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Motivations

Lattice Boltzmann Method:

Adapted to a wide range of physical simulations

Intrinsic scalability, well suited for HPC implementations

Can handle very complex (moving) geometry

Large Eddy Simulation:

Reduces the number of degrees of freedom by resolving scales
only up to a cutoff scale

Enable cost-effective high Reynolds turbulent flow simulations

Popular in commercial Computational Fluid Dynamics softwares

Can we have an equivalent LES turbulence model for LBM?

Current direction: Study of Entropic Lattice Boltzmann Method as an
implicit LBM-LES

tauzin@uni-wuppertal.de Rome, October 13, 2016 2



Motivations

Lattice Boltzmann Method:

Adapted to a wide range of physical simulations

Intrinsic scalability, well suited for HPC implementations

Can handle very complex (moving) geometry

Large Eddy Simulation:

Reduces the number of degrees of freedom by resolving scales
only up to a cutoff scale

Enable cost-effective high Reynolds turbulent flow simulations

Popular in commercial Computational Fluid Dynamics softwares

Can we have an equivalent LES turbulence model for LBM?

Current direction: Study of Entropic Lattice Boltzmann Method as an
implicit LBM-LES

tauzin@uni-wuppertal.de Rome, October 13, 2016 2



Motivations

Lattice Boltzmann Method:

Adapted to a wide range of physical simulations

Intrinsic scalability, well suited for HPC implementations

Can handle very complex (moving) geometry

Large Eddy Simulation:

Reduces the number of degrees of freedom by resolving scales
only up to a cutoff scale

Enable cost-effective high Reynolds turbulent flow simulations

Popular in commercial Computational Fluid Dynamics softwares

Can we have an equivalent LES turbulence model for LBM?

Current direction: Study of Entropic Lattice Boltzmann Method as an
implicit LBM-LES

tauzin@uni-wuppertal.de Rome, October 13, 2016 2



Motivations

Lattice Boltzmann Method:

Adapted to a wide range of physical simulations

Intrinsic scalability, well suited for HPC implementations

Can handle very complex (moving) geometry

Large Eddy Simulation:

Reduces the number of degrees of freedom by resolving scales
only up to a cutoff scale

Enable cost-effective high Reynolds turbulent flow simulations

Popular in commercial Computational Fluid Dynamics softwares

Can we have an equivalent LES turbulence model for LBM?

Current direction: Study of Entropic Lattice Boltzmann Method as an
implicit LBM-LES

tauzin@uni-wuppertal.de Rome, October 13, 2016 2



Lattice Boltzmann Equation
[Succi, 2001]

LBGK Equation

fi(~x +~ci, t + 1)− fi(~x, t) = −
1
τ

[
fi(~x, t)− f eq

i (~x, t)
]

which is a relaxation of typical time τ to the local equilibirum distribution:

f eq
i (~x, t) = wi ρ(~x, t)

[
1 +

~ci ·~u(~x, t)
c2

s
+

(
~ci ·~u(~x, t)

)2

2 c4
s

−
|~u(~x, t)|2

2 c2
s

]

a 2nd order expansion in
~u
cs

of the Maxwell-Boltzmann distribution

Chapman-Enskog expansion shows the relation between viscosity ν and the
relaxation time τ

ν = c2
s

(
1
τ
− 0.5

)
where cs is the speed of sound in the lattice

tauzin@uni-wuppertal.de Rome, October 13, 2016 3



Lattice Boltzmann Equation
[Succi, 2001]

LBGK Equation

fi(~x +~ci, t + 1)− fi(~x, t) = −
1
τ

[
fi(~x, t)− f eq

i (~x, t)
]

which is a relaxation of typical time τ to the local equilibirum distribution:

f eq
i (~x, t) = wi ρ(~x, t)

[
1 +

~ci ·~u(~x, t)
c2

s
+

(
~ci ·~u(~x, t)

)2

2 c4
s

−
|~u(~x, t)|2

2 c2
s

]

a 2nd order expansion in
~u
cs

of the Maxwell-Boltzmann distribution

Chapman-Enskog expansion shows the relation between viscosity ν and the
relaxation time τ

ν = c2
s

(
1
τ
− 0.5

)
where cs is the speed of sound in the lattice

tauzin@uni-wuppertal.de Rome, October 13, 2016 3



ELBM: A search for LBM stabilization

Can we use LBM to study turbulent flows?
Instabilities arise when τ → 0.5 (ν → 0) making standard LBGK
irrelevant to the study of turbulent flows

Entropic Lattice Boltzmann (ELBM) [Karlin et al., 1999]

Introduced by I. Karlin to overcome instabilities issues at high
Reynolds

While BGK collision implies irreversibility, LBGK is not equipped
with a Boltzmann H-theorem

Stabilization of LBM has been linked to the existence of an
underlying Lyapunov functional in the form of a H-function

[Succi et al., 2002]

ELBM principle is to equip LBM with an in-built H-theorem
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ELBM: A LBM with an in-built H-theorem

ELBM Equation

fi(x + ci, t + 1) = fi(x, t) + αβ (f eq
i (x, t)− fi(x, t))

where β = 1
2τ . If α = 2, the ELBM eq. becomes the LBGK eq.

feq is defined as the maxima of a convex H-function under the
constraints of mass and momentum conservation: [Karlin et al., 1999]

H (f) =

q−1∑
0

fi log
(

fi
ωi

)
, ρ =

∑
i

f eq
i , ρ~u =

∑
i

~ci f eq
i

For DdQ3d lattices:

f eq
i = ρwi

d∏
a=1

(
2−

√
1 + 3 u2

a

)(
2 ua +

√
1 + 3 u2

a

1− ua

)ci, a
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ELBM: Entropic step

[Karlin et al., 1999]

ELBM adds a single extra step to the LBM algorithm. At each time
step, at each node, the value of α is calculated to insure the
monotonic decrease of H.

