

European Research Council Established by the European Commission

Entropic Lattice Boltzmann Method

An implicit Large-Eddy Simulation?

Guillaume Tauzin^{1, 2} Luca Biferale¹, Mauro Sbragaglia¹, Andreas Bartel², Matthias Ehrhardt²

¹Universitá degli Studi di Roma Tor Vergata ²Bergische Universität Wuppertal

Naples, May 25, 2017

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No' 642069

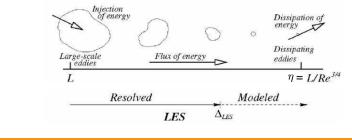
Introduction: Large Eddy Simulation (LES)

- Reduces the number of degrees of freedom by resolving scales only up to a cutoff scale and modeling the remaining smaller scales
- Enables cost-effective high Reynolds turbulent flow simulations

LES equation: Filtered Navier-Stokes + SGS model

$$\partial_t \overline{u}_i + \partial_j (\overline{u}_i \overline{u}_j) = -\frac{1}{\rho} \partial_i p + \nu \, \partial_j \overline{S}_{ij} - \partial_j \tau_{ij}, \text{ where } \overline{S}_{ij} = (\partial_j \overline{u}_i + \partial_i \overline{u}_j)$$

 $\tau_{ij} = \overline{u_i u_j} - \overline{u}_i \overline{u}_j$ must be modeled using a Sub-Grid Scale (SGS) Model



Introduction: Lattice Boltzmann Method (LBM)

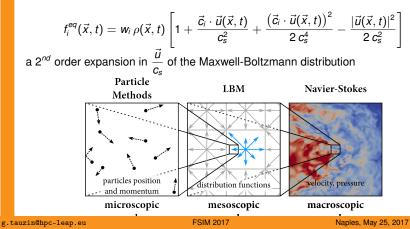
LBGK Equation

[Succi, 2001]

3/11

$$f_i(\vec{x} + \vec{c}_i, t+1) - f_i(\vec{x}, t) = -\frac{1}{\tau} \left[f_i(\vec{x}, t) - f_i^{eq}(\vec{x}, t) \right]$$

which is a relaxation of typical time τ to the local equilibirum distribution:



Introduction: Lattice Boltzmann Method (LBM)

LBGK Equation

[Succi, 2001]

$$f_i(\vec{x} + \vec{c}_i, t+1) - f_i(\vec{x}, t) = -\frac{1}{\tau} \left[f_i(\vec{x}, t) - f_i^{eq}(\vec{x}, t) \right]$$

which is a relaxation of typical time τ to the local equilibirum distribution:

$$f_i^{eq}(\vec{x},t) = w_i \rho(\vec{x},t) \left[1 + \frac{\vec{c}_i \cdot \vec{u}(\vec{x},t)}{c_s^2} + \frac{\left(\vec{c}_i \cdot \vec{u}(\vec{x},t)\right)^2}{2 c_s^4} - \frac{|\vec{u}(\vec{x},t)|^2}{2 c_s^2} \right]$$

a 2nd order expansion in $\frac{\vec{u}}{c_s}$ of the Maxwell-Boltzmann distribution

 \blacktriangleright Chapman-Enskog expansion shows the relation between viscosity ν and the relaxation time τ

 $u=c_{s}^{2}\left(au-0.5
ight)\,$ where c_{s} is the speed of sound in the lattice

Problem statement

Can we have an equivalent LES turbulence model for LBM?

Very few attempts to combine those techniques

Problem statement

Can we have an equivalent LES turbulence model for LBM?

Very few attempts to combine those techniques

Do we already have an implicit one?

Problem statement

Can we have an equivalent LES turbulence model for LBM?

Very few attempts to combine those techniques

Do we already have an implicit one?

Entropic Lattice Boltzmann Method

Can we use LBM to study turbulent flows?

Instabilities arise when au
ightarrow 0.5 (u
ightarrow 0) making standard LBGK unadapted to the study of turbulent flows

Can we use LBM to study turbulent flows?

Instabilities arise when au
ightarrow 0.5 (u
ightarrow 0) making standard LBGK unadapted to the study of turbulent flows

Entropic Lattice Boltzmann (ELBM)

[Karlin et al., 1999]

 Introduced by I. Karlin to overcome instabilities issues at high Reynolds

Can we use LBM to study turbulent flows?

Instabilities arise when $\tau \to$ 0.5 $(\nu \to$ 0) making standard LBGK unadapted to the study of turbulent flows

Entropic Lattice Boltzmann (ELBM)

[Karlin et al., 1999]

- Introduced by I. Karlin to overcome instabilities issues at high Reynolds
- LBGK is built directly from the Boltzmann Equation and is not equipped with a Boltzmann H-theorem even if BGK collision implies irreversibility

Can we use LBM to study turbulent flows?

