Entropic Lattice Boltzmann Method: An implicit Large-Eddy Simulation?

Guillaume Tauzin ${ }^{12}$
Luca Biferale ${ }^{2}$, Mauro Sbragaglia ${ }^{2}$, Andreas Bartel ${ }^{1}$, Mathias Ehrhardt ${ }^{1}$ ${ }^{1}$ Bergische Universität Wuppertal
${ }^{2}$ Universitá degli Studi di Roma Tor Vergata

Motivations

Lattice Boltzmann Method:

■ Adapted to a wide range of physical simulations
■ Intrinsic scalability, well suited for HPC implementations
■ Can handle very complex (moving) geometry

Motivations

Lattice Boltzmann Method:

■ Adapted to a wide range of physical simulations
■ Intrinsic scalability, well suited for HPC implementations
■ Can handle very complex (moving) geometry

Large Eddy Simulation:

■ Reduces the number of degrees of freedom by resolving scales only up to a cutoff scale

- Enable cost-effective high Reynolds turbulent flow simulations
- Popular in commercial Computational Fluid Dynamics softwares

Motivations

Lattice Boltzmann Method:

■ Adapted to a wide range of physical simulations
■ Intrinsic scalability, well suited for HPC implementations
■ Can handle very complex (moving) geometry

Large Eddy Simulation:

■ Reduces the number of degrees of freedom by resolving scales only up to a cutoff scale

- Enable cost-effective high Reynolds turbulent flow simulations

■ Popular in commercial Computational Fluid Dynamics softwares
Can we have an equivalent LES turbulence model for LBM?

Motivations

Lattice Boltzmann Method:

■ Adapted to a wide range of physical simulations
■ Intrinsic scalability, well suited for HPC implementations
■ Can handle very complex (moving) geometry

Large Eddy Simulation:

■ Reduces the number of degrees of freedom by resolving scales only up to a cutoff scale

- Enable cost-effective high Reynolds turbulent flow simulations

■ Popular in commercial Computational Fluid Dynamics softwares
Can we have an equivalent LES turbulence model for LBM?
Current direction: Study of Entropic Lattice Boltzmann Method as an implicit LBM-LES

Lattice Boltzmann Equation

LBGK Equation

$$
f_{i}\left(\vec{x}+\vec{c}_{i}, t+1\right)-f_{i}(\vec{x}, t)=-\frac{1}{\tau}\left[f_{i}(\vec{x}, t)-f_{i}^{e q}(\vec{x}, t)\right]
$$

which is a relaxation of typical time τ to the local equilibirum distribution:

$$
f_{i}^{e q}(\vec{x}, t)=w_{i} \rho(\vec{x}, t)\left[1+\frac{\vec{c}_{i} \cdot \vec{u}(\vec{x}, t)}{c_{s}^{2}}+\frac{\left(\vec{c}_{i} \cdot \vec{u}(\vec{x}, t)\right)^{2}}{2 c_{s}^{4}}-\frac{|\vec{u}(\vec{x}, t)|^{2}}{2 c_{s}^{2}}\right]
$$

a $2^{\text {nd }}$ order expansion in $\frac{\vec{u}}{c_{s}}$ of the Maxwell-Boltzmann distribution

Lattice Boltzmann Equation

LBGK Equation

$$
f_{i}\left(\vec{x}+\vec{c}_{i}, t+1\right)-f_{i}(\vec{x}, t)=-\frac{1}{\tau}\left[f_{i}(\vec{x}, t)-f_{i}^{e q}(\vec{x}, t)\right]
$$

which is a relaxation of typical time τ to the local equilibirum distribution:

$$
f_{i}^{e q}(\vec{x}, t)=w_{i} \rho(\vec{x}, t)\left[1+\frac{\vec{c}_{i} \cdot \vec{u}(\vec{x}, t)}{c_{s}^{2}}+\frac{\left(\vec{c}_{i} \cdot \vec{u}(\vec{x}, t)\right)^{2}}{2 c_{s}^{4}}-\frac{|\vec{u}(\vec{x}, t)|^{2}}{2 c_{s}^{2}}\right]
$$

a $2^{\text {nd }}$ order expansion in $\frac{\vec{u}}{c_{s}}$ of the Maxwell-Boltzmann distribution

