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Introduction: Large Eddy Simulation (LES)
I Reduces the number of degrees of freedom by resolving scales only up to a

cutoff scale and modeling the remaining smaller scales
I Enables cost-effective high Reynolds turbulent flow simulations

LES equation: Filtered Navier-Stokes + SGS model

∂t u i + ∂j (u i u j) = −
1
ρ
∂ip + ν ∂jS i j − ∂jτi j , where S i j = (∂ju i + ∂iu j)

τi j = uiuj − u i u j must be modeled using a Sub-Grid Scale (SGS) Model
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Introduction: Lattice Boltzmann Method (LBM)

LBGK Equation [Succi, 2001]

fi(~x + ~ci , t + 1)− fi(~x , t) = −
1
τ

[
fi(~x , t)− f eq

i (~x , t)
]

which is a relaxation of typical time τ to the local equilibirum distribution:

f eq
i (~x , t) = wi ρ(~x , t)

[
1 +

~ci · ~u(~x , t)
c2

s
+

(
~ci · ~u(~x , t)

)2

2 c4
s

− |
~u(~x , t)|2

2 c2
s

]
a 2nd order expansion in

~u
cs

of the Maxwell-Boltzmann distribution
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a 2nd order expansion in

~u
cs

of the Maxwell-Boltzmann distribution

I Chapman-Enskog expansion shows the relation between viscosity ν and the
relaxation time τ

ν = c2
s (τ − 0.5) where cs is the speed of sound in the lattice
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Problem statement

Can we have an equivalent LES turbulence model for LBM?
Very few attempts to combine those techniques

Do we already have an implicit one?

Entropic Lattice Boltzmann Method
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ELBM: A search for LBM stabilization

Can we use LBM to study turbulent flows?
Instabilities arise when τ → 0.5 (ν → 0) making standard LBGK
unadapted to the study of turbulent flows

Entropic Lattice Boltzmann (ELBM) [Karlin et al., 1999]

I Introduced by I. Karlin to overcome instabilities issues at high
Reynolds

I LBGK is built directly from the Boltzmann Equation and is not
equipped with a Boltzmann H-theorem even if BGK collision implies
irreversibility

I Stabilization of LBM has been linked to the existence of an underlying
Lyapunov functional in the form of a H-function

[Succi et al., 2002]

ELBM principle is to equip LBM with an in-built H-theorem
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ELBM: A LBM with an in-built H-theorem
I feq is defined as the maxima of a convex H-function under the

constraints of mass and momentum conservation:

H (f) =

q−1∑
0

fi log
(

fi
ωi

)
, ρ =

∑
i

f eq
i , ρ~u =

∑
i

~ci f eq
i

I The ELBM eq. introduces a fixed parameter β and a local one α

I Setting fmirror = f− α (f− feq), we can rewrite the ELBM eq.

I α is calculated at each node and each time step as the solution of the
following equation:

H (f) = H
(
fmirror (α)

)

LBGK Equation [Succi, 2001]

fi (~x + ~ci , t + 1)− fi (~x , t) = −1
τ

[
fi (~x , t)− f eq

i (~x , t)
]
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ELBM Equation [Karlin et al., 1999]

fi (x + ci , t + 1) = fi (x , t) + αβ
[
f eq
i (x , t)− fi (x , t)

]
where β = 1

2τ
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ELBM Equation [Karlin et al., 1999]

fi (x + ci , t + 1) = (1− β) fi (x , t) + β f mirror
i (x , t)

where β = 1
2τ , with 0 < β < 1 as we have 0.5 < τ < +∞
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ELBM: Perspective from H-functional hypersurface

Calculation of α and convexity of H insure monotonic decreases of H

The results is an uncondtionaly stable LBM when β → 1⇔ ν → 0...

... but we need to understand if the right physics is represented
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Is ELBM a LBM with an implicit LES?
[Karlin et al., 1999]

I The viscosity ν is allowed to fluctuate locally:

ν (α) = c2
s

(
1
αβ
− 0.5

)

[Karlin et al., 2015]

I Whenever the simulation is resolved α = 2 and the ELBM equations
is equivalent to the standard LBGK equation (τBGK = τα (α))

[Malaspinas et al., 2008]

I Chapman-Enskog expansion was performed for α ≈ 2 and an
additional term of the form νr Si j appeared with:

νr = − cs2 ∆t

3 (2β)2

SθκSκγSγθ

SλµSλµ

Very similar to a Smagorinsky subgrid scale model
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Dissipative properties of 2D ELBM
D2Q9 forced 2D homogeneous turbulence simulations for different
τ → 0.5
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Thank you for your attention!
Any questions?
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