Instabilities arise when $\tau \to$ 0.5 $(\nu \to$ 0) making standard LBGK unadapted to the study of turbulent flows

Entropic Lattice Boltzmann (ELBM)

[Karlin et al., 1999]

- Introduced by I. Karlin to overcome instabilities issues at high Reynolds
- LBGK is built directly from the Boltzmann Equation and is not equipped with a Boltzmann H-theorem even if BGK collision implies irreversibility
- Stabilization of LBM has been linked to the existence of an underlying Lyapunov functional in the form of a H-function

[Succi et al., 2002]

Can we use LBM to study turbulent flows?

Instabilities arise when $\tau \to$ 0.5 $(\nu \to$ 0) making standard LBGK unadapted to the study of turbulent flows

Entropic Lattice Boltzmann (ELBM)

[Karlin et al., 1999]

- Introduced by I. Karlin to overcome instabilities issues at high Reynolds
- LBGK is built directly from the Boltzmann Equation and is not equipped with a Boltzmann H-theorem even if BGK collision implies irreversibility
- Stabilization of LBM has been linked to the existence of an underlying Lyapunov functional in the form of a H-function

[Succi et al., 2002]

ELBM principle is to equip LBM with an in-built H-theorem

 f^{eq} is defined as the maxima of a convex H-function under the constraints of mass and momentum conservation:

$$H(\mathbf{f}) = \sum_{0}^{q-1} f_i \log\left(\frac{f_i}{\omega_i}\right), \qquad \rho = \sum_i f_i^{eq}, \quad \rho \vec{u} = \sum_i \vec{c}_i f_i^{eq}$$

LBGK Equation

[Succi, 2001]

$$f_i(\vec{x} + \vec{c}_i, t + 1) - f_i(\vec{x}, t) = -\frac{1}{\tau} \left[f_i(\vec{x}, t) - f_i^{eq}(\vec{x}, t) \right]$$

 f^{eq} is defined as the maxima of a convex H-function under the constraints of mass and momentum conservation:

$$H(\mathbf{f}) = \sum_{0}^{q-1} f_i \log\left(\frac{f_i}{\omega_i}\right), \qquad \rho = \sum_i f_i^{eq}, \quad \rho \vec{u} = \sum_i \vec{c}_i f_i^{eq}$$

• The ELBM eq. introduces a fixed parameter β and a local one α

ELBM Equation[Karlin et al., 1999]
$$f_i(x + c_i, t + 1) = f_i(x, t) + \alpha\beta \left[f_i^{eq}(x, t) - f_i(x, t) \right]$$
where $\beta = \frac{1}{2\tau}$ s. tauzin@hpc-leap.euFSIM 2017Naples. May 25, 20176/11

 f^{eq} is defined as the maxima of a convex H-function under the constraints of mass and momentum conservation:

$$H(\mathbf{f}) = \sum_{0}^{q-1} f_i \log\left(\frac{f_i}{\omega_i}\right), \qquad \rho = \sum_i f_i^{eq}, \quad \rho \vec{u} = \sum_i \vec{c}_i f_i^{eq}$$

 $\blacktriangleright\,$ The ELBM eq. introduces a fixed parameter β and a local one α

Setting $\mathbf{f}^{\text{mirror}} = \mathbf{f} - \alpha (\mathbf{f} - \mathbf{f}^{\text{eq}})$, we can rewrite the ELBM eq.

ELBM Equation[Karlin *et al.*, 1999]
$$f_i(x + c_i, t + 1) = (1 - \beta) f_i(x, t) + \beta f_i^{mirror}(x, t)$$
where $\beta = \frac{1}{2\tau}$, with $0 < \beta < 1$ as we have $0.5 < \tau < +\infty$

 f^{eq} is defined as the maxima of a convex H-function under the constraints of mass and momentum conservation:

$$H(\mathbf{f}) = \sum_{0}^{q-1} f_i \log\left(\frac{f_i}{\omega_i}\right), \qquad \rho = \sum_i f_i^{eq}, \quad \rho \vec{u} = \sum_i \vec{c}_i f_i^{eq}$$

 $\blacktriangleright\,$ The ELBM eq. introduces a fixed parameter β and a local one α

- Setting $\mathbf{f}^{mirror} = \mathbf{f} \alpha \ (\mathbf{f} \mathbf{f}^{eq})$, we can rewrite the ELBM eq.
- α is calculated at each node and each time step as the solution of the following equation:

$$H(\mathbf{f}) = H\left(\mathbf{f}^{\mathsf{mirror}}\left(\alpha\right)\right)$$