- Chapman-Enskog expansion shows the relation between viscosity ν and the relaxation time τ

$$
\nu=c_{s}^{2}\left(\frac{1}{\tau}-0.5\right) \text { where } c_{s} \text { is the speed of sound in the lattice }
$$

ELBM: A search for LBM stabilization

Can we use LBM to study turbulent flows?
Instabilities arise when $\tau \rightarrow 0.5(\nu \rightarrow 0)$ making standard LBGK irrelevant to the study of turbulent flows

ELBM: A search for LBM stabilization

Can we use LBM to study turbulent flows?
Instabilities arise when $\tau \rightarrow 0.5(\nu \rightarrow 0)$ making standard LBGK irrelevant to the study of turbulent flows

Entropic Lattice Boltzmann (ELBM) [Karlin et al., 1999]

■ Introduced by I. Karlin to overcome instabilities issues at high Reynolds

ELBM: A search for LBM stabilization

Can we use LBM to study turbulent flows?
Instabilities arise when $\tau \rightarrow 0.5(\nu \rightarrow 0)$ making standard LBGK irrelevant to the study of turbulent flows

Entropic Lattice Boltzmann (ELBM)
[Karlin et al., 1999]
■ Introduced by I. Karlin to overcome instabilities issues at high Reynolds

■ While BGK collision implies irreversibility, LBGK is not equipped with a Boltzmann H-theorem

ELBM: A search for LBM stabilization

Can we use LBM to study turbulent flows?
Instabilities arise when $\tau \rightarrow 0.5(\nu \rightarrow 0)$ making standard LBGK irrelevant to the study of turbulent flows

Entropic Lattice Boltzmann (ELBM)
[Karlin et al., 1999]
■ Introduced by I. Karlin to overcome instabilities issues at high Reynolds

■ While BGK collision implies irreversibility, LBGK is not equipped with a Boltzmann H-theorem

- Stabilization of LBM has been linked to the existence of an underlying Lyapunov functional in the form of a H -function
[Succi et al., 2002]

ELBM: A search for LBM stabilization

Can we use LBM to study turbulent flows?
Instabilities arise when $\tau \rightarrow 0.5(\nu \rightarrow 0)$ making standard LBGK irrelevant to the study of turbulent flows

Entropic Lattice Boltzmann (ELBM)
[Karlin et al., 1999]
■ Introduced by I. Karlin to overcome instabilities issues at high Reynolds

■ While BGK collision implies irreversibility, LBGK is not equipped with a Boltzmann H-theorem

■ Stabilization of LBM has been linked to the existence of an underlying Lyapunov functional in the form of a H -function
[Succi et al., 2002]
ELBM principle is to equip LBM with an in-built H-theorem

ELBM: A LBM with an in-built H-theorem

ELBM Equation

$$
f_{i}\left(x+c_{i}, t+1\right)=f_{i}(x, t)+\alpha \beta\left(f_{i}^{e q}(x, t)-f_{i}(x, t)\right)
$$

where $\beta=\frac{1}{2 \tau}$. If $\alpha=2$, the ELBM eq. becomes the LBGK eq.