Defining fmirror = f− α (f− feq), we can rewrite the ELBM eq:

ELBM Equation

fi(x + ci, t + 1) = (1− β) fi(x, t) + β f mirror
i (x, t)

with 0 < β < 1 as we have 0.5 < τ < +∞

α is calculated at each node and each time step as the solution of
the following equation:

H (f) = H
(
fmirror)
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ELBM: Perspective from H-functional
hypersurface

Calculation of α and the convexity of H insure monotonic
decreases of H

tauzin@uni-wuppertal.de Rome, October 13, 2016 7



Solving the Entropic step equation

Entropic step Equation

H (f) = H (f− α (f− feq))

with H (f) =
∑q−1

0 fi log
(

fi
ωi

)
Nont-trivial: typically solved using Newton-Raphson in 6-8
iterations for a tolerance of 10−5

When Newton-Raphson does not converge, 2, the LBGK’s
value of α is used

The results is a (seemingly) uncondtionnaly stable LBM when
β → 1⇔ ν → 0...

... but we need to understand if the right physics is
represented

tauzin@uni-wuppertal.de Rome, October 13, 2016 8



Solving the Entropic step equation

Entropic step Equation

H (f) = H (f− α (f− feq))

with H (f) =
∑q−1

0 fi log
(

fi
ωi

)
Nont-trivial: typically solved using Newton-Raphson in 6-8
iterations for a tolerance of 10−5

When Newton-Raphson does not converge, 2, the LBGK’s
value of α is used

The results is a (seemingly) uncondtionnaly stable LBM when
β → 1⇔ ν → 0...

... but we need to understand if the right physics is
represented

tauzin@uni-wuppertal.de Rome, October 13, 2016 8



Solving the Entropic step equation

Entropic step Equation

H (f) = H (f− α (f− feq))

with H (f) =
∑q−1

0 fi log
(

fi
ωi

)
Nont-trivial: typically solved using Newton-Raphson in 6-8
iterations for a tolerance of 10−5

When Newton-Raphson does not converge, 2, the LBGK’s
value of α is used

The results is a (seemingly) uncondtionnaly stable LBM when
β → 1⇔ ν → 0...

... but we need to understand if the right physics is
represented

tauzin@uni-wuppertal.de Rome, October 13, 2016 8



Is ELBM a LBM with an implicit LES?
[Karlin et al., 1999]

The viscosity ν is allowed to fluctuate locally:

ν (α) = c2
s

(
1
αβ
− 0.5

)

[Karlin et al., 2015]

Whenever the simulation is resolved α = 2 and the ELBM
equations is equivalent to the standard LBGK equation

[Malaspinas et al., 2008]

Chapman-Enskog expansion was performed for α ≈ 2 and an
additional term of the form νr Si j appeared with:

νr = − cs2∆t

3 (2β)
2

SθκSκγSγθ

SλµSλµ

Very similar to a Smagorinsky subgrid scale model
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Brief introduction to KBC ELBM

KBC: Multi-relaxation time variation of ELBM [Bosch et al., 2015]

fi = ki + si + hi

f mirror
i = ki + [2seq

i − si] + [γheq
i + (1− γ)hi]

where ki is the contribution of locally conserved fields
si are stresses
hi are the remaining high order moments

γ is calculated to minimize the entropy of the post-collision distribution:

dH [f′]
dγ

=
dH
[
(1− β)f + βf mirror

]
dγ

= 0
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Research question

Is the subgrid model nothing else than an artifact of the ELBM, or is it a
realistic representation of the unresolved physics? [Malaspinas et al., 2008]

Objective:

Numerically check the existence of an implicit Sub-Grid Scale model and
its impact on the physics for both 2D and 3D turbulence

Collaborations:

Abhineet Gupta and Federico Toschi from TU/e

Ilya Karlin from ETH Zurich
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Thank you for your attention!
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Appendix - ELBM algorithm

1: for each time step do
2: for each node do
3: Calculate density ρ =

∑q−1
i=0 fi

4: Calculate velocity for equilibirum calculation ~ueq = 1
ρ

∑q−1
i=0 fi~ci +

~F
2ρ

5: Calculate the non-equilibrium part of the distribution f neq
i = fi − f eq

i

(
ρ, ~ueq

)
6: Apply the forcing’s collision contribution to the distribution

7: Check the deviation ∆
(

fF, fneq
)

= max
0<i<q−1

|
f neq
i
f F
i
|

8: if ∆
(

fF, fneq
)
≤ 10−3 then

9: Set α = 2
10: else

11: Calculate αmax corresponding to min
0<i<q−1;f neq

i >0
|

f F
i

f neq
i
|

12: if αmax < 2 then
13: Set α = 0.9× αmax
14: else
15: Use Newton-Raphson method to solve H

(
fF
)

= H
(

fF − αfneq
)

with αguess = 2, αmin = 1 and
previously calculated αmax

16: end if
17: end if
18: Collide with a relaxation time of α× β
19: Propagate
20: Store density

21: Calculate and store hydrodynamic velocity ~uhydro = 1
ρ

∑q−1
i=0 fi~ci +

~F
2ρ

22: end for
23: end for
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