ELBM Equation

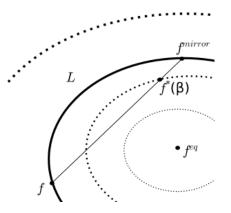
[Karlin et al., 1999]

$$f_i(x + c_i, t + 1) = (1 - \beta) f_i(x, t) + \beta f_i^{mirror}(x, t)$$

where $\beta = \frac{1}{2\tau}$, with $0 < \beta < 1$ as we have $0.5 < \tau < +\infty$

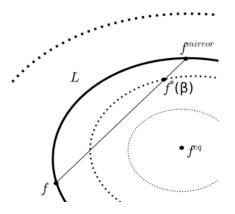
ELBM: Perspective from H-functional hypersurface

Calculation of α and convexity of H insure monotonic decreases of H



ELBM: Perspective from H-functional hypersurface

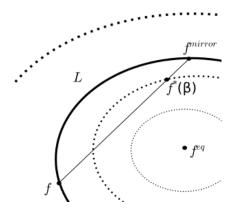
Calculation of α and convexity of H insure monotonic decreases of H



The results is an unconditionally stable LBM when $\beta \rightarrow 1 \Leftrightarrow \nu \rightarrow 0$...

ELBM: Perspective from H-functional hypersurface

Calculation of α and convexity of H insure monotonic decreases of H



The results is an unconditionaly stable LBM when $\beta \rightarrow 1 \Leftrightarrow \nu \rightarrow 0$...

... but we need to understand if the right physics is represented

Is ELBM a LBM with an implicit LES?

[Karlin et al., 1999]

• The viscosity ν is allowed to fluctuate locally:

$$u\left(\alpha\right) = c_{s}^{2}\left(\frac{1}{\alpha\beta} - 0.5\right)$$

Is ELBM a LBM with an implicit LES?

[Karlin et al., 1999]

• The viscosity ν is allowed to fluctuate locally:

$$u\left(lpha
ight)=c_{s}^{2}\left(rac{1}{lphaeta}-0.5
ight)$$

[Karlin et al., 2015]

 Whenever the simulation is resolved α = 2 and the ELBM equations is equivalent to the standard LBGK equation (τ_{BGK} = τ_α (α))

g.tauzin@hpc-leap.eu

Is ELBM a LBM with an implicit LES?

[Karlin et al., 1999]

• The viscosity ν is allowed to fluctuate locally:

$$u\left(\alpha\right) = c_{s}^{2}\left(\frac{1}{lphaeta} - 0.5
ight)$$

 Whenever the simulation is resolved α = 2 and the ELBM equations is equivalent to the standard LBGK equation (τ_{BGK} = τ_α (α))

[Malaspinas et al., 2008]

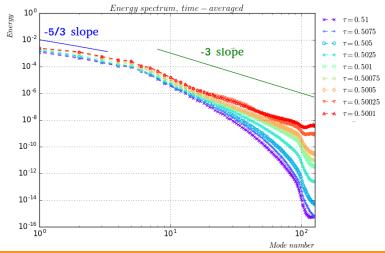
Chapman-Enskog expansion was performed for α ≈ 2 and an additional term of the form ν_r S_{ij} appeared with:

$$\nu_{r} = -\frac{c_{s^{2}}\Delta t}{3\left(2\beta\right)^{2}}\frac{S_{\theta\kappa}S_{\kappa\gamma}S_{\gamma\theta}}{S_{\lambda\mu}S_{\lambda\mu}}$$

Very similar to a Smagorinsky subgrid scale model

Dissipative properties of 2D ELBM

D2Q9 forced 2D homogeneous turbulence simulations for different $\tau \rightarrow 0.5$



g.tauzin@hpc-leap.eu

References

Sauro Succi, Iliya V. Karlin, and Hudong Chen. Role of the H theorem in lattice Boltzmann hydrodynamic simulations. *Review of Modern Physics*, 74(4):1203–1220, 2002.

Iliya V. Karlin, Antonio Ferrante, and Hans Christian Öttinger. Perfect entropy functions of the Lattice Boltzmann method. *Europhysics Letters (EPL)*, 47(2):182–188, 1999.

S Succi. *The Lattice Boltzmann Equation for Fluid Dynamics and Beyond*. Oxford University Press, 2001.

Stephen B. Pope. Turbulent Flows. Cambridge University press, 2000.

Orestis Malaspinas, Michel Deville, and Bastien Chopard. Towards a physical interpretation of the entropic lattice Boltzmann method. *Physical Review E*, 78(6):066705, 2008.

Ilya V. Karlin, Fabian Bösch, Shyam Chikatamarla, and Sauro Succi. Entropy-Assisted Computing of Low-Dissipative Systems. *Entropy*, 17(12):8099–8110, 2015.

Thank you for your attention! Any questions?

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No' 642069