ELBM: A LBM with an in-built H-theorem

ELBM Equation

$$
f_{i}\left(x+c_{i}, t+1\right)=f_{i}(x, t)+\alpha \beta\left(f_{i}^{e q}(x, t)-f_{i}(x, t)\right)
$$

where $\beta=\frac{1}{2 \tau}$. If $\alpha=2$, the ELBM eq. becomes the LBGK eq.
■ \mathbf{f}^{eq} is defined as the maxima of a convex H -function under the constraints of mass and momentum conservation: [Karlin et al., 1999]

$$
H(\mathbf{f})=\sum_{0}^{q-1} f_{i} \log \left(\frac{f_{i}}{\omega_{i}}\right), \quad \rho=\sum_{i} f_{i}^{e q}, \quad \rho \vec{u}=\sum_{i} \vec{c}_{i} f_{i}^{e q}
$$

ELBM: A LBM with an in-built H-theorem

ELBM Equation

$$
f_{i}\left(x+c_{i}, t+1\right)=f_{i}(x, t)+\alpha \beta\left(f_{i}^{e q}(x, t)-f_{i}(x, t)\right)
$$

where $\beta=\frac{1}{2 \tau}$. If $\alpha=2$, the ELBM eq. becomes the LBGK eq.
■ \mathbf{f}^{eq} is defined as the maxima of a convex H -function under the constraints of mass and momentum conservation: [Karlin et al., 1999]

$$
H(\mathbf{f})=\sum_{0}^{q-1} f_{i} \log \left(\frac{f_{i}}{\omega_{i}}\right), \quad \rho=\sum_{i} f_{i}^{e q}, \quad \rho \vec{u}=\sum_{i} \vec{c}_{i} f_{i}^{e q}
$$

■ For $D d Q 3^{d}$ lattices:

$$
f_{i}^{e q}=\rho w_{i} \prod_{a=1}^{d}\left(2-\sqrt{1+3 u_{a}^{2}}\right)\left(\frac{2 u_{a}+\sqrt{1+3 u_{a}^{2}}}{1-u_{a}}\right)^{c_{i, a}}
$$

ELBM: Entropic step

■ ELBM adds a single extra step to the LBM algorithm. At each time step, at each node, the value of α is calculated to insure the monotonic decrease of H .

ELBM: Entropic step

■ ELBM adds a single extra step to the LBM algorithm. At each time step, at each node, the value of α is calculated to insure the monotonic decrease of H .

■ Defining $\mathbf{f}^{\text {mirror }}=\mathbf{f}-\alpha\left(\mathbf{f}-\mathbf{f}^{\text {eq }}\right)$, we can rewrite the ELBM eq:

ELBM Equation

$$
f_{i}\left(x+c_{i}, t+1\right)=(1-\beta) f_{i}(x, t)+\beta f_{i}^{\text {mirror }}(x, t)
$$

with $0<\beta<1$ as we have $0.5<\tau<+\infty$

ELBM: Entropic step

■ ELBM adds a single extra step to the LBM algorithm. At each time step, at each node, the value of α is calculated to insure the monotonic decrease of H .

■ Defining $\mathbf{f}^{\text {mirror }}=\mathbf{f}-\alpha\left(\mathbf{f}-\mathbf{f}^{\text {eq }}\right)$, we can rewrite the ELBM eq:

ELBM Equation

$$
f_{i}\left(x+c_{i}, t+1\right)=(1-\beta) f_{i}(x, t)+\beta f_{i}^{m i r r o r}(x, t)
$$

with $0<\beta<1$ as we have $0.5<\tau<+\infty$
■ α is calculated at each node and each time step as the solution of the following equation:

$$
H(\mathbf{f})=H\left(\mathbf{f}^{\text {mirror }}\right)
$$

ELBM: Perspective from H-functional hypersurface

Calculation of α and the convexity of H insure monotonic decreases of \mathbf{H}

Solving the Entropic step equation

Entropic step Equation

$$
H(\mathbf{f})=H\left(\mathbf{f}-\alpha\left(\mathbf{f}-\mathbf{f}^{\mathbf{e q}}\right)\right)
$$

with $H(\mathbf{f})=\sum_{0}^{q-1} f_{i} \log \left(\frac{f_{i}}{\omega_{i}}\right)$
■ Nont-trivial: typically solved using Newton-Raphson in 6-8 iterations for a tolerance of 10^{-5}

