.V., and Chen, H.<br>Review of Modern Physics, 2002, 74; 1203-1220        |
| [Karlin <i>et al.</i> , 2015]     | Kalin, I.V., Bösch, F., Chikatamarla, S.S., and Succi, S.<br>Entropy, 2015, 17; 8099-8110     |
| [Malaspinas <i>et al.</i> , 2008] | Malaspinas, O., Deville, M., and Chopard, B.<br>Physical Review Letters E, 2008, 78; 066705-3 |

## Appendix - ELBM algorithm



1: for each time step do 2: for each node do Calculate density  $\rho = \sum_{i=0}^{q-1} f_i$ 3: Calculate velocity for equilibirum calculation  $u^{\vec{e}q} = \frac{1}{\alpha} \sum_{i=0}^{q-1} f_i \vec{c_i} + \frac{\vec{F}}{2\alpha}$ 4: Calculate the non-equilibrium part of the distribution  $f_i^{neq} = f_i - f_i^{eq} \left( \rho, \ u^{\vec{e}q} \right)$ 5 6: Apply the forcing's collision contribution to the distribution Check the deviation  $\Delta\left(\mathbf{f}^{\mathbf{F}}, \mathbf{f}^{\mathbf{neq}}\right) = \max_{0 < i < q-1} \left|\frac{f_{i}^{i-j}}{f_{i}^{\mathbf{F}}}\right|$ 7. if  $\Delta \left( \mathbf{f}^{\mathbf{F}}, \mathbf{f}^{neq} \right) \le 10^{-3}$  then 8. 9: Set  $\alpha = 2$ 10. else Calculate  $\alpha_{max}$  corresponding to  $\min_{\substack{0 \le i \le q-1: f^{neq} > 0}} |\frac{f_i}{f_i^{neq}}|$ 11. 12: if  $\alpha_{max} < 2$  then 13. Set  $\alpha = 0.9 \times \alpha_{max}$ 14. else Use Newton-Raphson method to solve  $H(\mathbf{f}^{\mathbf{F}}) = H(\mathbf{f}^{\mathbf{F}} - \alpha \mathbf{f}^{\mathbf{neq}})$  with  $\alpha_{guess} = 2$ ,  $\alpha_{min} = 1$  and 15: previously calculated  $\alpha_{max}$ 16. end if 17: end if 18: Collide with a relaxation time of  $\alpha \times \beta$ 19 Propagate 20: Store density Calculate and store hydrodynamic velocity  $u^{h\vec{y}dro} = \frac{1}{\alpha} \sum_{i=0}^{q-1} f_i \vec{c_i} + \frac{\vec{F}}{2\alpha}$ 21: 22: end for 23: end for