Solving the Entropic step equation

Entropic step Equation

$$
H(\mathbf{f})=H\left(\mathbf{f}-\alpha\left(\mathbf{f}-\mathbf{f}^{\mathbf{e q} \mathbf{q}}\right)\right)
$$

with $H(\mathbf{f})=\sum_{0}^{q-1} f_{i} \log \left(\frac{f_{i}}{\omega_{i}}\right)$
■ Nont-trivial: typically solved using Newton-Raphson in 6-8 iterations for a tolerance of 10^{-5}
■ When Newton-Raphson does not converge, 2, the LBGK's value of α is used

The results is a (seemingly) uncondtionnaly stable LBM when

$$
\beta \rightarrow 1 \Leftrightarrow \nu \rightarrow 0 \ldots
$$

Solving the Entropic step equation

Entropic step Equation

$$
H(\mathbf{f})=H\left(\mathbf{f}-\alpha\left(\mathbf{f}-\mathbf{f}^{\mathbf{e q} \mathbf{q}}\right)\right)
$$

with $H(\mathbf{f})=\sum_{0}^{q-1} f_{i} \log \left(\frac{f_{i}}{\omega_{i}}\right)$
■ Nont-trivial: typically solved using Newton-Raphson in 6-8 iterations for a tolerance of 10^{-5}
■ When Newton-Raphson does not converge, 2, the LBGK's value of α is used

The results is a (seemingly) uncondtionnaly stable LBM when

$$
\beta \rightarrow 1 \Leftrightarrow \nu \rightarrow 0 \ldots
$$

... but we need to understand if the right physics is represented

Is ELBM a LBM with an implicit LES?

■ The viscosity ν is allowed to fluctuate locally:

$$
\nu(\alpha)=c_{s}^{2}\left(\frac{1}{\alpha \beta}-0.5\right)
$$

Is ELBM a LBM with an implicit LES?

■ The viscosity ν is allowed to fluctuate locally:

$$
\nu(\alpha)=c_{s}^{2}\left(\frac{1}{\alpha \beta}-0.5\right)
$$

[Karlin et al., 2015]
■ Whenever the simulation is resolved $\alpha=2$ and the ELBM equations is equivalent to the standard LBGK equation

Is ELBM a LBM with an implicit LES?

■ The viscosity ν is allowed to fluctuate locally:

$$
\nu(\alpha)=c_{s}^{2}\left(\frac{1}{\alpha \beta}-0.5\right)
$$

[Karlin et al., 2015]
■ Whenever the simulation is resolved $\alpha=2$ and the ELBM equations is equivalent to the standard LBGK equation
[Malaspinas et al., 2008]
■ Chapman-Enskog expansion was performed for $\alpha \approx 2$ and an additional term of the form $\nu_{r} S_{i j}$ appeared with:

$$
\nu_{r}=-\frac{c_{s^{2}} \Delta t}{3(2 \beta)^{2}} \frac{S_{\theta \kappa} S_{\kappa \gamma} S_{\gamma \theta}}{S_{\lambda \mu} S_{\lambda \mu}}
$$

Very similar to a Smagorinsky subgrid scale model

Brief introduction to KBC ELBM

KBC: Multi-relaxation time variation of ELBM

[Bosch et al., 2015]

$$
\begin{aligned}
f_{i} & =k_{i}+s_{i}+h_{i} \\
f_{i}^{\text {mirror }} & =k_{i}+\left[2 s_{i}^{e q}-s_{i}\right]+\left[\gamma h_{i}^{e q}+(1-\gamma) h_{i}\right]
\end{aligned}
$$

where k_{i} is the contribution of locally conserved fields
s_{i} are stresses
h_{i} are the remaining high order moments
γ is calculated to minimize the entropy of the post-collision distribution:

$$
\frac{\mathrm{d} H\left[\mathbf{f}^{\prime}\right]}{\mathrm{d} \gamma}=\frac{\mathrm{d} H\left[(1-\beta) \mathbf{f}+\beta f^{\text {mirror }}\right]}{\mathrm{d} \gamma}=0
$$

Research question

Is the subgrid model nothing else than an artifact of the ELBM, or is it a realistic representation of the unresolved physics? [Malaspinas et al., 2008]

Research question

Is the subgrid model nothing else than an artifact of the ELBM, or is it a realistic representation of the unresolved physics? [Malaspinas et al., 2008]

Objective:

- Numerically check the existence of an implicit Sub-Grid Scale model and its impact on the physics for both 2D and 3D turbulence

Research question

Is the subgrid model nothing else than an artifact of the ELBM, or is it a realistic representation of the unresolved physics? [Malaspinas et al., 2008]

Objective:

- Numerically check the existence of an implicit Sub-Grid Scale model and its impact on the physics for both 2D and 3D turbulence
Collaborations:
- Abhineet Gupta and Federico Toschi from TU/e
- Ilya Karlin from ETH Zurich

Thank you for your attention!

References

[Pope, 2000] Pope, S.B.
Cambridge University Press, 2000
[Succi, 2001] Succi, S.
Oxford University Press, 2001
[Karlin et al., 1999] Karlin, I.V., Ferrante, A., and Ottinger, H.C.
Europhysical Letters, 1999, 47; 182
[Succi et al., 2002] Succi, S., Karlin, I.V., and Chen, H.
Review of Modern Physics, 2002, 74; 1203-1220
[Karlin et al., 2015] Kalin, I.V., Bösch, F., Chikatamarla, S.S., and Succi, S.
Entropy, 2015, 17; 8099-8110
[Malaspinas et al., 2008] Malaspinas, O., Deville, M., and Chopard, B.
Physical Review Letters E, 2008, 78; 066705-3

Appendix - ELBM algorithm

```
for each time step do
    for each node do
            Calculate density \(\rho=\sum_{i=0}^{q-1} f_{i}\)
            Calculate velocity for equilibirum calculation \(u^{\overrightarrow{e q}}=\frac{1}{\rho} \sum_{i=0}^{q-1} f_{i} \vec{c}_{i}+\frac{\vec{F}}{2 \rho}\)
            Calculate the non-equilibrium part of the distribution \(f_{i}^{\text {neq }}=f_{i}-f_{i}^{e q}\left(\rho, u^{\overrightarrow{e q}}\right)\)
            Apply the forcing's collision contribution to the distribution
            Check the deviation \(\Delta\left(\mathbf{f}^{\mathbf{F}}, \mathbf{f}^{\text {neq }}\right)=\max _{0<i<q-1}\left|\frac{f_{i}^{\text {neq }}}{f_{i}^{F}}\right|\)
            if \(\Delta\left(\mathbf{f}^{\mathbf{F}}, \mathbf{f}^{\text {neq }}\right) \leq 10^{-3}\) then
                Set \(\alpha=2\)
            else
            Calculate \(\alpha_{\text {max }}\) corresponding to \(\min _{0<i<q-1: f_{i}^{n e q}>0}\left|\frac{f_{i}^{F}}{f_{i}^{\text {neq }}}\right|\)
            if \(\alpha_{\max }<2\) then
                    Set \(\alpha=0.9 \times \alpha_{\max }\)
                else
                    Use Newton-Raphson method to solve \(H\left(\mathbf{f}^{\mathbf{F}}\right)=H\left(\mathbf{f}^{\mathbf{F}}-\alpha \mathbf{f}^{\text {neq }}\right)\) with \(\alpha_{\text {guess }}=2, \alpha_{\text {min }}=1\) and
previously calculated \(\alpha_{\max }\)
            end if
            end if
            Collide with a relaxation time of \(\alpha \times \beta\)
            Propagate
            Store density
            Calculate and store hydrodynamic velocity \(u^{\text {hydro }}=\frac{1}{\rho} \sum_{i=0}^{q-1} f_{i} \vec{i}+\frac{\vec{F}}{2 \rho}\)
        end for
    end for
```

